Developing a Short-Form Buss–Warren Aggression Questionnaire Based on Machine Learning
Abstract
:1. Introduction
1.1. Negative Effects of High Aggressiveness
1.2. Limitations of Buss–Warren Aggression Questionnaire
1.3. Developing Short Versions of Questionnaires Using Machine Learning
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.3. Statistical Analysis
- (1)
- The horizontal axis of the ROC curve is the False Positive Rate, and the vertical axis is the True Positive Rate. AUC is the area under the ROC curve; its value ranges from 0 to 1. The closer the AUC is to 1, the more correctly the model can distinguish between positive and negative cases. The calculation method of AUC considers both the classification ability of the classifier for positive and negative cases. It is still able to make a reasonable evaluation of the classifier in cases of sample imbalance. Therefore, AUC can be regarded as the primary index for evaluating the classification ability of a model [38].
- (2)
- Accuracy indicates the proportion of the whole dataset that a model correctly classifies. Accuracy has the advantage of being easy to understand and facilitates communication for non-technical people, but accuracy may not be effective enough in unbalanced datasets. For example, a model will be highly accurate in a dataset with far more negative than positive cases, even if it classifies all the data as negative. Therefore, other metrics are often calculated when evaluating the performance of a machine learning model [38].
- (3)
- Recall, also known as True Positive Rate, indicates the percentage of positive case samples that the model correctly predicts. A higher recall indicates that the model can better identify positive case samples but may also result in more false positive cases [38].
- (4)
- Precision measures the proportion of samples predicted by the model to be positive cases that are true positive cases. Precision concerns how many of the model’s predictions of positive examples are correct. Thus, recall and precision are complementary [38].
- (5)
- The F1 score is the weighted average of recall and precision. In cases where both recall and precision need to be taken into account, the closer the F1 score is to 1, the better balance the model achieves between recall and precision, and the model’s comprehensive performance is better [38].
3. Results
3.1. Simplifying BWAQ
3.2. Validating BWAQ
4. Discussion
5. Conclusions
- (1)
- At times I feel like a bomb ready to explode.
- (2)
- At times I get very angry for no good reason.
- (3)
- I sometimes feel that people are laughing at me behind my back.
- (4)
- I wonder why sometimes I feel so bitter about things.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Jiao, T.; Guo, S.; Tang, J. Association of aggression and social support among adolescents. Chin. J. Sch. Health 2022, 43, 671–675. [Google Scholar] [CrossRef]
- Carlyle, K.E.; Steinman, K.J. Demographic Differences in the Prevalence, Co-Occurrence, and Correlates of Adolescent Bullying at School. J. Sch. Health 2007, 77, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Liu, H.; Chen, J.; Xie, J. The Transition of Aggressive Patterns among Youth: An Application of Latent Transition Analysis. J. Psychol. Sci. 2014, 37, 1167–1173. [Google Scholar] [CrossRef]
- Schlomer, G.L.; Cleveland, H.H.; Vandenbergh, D.J.; Feinberg, M.E.; Neiderhiser, J.M.; Greenberg, M.T.; Spoth, R.; Redmond, C. Developmental Differences in Early Adolescent Aggression: A Gene × Environment × Intervention Analysis. J. Youth Adolesc. 2015, 44, 581–597. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Ma, Y.; Guo, Y.; Ahmed, N.I.; Yu, Y.; Wang, J. Association of Aggression and Non-Suicidal Self Injury: A School-Based Sample of Adolescents. PLoS ONE 2013, 8, e78149. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Guo, T.; Cheng, J.; Wang, M.; Tan, Y.; Rong, F.; Kang, C.; Ding, H.; Wang, Y.; Yu, Y. Association between childhood physical abuse and suicidal behaviors among Chinese adolescents: The mediation of aggression. J. Affect. Disord. 2022, 318, 338–346. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, C.; Yuan, S.; Xiang, J.; Hao, W.; Yu, Y. Association of aggression and suicide behaviors: A school-based sample of rural Chinese adolescents. J. Affect. Disord. 2018, 239, 295–302. [Google Scholar] [CrossRef]
- Preddy, T.M.; Fite, P.J. Differential Associations Between Relational and Overt Aggression and Children’s Psychosocial Adjustment. J. Psychopathol. Behav. Assess. 2012, 34, 182–190. [Google Scholar] [CrossRef]
- Vuoksimaa, E.; Rose, R.J.; Pulkkinen, L.; Palviainen, T.; Rimfeld, K.; Lundström, S.; Bartels, M.; van Beijsterveldt, C.; Hendriks, A.; de Zeeuw, E.L.; et al. Higher aggression is related to poorer academic performance in compulsory education. J. Child Psychol. Psychiatry 2021, 62, 327–338. [Google Scholar] [CrossRef]
- Fite, P.J.; Hendrickson, M.; Rubens, S.L.; Gabrielli, J.; Evans, S. The Role of Peer Rejection in the Link between Reactive Aggression and Academic Performance. Child Youth Care Forum 2013, 42, 193–205. [Google Scholar] [CrossRef]
- Muñoz Reyes, J.A.; Guerra, R.; Polo, P.; Cavieres, E.; Pita, M.; Turiégano, E. Using an evolutionary perspective to understand the relationship between physical aggression and academic performance in late adolescents. J. Sch. Violence 2019, 18, 39–48. [Google Scholar] [CrossRef]
- Buss, A.H.; Perry, M. The Aggression Questionnaire. J. Personal. Soc. Psychol. 1992, 63, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Buss, A.H.; Warren, W.L. The Aggression Questionnaire Manual; Western Psychological Services: Los Angeles, CA, USA, 2000. [Google Scholar]
- Huang, J.; Tang, J.; Tang, L.; Chang, H.J.; Ma, Y.; Yan, Q.; Yu, Y. Aggression and related stressful life events among Chinese adolescents living in rural areas: A cross-sectional study. J. Affect. Disord. 2017, 211, 20–26. [Google Scholar] [CrossRef]
- Curran, P.G. Methods for the detection of carelessly invalid responses in survey data. J. Exp. Soc. Psychol. 2016, 66, 4–19. [Google Scholar] [CrossRef]
- Zhong, X.; Li, M.; Li, L. Preventing and detecting insufficient effort survey responding. Adv. Psychol. Sci. 2021, 29, 225–237. [Google Scholar] [CrossRef]
- Galesic, M.; Bosnjak, M. Effects of Questionnaire Length on Participation and Indicators of Response Quality in a Web Survey. Public Opin. Q. 2009, 73, 349–360. [Google Scholar] [CrossRef]
- Maniaci, M.R.; Rogge, R.D. Caring about carelessness: Participant inattention and its effects on research. J. Res. Personal. 2014, 48, 61–83. [Google Scholar] [CrossRef]
- Maxwell, J.P. Development and Preliminary Validation of a Chinese Version of the Buss–Perry Aggression Questionnaire in a Population of Hong Kong Chinese. J. Personal. Assess. 2007, 88, 284–294. [Google Scholar] [CrossRef]
- Kiewitz, C.; Weaver Iii, J.B. The aggression questionnaire. In Handbook of Research on Electronic Surveys and Measurements; Idea Group Reference/IGI Global: Hershey, PA, USA, 2007; pp. 343–347. [Google Scholar]
- Lin, G.-H.; Li, C.-Y.; Sheu, C.-F.; Huang, C.-Y.; Lee, S.-C.; Huang, Y.-H.; Hsieh, C.-L. Using Machine Learning to Develop a Short-Form Measure Assessing 5 Functions in Patients with Stroke. Arch. Phys. Med. Rehabil. 2022, 103, 1574–1581. [Google Scholar] [CrossRef]
- Wang, I.; Li, P.-C.; Lee, S.-C.; Lee, Y.-C.; Wang, C.-H.; Hsieh, C.-L. Development of a Berg Balance Scale Short-Form Using a Machine Learning Approach in Patients with Stroke. J. Neurol. Phys. Ther. 2023, 47, 44–51. [Google Scholar] [CrossRef]
- Lee, W.; Kim, H.; Shim, J.; Kim, D.; Hyeon, J.; Joo, E.; Joo, B.-E.; Oh, J. The simplification of the insomnia severity index and epworth sleepiness scale using machine learning models. Sci. Rep. 2023, 13, 6214. [Google Scholar] [CrossRef]
- Orrù, G.; De Marchi, B.; Sartori, G.; Gemignani, A.; Scarpazza, C.; Monaro, M.; Mazza, C.; Roma, P. Machine learning item selection for short scale construction: A proof-of-concept using the SIMS. Clin. Neuropsychol. 2022, 37, 1371–1388. [Google Scholar] [CrossRef] [PubMed]
- Morrison, A.S.; Ustun, B.; Horenstein, A.; Kaplan, S.C.; de Oliveira, I.R.; Batmaz, S.; Gross, J.J.; Sadikova, E.; Hemanny, C.; Pires, P.P.; et al. Optimized short-forms of the Cognitive Distortions Questionnaire. J. Anxiety Disord. 2022, 92, 102624. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.-H.; Huang, C.-Y.; Lee, S.-C.; Chen, K.-L.; Lien, J.-J.J.; Chen, M.-H.; Huang, Y.-H.; Hsieh, C.-L. A 10-item Fugl-Meyer Motor Scale Based on Machine Learning. Phys. Ther. 2021, 101, pzab036. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, J.P. Psychometric properties of a Chinese version of the Buss–Warren Aggression Questionnaire. Personal. Individ. Differ. 2008, 44, 943–953. [Google Scholar] [CrossRef]
- Zhang, P.; Yu, Y.; Liu, Z.; Meng, X. Chinese Norm of Buss-Warren Aggression Questionnaire from a standardized school-based sample aged 9–18 in urban areas. Sch. Public Health 2011, 32, 897–900. [Google Scholar] [CrossRef]
- Wang, M.; Peng, C.; Chang, H.; Yu, M.; Rong, F.; Yu, Y. Interaction between Sirtuin 1 (SIRT1) polymorphisms and childhood maltreatment on aggression risk in Chinese male adolescents. J. Affect. Disord. 2022, 309, 37–44. [Google Scholar] [CrossRef]
- Raine, A.; Dodge, K.; Loeber, R.; Gatzke-Kopp, L.; Lynam, D.; Reynolds, C.; Stouthamer-Loeber, M.; Liu, J. The reactive–proactive aggression questionnaire: Differential correlates of reactive and proactive aggression in adolescent boys. Aggress. Behav. 2006, 32, 159–171. [Google Scholar] [CrossRef]
- Quan, F.; Xia, L. The Prediction of Hostile Attribution Bias on Reactive Aggression and the Mediating Role of Revenge Motivation. J. Psychol. Sci. 2019, 42, 1434–1440. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, Y.; Ren, P.; Yang, L.; Miao, W. Effects of Bully-victimization on Proactive and Reactive Aggression in Early Adolescence: The Role of Moral Disengagement and Gender. Psychol. Dev. Educ. 2023, 39, 410–418. [Google Scholar] [CrossRef]
- Li, R.; Xia, L. The mediating effect of aggression motivation on the relationship between trait anger and reactive aggression: A longitudinal study. Acta Psychol. Sin. 2021, 53, 788–797. [Google Scholar] [CrossRef]
- Carlo, G.; Randall, B.A. The Development of a Measure of Prosocial Behaviors for Late Adolescents. J. Youth Adolesc. 2002, 31, 31–44. [Google Scholar] [CrossRef]
- Yin, K.; Wu, X.; Zhang, T. Relationship between psychological privilege and prosocial behavior in college students in the post-epidemic period: A moderated chain mediation model. China J. Health Psychol. 2022, 30, 1549–1554. [Google Scholar] [CrossRef]
- Perangin-Angin, D.J.; Bachtiar, F.A. Classification of Stress in Office Work Activities Using Extreme Learning Machine Algorithm and One-way ANOVA F-Test Feature Selection. In Proceedings of the 2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 16–17 December 2021; pp. 503–508. [Google Scholar] [CrossRef]
- Elhai, J.D.; Montag, C. The compatibility of theoretical frameworks with machine learning analyses in psychological research. Curr. Opin. Psychol. 2020, 36, 83–88. [Google Scholar] [CrossRef]
- Priya, A.; Garg, S.; Tigga, N.P. Predicting Anxiety, Depression and Stress in Modern Life using Machine Learning Algorithms. Procedia Comput. Sci. 2020, 167, 1258–1267. [Google Scholar] [CrossRef]
- Peng, C.-Y.J.; Lee, K.L.; Ingersoll, G.M. An Introduction to Logistic Regression Analysis and Reporting. J. Educ. Res. 2002, 96, 3–14. [Google Scholar] [CrossRef]
- Zhang, P.; Roberts, R.E.; Liu, Z.; Meng, X.; Tang, J.; Sun, L.; Yu, Y. Hostility, Physical Aggression and Trait Anger as Predictors for Suicidal Behavior in Chinese Adolescents: A School-Based Study. PLoS ONE 2012, 7, e31044. [Google Scholar] [CrossRef]
Item Number of BWAQ | F-Value | p-Value |
---|---|---|
29 | 144.42 | 0.000 |
7 | 139.02 | 0.000 |
21 | 121.43 | 0.000 |
9 | 113.42 | 0.000 |
12 | 111.52 | 0.000 |
5 | 107.33 | 0.000 |
33 | 107.04 | 0.000 |
14 | 101.99 | 0.000 |
32 | 95.03 | 0.000 |
31 | 89.48 | 0.000 |
22 | 85.48 | 0.000 |
23 | 78.79 | 0.000 |
11 | 76.98 | 0.000 |
17 | 74.72 | 0.000 |
13 | 67.59 | 0.000 |
30 | 65.80 | 0.000 |
16 | 65.04 | 0.000 |
20 | 61.14 | 0.000 |
8 | 57.78 | 0.000 |
1 | 57.73 | 0.000 |
4 | 55.79 | 0.000 |
10 | 55.43 | 0.000 |
34 | 53.03 | 0.000 |
6 | 53.00 | 0.000 |
15 | 47.13 | 0.000 |
2 | 46.40 | 0.000 |
3 | 45.77 | 0.000 |
18 | 43.27 | 0.000 |
25 | 43.24 | 0.000 |
27 | 40.16 | 0.000 |
24 | 36.40 | 0.000 |
28 | 19.15 | 0.000 |
26 | 6.53 | 0.011 |
19 | 4.53 | 0.034 |
Questionnaire | Logistics Regression | Support Vector Machine | Random Forest | Naïve Bayes | ||||
---|---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | Train | Test | |
SR-1 | 0.83 | 0.72 | 0.83 | 0.72 | 0.83 | 0.72 | 0.83 | 0.72 |
SR-2 | 0.90 | 0.79 | 0.90 | 0.82 | 0.87 | 0.83 | 0.89 | 0.79 |
SR-3 | 0.93 | 0.83 | 0.92 | 0.83 | 0.87 | 0.81 | 0.92 | 0.83 |
SR-4 | 0.94 | 0.84 | 0.94 | 0.84 | 0.90 | 0.82 | 0.93 | 0.83 |
SR-5 | 0.95 | 0.86 | 0.95 | 0.87 | 0.92 | 0.87 | 0.94 | 0.85 |
SR-6 | 0.97 | 0.89 | 0.97 | 0.88 | 0.94 | 0.88 | 0.96 | 0.87 |
SR-7 | 0.98 | 0.91 | 0.98 | 0.91 | 0.95 | 0.87 | 0.97 | 0.89 |
SR-8 | 0.98 | 0.93 | 0.98 | 0.93 | 0.95 | 0.89 | 0.97 | 0.91 |
AF-1 | 0.83 | 0.72 | 0.83 | 0.72 | 0.83 | 0.72 | 0.83 | 0.72 |
AF-2 | 0.88 | 0.78 | 0.89 | 0.78 | 0.86 | 0.82 | 0.89 | 0.78 |
AF-3 | 0.93 | 0.81 | 0.92 | 0.80 | 0.85 | 0.79 | 0.93 | 0.80 |
AF-4 | 0.94 | 0.82 | 0.94 | 0.83 | 0.89 | 0.86 | 0.95 | 0.81 |
AF-5 | 0.95 | 0.85 | 0.95 | 0.85 | 0.90 | 0.88 | 0.95 | 0.85 |
AF-6 | 0.95 | 0.85 | 0.95 | 0.85 | 0.90 | 0.86 | 0.95 | 0.85 |
AF-7 | 0.95 | 0.87 | 0.96 | 0.87 | 0.93 | 0.91 | 0.95 | 0.86 |
AF-8 | 0.96 | 0.90 | 0.96 | 0.90 | 0.93 | 0.90 | 0.96 | 0.89 |
Questionnaire | AUC | Accuracy | Recall | Precision |
---|---|---|---|---|
SR-1 | 0.72 | 0.77 | 0.85 | 0.77 |
SR-2 | 0.83 | 0.77 | 0.85 | 0.77 |
SR-3 | 0.81 | 0.72 | 0.80 | 0.74 |
SR-4 | 0.82 | 0.75 | 0.78 | 0.80 |
SR-5 | 0.87 | 0.81 | 0.83 | 0.85 |
SR-6 | 0.88 | 0.79 | 0.78 | 0.86 |
SR-7 | 0.87 | 0.81 | 0.78 | 0.89 |
SR-8 | 0.89 | 0.79 | 0.75 | 0.88 |
AF-1 | 0.72 | 0.77 | 0.85 | 0.77 |
AF-2 | 0.82 | 0.75 | 0.75 | 0.81 |
AF-3 | 0.79 | 0.75 | 0.78 | 0.80 |
AF-4 | 0.86 | 0.81 | 0.83 | 0.85 |
AF-5 | 0.88 | 0.77 | 0.75 | 0.83 |
AF-6 | 0.86 | 0.77 | 0.75 | 0.83 |
AF-7 | 0.91 | 0.81 | 0.78 | 0.89 |
AF-8 | 0.90 | 0.82 | 0.80 | 0.89 |
Cutoff | AUC | Accuracy | Recall | Precision | F1 Score |
---|---|---|---|---|---|
4 | 0.50 | 0.52 | 1.00 | 0.52 | 0.68 |
5 | 0.56 | 0.57 | 1.00 | 0.55 | 0.71 |
6 | 0.59 | 0.60 | 1.00 | 0.57 | 0.72 |
7 | 0.63 | 0.64 | 1.00 | 0.59 | 0.74 |
8 | 0.68 | 0.69 | 1.00 | 0.62 | 0.77 |
9 | 0.75 | 0.75 | 0.97 | 0.68 | 0.80 |
10 | 0.82 | 0.83 | 0.94 | 0.77 | 0.85 |
11 | 0.85 | 0.85 | 0.89 | 0.83 | 0.86 |
12 | 0.84 | 0.84 | 0.81 | 0.87 | 0.84 |
13 | 0.79 | 0.79 | 0.65 | 0.91 | 0.76 |
14 | 0.75 | 0.74 | 0.55 | 0.91 | 0.69 |
15 | 0.69 | 0.68 | 0.40 | 0.96 | 0.56 |
16 | 0.61 | 0.60 | 0.23 | 0.93 | 0.37 |
17 | 0.57 | 0.56 | 0.14 | 1.00 | 0.24 |
18 | 0.55 | 0.54 | 0.11 | 1.00 | 0.20 |
19 | 0.54 | 0.52 | 0.07 | 1.00 | 0.14 |
20 | 0.52 | 0.51 | 0.04 | 1.00 | 0.08 |
BWAQ-ML_1 | BWAQ-ML_2 | BWAQ-ML_3 | BWAQ-ML_4 | BWAQ-ML_Total | |
---|---|---|---|---|---|
BWAQ-ML_1 | 1 | ||||
BWAQ-ML_2 | 0.579 ** | 1 | |||
BWAQ-ML_3 | 0.469 ** | 0.547 ** | 1 | ||
BWAQ-ML_4 | 0.609 ** | 0.621 ** | 0.609 ** | 1 | |
BWAQ-ML_Total | 0.618 ** | 0.702 ** | 0.677 ** | 0.730 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Yang, Y.; Li, J. Developing a Short-Form Buss–Warren Aggression Questionnaire Based on Machine Learning. Behav. Sci. 2023, 13, 799. https://doi.org/10.3390/bs13100799
Jiang X, Yang Y, Li J. Developing a Short-Form Buss–Warren Aggression Questionnaire Based on Machine Learning. Behavioral Sciences. 2023; 13(10):799. https://doi.org/10.3390/bs13100799
Chicago/Turabian StyleJiang, Xiuyu, Yitian Yang, and Junyi Li. 2023. "Developing a Short-Form Buss–Warren Aggression Questionnaire Based on Machine Learning" Behavioral Sciences 13, no. 10: 799. https://doi.org/10.3390/bs13100799
APA StyleJiang, X., Yang, Y., & Li, J. (2023). Developing a Short-Form Buss–Warren Aggression Questionnaire Based on Machine Learning. Behavioral Sciences, 13(10), 799. https://doi.org/10.3390/bs13100799