The Effects of Aerobic Exercise on Executive Function: A Comparative Study Among Active, Passive, and Non-Procrastinating College Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants’ Characteristics
2.2. Experimental Design
2.3. Research Methods
2.3.1. Exercise Intervention Program
2.3.2. Executive Function Testing
2.4. Data Analysis
3. Results
3.1. Analysis of Executive Function Sub-Skills in College Students with Different Types of Procrastination
3.2. Homogeneity Test for Pre-Test Executive Function
3.3. Impact of Aerobic Exercise Intervention on Executive Function in Students with Different Types of Procrastination
3.3.1. Interference Inhibition Task—Stroop Task
3.3.2. Cognitive Flexibility Task—More-Odd Shifting Task
3.3.3. Working Memory Update Task—N-Back Task
4. Discussion and Analysis
4.1. Differences in Executive Function Among College Students with Different Types of Procrastination
4.2. Effects of Exercise on Different Sub-Functions of Executive Function in College Students with Different Types of Procrastination
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ariely, D., & Wertenbroch, K. (2002). Procrastination, deadlines, and performance: Self-control by precommitment. Psychological Science, 13(3), 219–224. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-K., & Etnier, J. L. (2009). Effects of an acute bout of localized resistance exercise on cognitive performance in middle-aged adults: A randomized controlled trial study. Psychology of Sport and Exercise, 10(1), 19–24. [Google Scholar] [CrossRef]
- Chinese Mass Sports Current Status Investigation Team. (1998). Investigation and research on the current status of mass sports in China. Beijing Sport University Press. [Google Scholar]
- Choi, J. N., & Moran, S. V. (2009). Why not procrastinate? Development and validation of a new active procrastination scale. The Journal of Social Psychology, 149(2), 195–211. [Google Scholar] [CrossRef] [PubMed]
- Chu, A. H., & Choi, J. N. (2005). Rethinking procrastination: Positive effects of “active” procrastination behavior on attitudes and performance. The Journal of Social Psychology, 145(3), 245–264. [Google Scholar] [CrossRef]
- Codina, N., Pestana, J. V., Valenzuela, R., & Giménez, N. (2020). Procrastination at the core of physical activity (PA) and perceived quality of life: A new approach for counteracting lower levels of PA practice. International Journal of Environmental Research and Public Health, 17(10), 3413. [Google Scholar] [CrossRef]
- Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125–130. [Google Scholar] [CrossRef]
- Dai, C. (2020). Effects of soccer exercise and stop practice on executive function of school age children. Journal of Chengdu Sport University, 46(05), 109–113. [Google Scholar] [CrossRef]
- Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44(11), 2037–2078. [Google Scholar] [CrossRef] [PubMed Central]
- Dong, J. (2016). The influence of different time pressure and type of feedback on procrastination behavior. Soochow University. [Google Scholar]
- Gai, X. S., Xu, J., Yan, Y., Wang, Y., & Xie, X. C. (2021). Exergame can improve children’s executive function: The role of physical intensity and cognitive engagement. Acta Psychologica Sinica, 53(5), 505–514. [Google Scholar] [CrossRef]
- Grunschel, C., Patrzek, J., & Fries, S. (2013). Exploring reasons and consequences of academic procrastination: An interview study. European Journal of Psychology of Education, 28(3), 841–861. [Google Scholar] [CrossRef]
- Gustavson, D. E., Miyake, A., Hewitt, J. K., & Friedman, N. P. (2015). Understanding the cognitive and genetic underpinnings of procrastination: Evidence for shared genetic influences with goal management and executive function abilities. Journal of Experimental Psychology: General, 144(6), 1063–1079. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hagger, M. S., & Chatzisarantis, N. L. (2016). The trans-contextual model of autonomous motivation in education: Conceptual and empirical issues and meta-analysis. Review of Educational Research, 86(2), 360–407. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C. H., Pontifex, M. B., Raine, L. B., Castelli, D. M., Hall, E. E., & Kramer, A. F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159(3), 1044–1054. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16(3), 174–180. [Google Scholar] [CrossRef]
- Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2016). The concurrent validity of the N-back task as a working memory measure. Memory, 18(4), 394–412. [Google Scholar] [CrossRef]
- Kamijo, K., Nishihira, Y., & Higashiura, T. (2009). Effects of exercise intensity and physical activity levels on the brain and cognition. Japanese Journal of Physical Fitness and Sports Medicine, 58(1), 63–72. [Google Scholar] [CrossRef]
- Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136(5), 849–874. [Google Scholar] [CrossRef]
- Klanker, M., Feenstra, M., & Denys, D. (2013). Dopaminergic control of cognitive flexibility in humans and animals. Frontiers in Neuroscience, 7, 201. [Google Scholar] [CrossRef] [PubMed Central]
- Li, C. Q., Hu, Y. B., & Ren, K. (2022). Physical activity and academic procrastination among Chinese university students: A parallel mediation model of self-control and self-efficacy. International Journal of Environmental Research and Public Health, 19(10), 6017. [Google Scholar] [CrossRef]
- Li, L., Men, W. W., Chang, Y. K., Fan, M. X., Ji, L., & Wei, G. X. (2014). Acute aerobic exercise increases cortical activity during working memory: A functional MRI study in female college students. PLoS ONE, 9(6), e99222. [Google Scholar] [CrossRef] [PubMed Central]
- Liu, J., Min, L., Liu, R., Zhang, X., Wu, M., Di, Q., & Ma, X. (2023). The effect of exercise on cerebral blood flow and executive function among young adults: A double-blinded randomized controlled trial. Scientific Reports, 13(1), 8269. [Google Scholar] [CrossRef] [PubMed]
- Loprinzi, P. D., & Kane, C. J. (2015). Exercise and cognitive function: A randomized controlled trial examining acute exercise and free-living physical activity and sedentary effects. Mayo Clinic Proceedings, 90(4), 450–460. [Google Scholar] [CrossRef] [PubMed]
- Lu, C. Y., Pan, F., & Fang, F. (2021). Relationship between active or passive procrastination and mindfulness, and self-efficacy of college students. Journal of Shandong University (Health Sciences), 59(10), 108–113. [Google Scholar]
- Maraver, M. J., Bajo, M. T., & Gomez-Ariza, C. J. (2016). Training on working memory and inhibitory control in young adults. Frontiers in Human Neuroscience, 10, 588. [Google Scholar] [CrossRef]
- Patrzek, J., Grunschel, C., & Fries, S. (2012). Academic procrastination: The perspective of university counsellors. International Journal for the Advancement of Counselling, 34(3), 185–201. [Google Scholar] [CrossRef]
- Peruyero, F., Zapata, J., Pastor, D., & Cervelló, E. (2017). The acute effects of exercise intensity on inhibitory cognitive control in adolescents. Frontiers in Psychology, 8, 921. [Google Scholar] [CrossRef]
- Pontifex, M. B., Hillman, C. H., Fernhall, B., Thompson, K. M., & Valentini, T. A. (2009). The effect of acute aerobic and resistance exercise on working memory. Medicine & Science in Sports & Exercise, 41(4), 927–934. [Google Scholar] [CrossRef]
- Rabin, L. A., Fogel, J., & Nutter-Upham, K. E. (2011). Academic procrastination in college students: The role of self-reported executive function. Journal of Clinical and Experimental Neuropsychology, 33(3), 344–357. [Google Scholar] [CrossRef]
- Rebetez, M. M. L., Rochat, L., Barsics, C., & Van der Linden, M. (2016). Procrastination as a self-regulation failure: The role of inhibition, negative affect, and gender. Personality and Individual Differences, 101, 435–439. [Google Scholar] [CrossRef]
- Ren, K., Liu, X. A.-O., Feng, Y., Li, C. A.-O., Sun, D., & Qiu, K. (2021). The relationship between physical activity and academic procrastination in Chinese college students: The mediating role of self-efficacy. International Journal of Environmental Research and Public Health, 18(21), 11468. [Google Scholar] [CrossRef]
- Rodríguez Barreto, L. C., Pulido, N. D. C., & Pineda Roa, C. A. (2016). Propiedades psicométricas del Stroop, test de colores y palabras en población colombiana no patológica. Universitas Psychologica, 15, 255–272. [Google Scholar] [CrossRef]
- Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. The American Psychologist, 55(1), 68–78. [Google Scholar] [CrossRef] [PubMed]
- Salthouse, T. A., Atkinson, T. M., & Berish, D. E. (2003). Executive functioning as a potential mediator of age-related cognitive decline in normal adults. Journal of Experimental Psychology: General, 132(4), 566–594. [Google Scholar] [CrossRef] [PubMed]
- Seo, E. H. (2012). Cramming, active procrastination, and academic achievement. Social Behavior and Personality: An International Journal, 40(8), 1333–1340. [Google Scholar] [CrossRef]
- Shi, M., Zhai, X., Li, S., Shi, Y., & Fan, X. (2021). The relationship between physical activity, mobile phone addiction, and irrational procrastination in Chinese college students. International Journal of Environmental Research and Public Health, 18(10), 5325. [Google Scholar] [CrossRef]
- Silva, L. A. D., Doyenart, R., Henrique Salvan, P., Rodrigues, W., Felipe Lopes, J., Gomes, K., Thirupathi, A., De Pinho, R. A., & Silveira, P. C. (2020). Swimming training improves mental health parameters, cognition and motor coordination in children with Attention Deficit Hyperactivity Disorder. International Journal of Environmental Health Research, 30(5), 584–592. [Google Scholar] [CrossRef]
- Smith, E. E., Jonides, J., Marshuetz, C., & Koeppe, R. A. (1998). Components of verbal working memory: Evidence from neuroimaging. Proceedings of the National Academy of Sciences USA, 95(3), 876–882. [Google Scholar] [CrossRef] [PubMed Central]
- Smith, P. J., Blumenthal, J., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., Browndyke, J. N., & Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3), 239–252. [Google Scholar] [CrossRef]
- Steel, P. (2007). The nature of procrastination: A meta-analytic and theoretical review of quintessential self-regulatory failure. Psychological Bulletin, 133(1), 65–94. [Google Scholar] [CrossRef]
- Steel, P., Brothen, T., & Wambach, C. (2001). Procrastination and personality, performance, and mood. Personality and Individual Differences, 30(1), 95–106. [Google Scholar] [CrossRef]
- Wang, X. X., Dai, M. X., Wang, Z. J., & Jin, G. J. (2018). Differences of executive functions among different types of procrastinators in college students. Chinese Mental Health Journal, 32(5), 415–419. [Google Scholar]
- Yanagisawa, H., Dan, I., Tsuzuki, D., Kato, M., Okamoto, M., Kyutoku, Y., & Soya, H. (2010). Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage, 50(4), 1702–1710. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. T., Wang, M., & Wang, X. Q. (2021). Effect of high intensity interval exercise and moderate intensity continuous aerobic exercise on the executive function of college students. Journal of Tianjin University of Sport, 36(6), 733–738. [Google Scholar] [CrossRef]
- Zhong, J., & Chu, Y. D. (2013). Preliminary study on the relationship between procrastination and physical activity of college students. Journal of Beijing Sport University, 36(8), 113–116+133. [Google Scholar] [CrossRef]
- Zhou, M., Lam, K. K. L., & Zhang, Y. (2022). Metacognition and academic procrastination: A meta-analytical examination. Journal of Rational-Emotive & Cognitive-Behavior Therapy, 40, 334–348. [Google Scholar] [CrossRef]
- Zhuan, S., Cao, J., Ye, Y., Li, H., Zhang, Q., & Wang, X. (2024). The relationship between physical activity and procrastination behavior among Chinese university students: A chain mediated effect of body self-esteem and overall self-esteem. Frontiers in Public Health, 12, 1434382. [Google Scholar] [CrossRef]
Function | Active Procrastination Group (n = 64) | Passive Procrastination Group (n = 62) | Non-Procrastination Group (n = 64) | F-Value | p-Value | |
---|---|---|---|---|---|---|
Inhibition | Inhibition Reaction Time (ms) | 184.941 ± 120.023 | 85.462 ± 186.645 | 113.23 ± 90.56 | 3.167 | 0.048 |
Inhibition Accuracy | 0.966 ± 0.041 | 0.944 ± 0.031 | 0.972 ± 0.032 | 4.854 | 0.010 | |
Switching | Switching Reaction Time (ms) | 344.125 ± 135.564 | 296.766 ± 148.587 | 326.308 ± 171.582 | 0.692 | 0.504 |
Switching Accuracy | 0.930 ± 0.028 | 0.915 ± 0.048 | 0.937 ± 0.044 | 1.884 | 0.159 | |
Updating | Updating Reaction Time (ms) | 159.391 ± 122.593 | 90.871 ± 118.419 | 119.846 ± 117.128 | 2.279 | 0.120 |
Updating Accuracy | 0.963 ± 0.028 | 0.934 ± 0.044 | 0.929 ± 0.046 | 3.823 | 0.026 |
Executive Function | Active Procrastination Group (n = 32) | Active Procrastination Exercise Group (n = 32) | Passive Procrastination Group (n = 29) | Passive Procrastination Exercise Group (n = 33) | Non-Procrastination Group (n = 32) | Non-Procrastination Exercise Group (n = 32) | |
---|---|---|---|---|---|---|---|
Inhibition Reaction Time (ms) | Pre-test | 152.645 ± 135.804 | 172.405 ± 144.608 | 78.411 ± 186.671 | 84.114 ± 189.360 | 139.524 ± 94.195 | 121.425 ± 117.032 |
Post-test | 209.327 ± 159.818 | 163.681 ± 128.356 | 92.247 ± 181.933 | 37.653 ± 133.374 | 158.670 ± 104.918 | 31.159 ± 138.225 | |
Inhibition Accuracy | Pre-test | 0.958 ± 0.047 | 0.987 ± 0.018 | 0.951 ± 0.018 | 0.946 ± 0.016 | 0.987 ± 0.015 | 0.956 ± 0.053 |
Post-test | 0.947 ± 0.050 | 0.979 ± 0.016 | 0.947 ± 0.051 | 0.981 ± 0.012 | 0.979 ± 0.013 | 0.966 ± 0.018 | |
Switching Reaction Time (ms) | Pre-test | 383.591 ± 142.446 | 312.318 ± 127.358 | 276.909 ± 182.227 | 332.227 ± 127.537 | 377.636 ± 184.667 | 284.818 ± 158.102 |
Post-test | 171.590 ± 121.433 | 176.409 ± 63.889 | 227.954 ± 167.743 | 231.727 ± 90.838 | 201.636 ± 150.180 | 240.227 ± 119.209 | |
Switching Accuracy | Pre-test | 0.904 ± 0.016 | 0.951 ± 0.030 | 0.940 ± 0.034 | 0.938 ± 0.031 | 0.912 ± 0.087 | 0.940 ± 0.013 |
Post-test | 0.960 ± 0.013 | 0.946 ± 0.054 | 0.925 ± 0.034 | 0.956 ± 0.023 | 0.969 ± 0.022 | 0.943 ± 0.027 | |
Updating Reaction Time (ms) | Pre-test | 195.000 ± 144.230 | 121.700 ± 94.218 | 139.100 ± 102.952 | 66.300 ± 118.373 | 106.100 ± 145.914 | 152.100 ± 110.321 |
Post-test | 222.200 ± 101.808 | 47.900 ± 112.838 | 134.300 ± 70.419 | 57.400 ± 111.904 | 124.800 ± 124.144 | 48.100 ± 90.478 | |
Updating Accuracy | Pre-test | 0.955 ± 0.021 | 0.955 ± 0.033 | 0.895 ± 0.041 | 0.945 ± 0.045 | 0.955 ± 0.033 | 0.935 ± 0.055 |
Post-test | 0.950 ± 0.040 | 0.985 ± 0.014 | 0.955 ± 0.027 | 0.925 ± 0.061 | 0.960 ± 0.038 | 0.980 ± 0.021 |
Type III Sum of Squares | df | Mean Square | F-Value | p-Value | ||
---|---|---|---|---|---|---|
Inhibition Reaction Time | Group | 48,570.467 | 1 | 48,570.467 | 1.435 | 0.256 |
Type | 250,761.949 | 2 | 125,380.975 | 3.953 | 0.034 * | |
Time | 3112.273 | 1 | 3112.273 | 0.153 | 0.703 | |
Group × Type | 24,217.405 | 2 | 12,108.702 | 0.590 | 0.563 | |
Group × Time | 55,278.711 | 1 | 55,278.711 | 6.667 | 0.025 * | |
Type × Time | 22,154.692 | 2 | 11,077.346 | 0.527 | 0.597 | |
Group × Type × Time | 4374.861 | 2 | 2187.431 | 0.125 | 0.883 | |
Inhibition Accuracy | Group | 0.001 | 1 | 0.001 | 1.985 | 0.218 |
Type | 0.003 | 2 | 0.002 | 1.089 | 0.373 | |
Time | 0.000 | 1 | 0.000 | 0.129 | 0.734 | |
Group × Type | 0.009 | 2 | 0.004 | 4.895 | 0.033 * | |
Group × Time | 0.002 | 1 | 0.002 | 1.194 | 0.324 | |
Type × Time | 0.002 | 2 | 0.001 | 0.976 | 0.410 | |
Group × Type × Time | 0.001 | 2 | 0.000 | 0.689 | 0.524 | |
Switching Reaction Time | Group | 3477.320 | 1 | 3477.320 | 0.128 | 0.728 |
Type | 5069.140 | 2 | 2534.570 | 0.069 | 0.934 | |
Time | 472,503.835 | 1 | 472,503.835 | 75.149 | 0.000 ** | |
Group × Type | 26,356.163 | 2 | 13,178.081 | 0.519 | 0.603 | |
Group × Time | 22,295.002 | 1 | 22,295.002 | 1.925 | 0.195 | |
Type × Time | 55,599.966 | 2 | 27,799.983 | 2.402 | 0.116 | |
Group × Type × Time | 48,421 | 2 | 24,210.775 | 2.340 | 0.122 | |
Switching Accuracy | Group | 0.001 | 1 | 0.001 | 0.526 | 0.521 |
Type | 1.517 × 10−5 | 2 | 7.583 × 10−6 | 0.004 | 0.996 | |
Time | 0.004 | 1 | 0.004 | 2.341 | 0.223 | |
Group × Type | 0.001 | 2 | 0.000 | 0.297 | 0.753 | |
Group × Time | 0.002 | 1 | 0.002 | 1.289 | 0.339 | |
Type × Time | 0.002 | 2 | 0.001 | 7.332 | 0.024 * | |
Group × Type × Time | 0.006 | 2 | 0.003 | 2.329 | 0.178 | |
Updating Reaction Time | Group | 152,653.333 | 1 | 152,653.333 | 80,131 | 0.019 * |
Type | 51,153.817 | 2 | 25,576.908 | 1.782 | 0.197 | |
Time | 17,666.133 | 1 | 17,666.133 | 1.284 | 0.286 | |
Group × Type | 58,992.517 | 2 | 29,496.258 | 2.197 | 0.140 | |
Group × Time | 43,244.033 | 1 | 43,244.033 | 7.544 | 0.023 * | |
Type × Time | 6422.217 | 2 | 3211.108 | 0.374 | 0.693 | |
Group × Type × Time | 19,938.717 | 2 | 9969.358 | 0.782 | 0.472 | |
Updating Accuracy | Group | 0.001 | 1 | 0.001 | 1.228 | 0.330 |
Type | 0.012 | 2 | 0.006 | 1.862 | 0.217 | |
Time | 0.006 | 1 | 0.006 | 5.781 | 0.074 | |
Group × Type | 0.001 | 2 | 0.000 | 0.168 | 0.849 | |
Group × Time | 1.042 × 10−5 | 1 | 1.042 × 10−5 | 0.026 | 0.880 | |
Type × Time | 0.000 | 2 | 0.000 | 0.161 | 0.854 | |
Group × Type × Time | 0.012 | 2 | 0.006 | 7.986 | 0.012 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Zhang, J. The Effects of Aerobic Exercise on Executive Function: A Comparative Study Among Active, Passive, and Non-Procrastinating College Students. Behav. Sci. 2025, 15, 225. https://doi.org/10.3390/bs15020225
Liu C, Zhang J. The Effects of Aerobic Exercise on Executive Function: A Comparative Study Among Active, Passive, and Non-Procrastinating College Students. Behavioral Sciences. 2025; 15(2):225. https://doi.org/10.3390/bs15020225
Chicago/Turabian StyleLiu, Chentao, and Juanjuan Zhang. 2025. "The Effects of Aerobic Exercise on Executive Function: A Comparative Study Among Active, Passive, and Non-Procrastinating College Students" Behavioral Sciences 15, no. 2: 225. https://doi.org/10.3390/bs15020225
APA StyleLiu, C., & Zhang, J. (2025). The Effects of Aerobic Exercise on Executive Function: A Comparative Study Among Active, Passive, and Non-Procrastinating College Students. Behavioral Sciences, 15(2), 225. https://doi.org/10.3390/bs15020225