Gut–Brain Axis and Perioperative Gut Microbiome in Postoperative Cognitive Dysfunction: Implications for Neurosurgical Patients
Abstract
1. Introduction
2. Surgical Stress, Neuroinflammation, and Gut Dysbiosis
2.1. Endocrine–Immune Storm
2.2. Gut Barrier Breakdown and Microbial Translocation
2.3. Neurosurgery-Specific Factors
3. Mechanistic Links from Intestine to Brain
4. Preclinical Evidence Linking Gut Microbiota to Postoperative Cognitive Outcomes
5. Clinical Evidence of Gut Microbiota Alterations and Cognitive Recovery in Neurosurgical and Perioperative Patients
5.1. Cross-Sectional Snapshots: Microbiota Signatures in Brain Tumor Patients
5.2. Emerging Evidence: Longitudinal
5.3. Control for Confounding Variables in Study Design
6. Modulation of the Perioperative Microbiome for Therapy
7. Multi-Omics and Precision-Recovery Framework
8. Future Directions
Recommendations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brodier, E.A.; Cibelli, M. Postoperative cognitive dysfunction in clinical practice. BJA Educ. 2021, 21, 75–82. [Google Scholar] [CrossRef]
- Yang, X.; Huang, X.; Li, M.; Jiang, Y.; Zhang, H. Identification of individuals at risk for postoperative cognitive dysfunction (POCD). Ther. Adv. Neurol. Disord. 2022, 15, 17562864221114356. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wan, H.; Pan, H.; Xu, Y. Postoperative Cognitive Dysfunction—Current Research Progress. Front. Behav. Neurosci. 2024, 18, 1328790. [Google Scholar] [CrossRef]
- Monk, T.G.; Weldon, B.C.; Garvan, C.W.; Dede, D.E.; van der Aa, M.T.; Heilman, K.M.; Gravenstein, J.S. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 2008, 108, 18–30. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, C.; Gao, F. Risk factors for postoperative cognitive dysfunction in elderly patients undergoing surgery for oral malignancies. Perioper. Med. 2023, 12, 42. [Google Scholar] [CrossRef]
- Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct. Target. Ther. 2024, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Hou, W.; Gao, S.; Zhang, Y.; Zong, Y. The Role of Gut Microbiota—Gut—Brain Axis in Perioperative Neurocognitive Dysfunction. Front. Pharmacol. 2022, 13, 879745. [Google Scholar] [CrossRef]
- Ramadan, Y.N.; Alqifari, S.F.; Alshehri, K.; Alhowiti, A.; Mirghani, H.; Alrasheed, T.; Aljohani, F.; Alghamdi, A.; Hetta, H.F. Microbiome Gut-Brain-Axis: Impact on Brain Development and Mental Health. Mol. Neurobiol. 2025, 62, 10813–10833. [Google Scholar] [CrossRef] [PubMed]
- Serbanescu, M.A.; Mathena, R.P.; Xu, J.; Santiago-Rodriguez, T.; Hartsell, T.L.; Cano, R.J.; Mintz, C.D. General Anesthesia Alters the Diversity and Composition of the Intestinal Microbiota in Mice. Anesth. Analg. 2019, 129, e126–e129. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, H.; Zhang, L.; Chen, L.; Xu, L.; Xu, N.; Liu, X.; Meng, Q.; Wang, X.; Zhang, Z.-Y. Surgery-induced gut microbial dysbiosis promotes cognitive impairment via regulation of intestinal function and the metabolite palmitic amide. Microbiome 2023, 11, 248. [Google Scholar] [CrossRef]
- Pich, E.M.; Tarnanas, I.; Brigidi, P.; Collo, G. Gut Microbiome-Liver-Brain axis in Alcohol Use Disorder. The role of gut dysbiosis and stress in alcohol-related cognitive impairment progression: Possible therapeutic approaches. Neurobiol. Stress 2025, 35, 100713. [Google Scholar] [CrossRef]
- Menger, M.M.; Histing, T.; Laschke, M.W.; Ehnert, S.; Viergutz, T.; Fontana, J. Cortisol stress response after musculoskeletal surgery: A narrative review. EFORT Open Rev. 2025, 10, 186–192. [Google Scholar] [CrossRef]
- Jawa, R.S.; Anillo, S.; Huntoon, K.; Baumann, H.; Kulaylat, M. Interleukin-6 in surgery, trauma, and critical care part II: Clinical implications. J. Intensive Care Med. 2011, 26, 73–87. [Google Scholar] [CrossRef]
- Al-Sadi, R.; Ye, D.; Boivin, M.; Guo, S.; Hashimi, M.; Ereifej, L.; Ma, T.Y. Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS ONE 2014, 9, e85345. [Google Scholar] [CrossRef] [PubMed]
- Madison, A.A.; Bailey, M.T. Stressed to the Core: Inflammation and Intestinal Permeability Link Stress-Related Gut Microbiota Shifts to Mental Health Outcomes. Biol. Psychiatry 2024, 95, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Türler, A.; Schnurr, C.; Nakao, A.; Tögel, S.; Moore, B.A.; Murase, N.; Kalff, J.C.; Bauer, A.J. Endogenous endotoxin participates in causing a panenteric inflammatory ileus after colonic surgery. Ann. Surg. 2007, 245, 734–744. [Google Scholar] [CrossRef]
- Velloso, L.A.; Folli, F.; Saad, M.J. TLR4 at the crossroads of nutrients, gut microbiota, and metabolic inflammation. Endocr. Rev. 2015, 36, 245–271. [Google Scholar] [CrossRef] [PubMed]
- Munford, R.S. Endotoxemia—Menace, marker, or mistake? J. Leucoc. Biol. 2016, 100, 687–698. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Z.; Guo, J.; Xiong, Z.; Hu, B. Exploring the gut microbiome-Postoperative Cognitive Dysfunction connection: Mechanisms, clinical implications, and future directions. Brain Behav. Immun.-Health 2024, 38, 100763. [Google Scholar] [CrossRef]
- Heidari, H.; Lawrence, D.A. An integrative exploration of environmental stressors on the microbiome-gut-brain axis and immune mechanisms promoting neurological disorders. J. Toxicol. Environ. Health Part B 2024, 27, 233–263. [Google Scholar] [CrossRef]
- Derikx, J.P.; van Waardenburg, D.A.; Thuijls, G.; Willigers, H.M.; Koenraads, M.; van Bijnen, A.A.; Heineman, E.; Poeze, M.; Ambergen, T.; Van Ooij, A.; et al. New insight in loss of gut barrier during major non-abdominal surgery. PLoS ONE 2008, 3, e3954. [Google Scholar] [CrossRef] [PubMed]
- Di Marco Barros, R.; Fitzpatrick, Z.; Clatworthy, M.R. The gut–meningeal immune axis: Priming brain defense against the most likely invaders. J. Exp. Med. 2022, 219, e20211520. [Google Scholar] [CrossRef]
- Leach, A. The impact of antibiotics on current surgical practice. In Annexe Thesis Digitisation Project 2018 Block 20; The University of Edinburgh: Edinburgh, UK, 1967. [Google Scholar]
- Venkatesan, S.; Lucke-Wold, B. Mind the gut: Navigating the complex landscape of gastroprotection in neurosurgical patients. World J. Gastroenterol. 2025, 31, 102959. [Google Scholar] [CrossRef]
- Liang, P.; Shan, W.; Zuo, Z. Perioperative Use of Cefazolin Ameliorates Postoperative Cognitive Dysfunction but Induces Gut Inflammation in Mice. J. Neuroinflamm. 2018, 15, 235. [Google Scholar] [CrossRef]
- Stavrou, G.; Kotzampassi, K. Gut microbiome, surgical complications and probiotics. Ann. Gastroenterol. 2017, 30, 45–53. [Google Scholar] [CrossRef]
- Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front. Immunol. 2020, 11, 604179. [Google Scholar] [CrossRef]
- Molska, M.; Mruczyk, K.; Cisek-Woźniak, A.; Prokopowicz, W.; Szydełko, P.; Jakuszewska, Z.; Marzec, K.; Trocholepsza, M. The Influence of Intestinal Microbiota on BDNF Levels. Nutrients 2024, 16, 2891. [Google Scholar] [CrossRef]
- Yan, S.; Ji, Q.; Ding, J.; Liu, Z.; Wei, W.; Li, H.; Li, L.; Ma, C.; Liao, D.; He, Z.; et al. Protective Effects of Butyrate on Cerebral Ischaemic Injury in Animal Models: A Systematic Review and Meta-Analysis. Front. Neurosci. 2024, 18, 1304906. [Google Scholar] [CrossRef] [PubMed]
- Caetano-Silva, M.E.; Rund, L.; Hutchinson, N.T.; Woods, J.A.; Steelman, A.J.; Johnson, R.W. Inhibition of Inflammatory Microglia by Dietary Fiber and Short-Chain Fatty Acids. Sci. Rep. 2023, 13, 2819. [Google Scholar] [CrossRef]
- Hwang, I.K.; Yoo, K.Y.; Li, H.; Park, O.K.; Lee, C.H.; Choi, J.H.; Jeong, Y.G.; Lee, Y.L.; Kim, Y.M.; Kwon, Y.G.; et al. Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus. J. Neurosci. Res. 2009, 87, 2126–2137. [Google Scholar] [CrossRef] [PubMed]
- Cervellati, C.; Trentini, A.; Pecorelli, A.; Valacchi, G. Inflammation in neurological disorders: The thin boundary between brain and periphery. Antioxid. Redox Signal. 2020, 33, 191–210. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Jung, S.; Hwang, G.S.; Shin, D.M. Gut microbiota indole-3-propionic acid mediates neuroprotective effect of probiotic consumption in healthy elderly: A randomized, double-blind, placebo-controlled, multicenter trial and in vitro study. Clin. Nutr. 2023, 42, 1025–1033. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Li, J.; Liang, J.; Yang, M.; Xia, G.; Ren, Y.; Zhou, H.; Wu, Q.; He, Y.; et al. Gut microbiota is causally associated with poststroke cognitive impairment through lipopolysaccharide and butyrate. J. Neuroinflamm. 2022, 19, 76. [Google Scholar] [CrossRef]
- Wu, Y.; Dong, Z.; Jiang, X.; Qu, L.; Zhou, W.; Sun, X.; Hou, J.; Xu, H.; Cheng, M. Gut Microbiota Taxon-Dependent Transformation of Microglial M1/M2 Phenotypes Underlying Mechanisms of Spatial Learning and Memory Impairment after Chronic Methamphetamine Exposure. Microbiol. Spectr. 2023, 11, e0030223. [Google Scholar] [CrossRef]
- Minerbi, A.; Shen, S. Gut Microbiome in Anesthesiology and Pain Medicine. Anesthesiology 2022, 137, 93–108. [Google Scholar] [CrossRef]
- Jiang, X.L.; Gu, X.Y.; Zhou, X.X.; Chen, X.M.; Zhang, X.; Yang, Y.T.; Qin, Y.; Shen, L.; Yu, W.F.; Su, D.S. Intestinal dysbacteriosis mediates the reference memory deficit induced by anaesthesia/surgery in aged mice. Brain Behav. Immun. 2019, 80, 605–615. [Google Scholar] [CrossRef]
- Xu, X.; Hu, Y.; Yan, E.; Zhan, G.; Liu, C.; Yang, C. Perioperative neurocognitive dysfunction: Thinking from the gut? Aging 2020, 12, 15797–15817. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, M.; Marshall, A.G.; Flinn, H.; Lozano-Cavazos, M.; Soriano, S.; Gomez-Pinilla, F.; Teagen, T.J.; Villapol, S. Probiotic treatment induces sex-dependent neuroprotection and gut microbiome shifts after traumatic brain injury. J. Neuroinflamm. 2025, 22, 114. [Google Scholar] [CrossRef]
- Chen, R.; Xu, Y.; Wu, P.; Zhou, H.; Lasanajak, Y.; Fang, Y.; Tang, L.; Ye, L.; Li, X.; Cai, Z.; et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol. Res. 2019, 148, 104403. [Google Scholar] [CrossRef] [PubMed]
- Kigerl, K.A.; Hall, J.C.; Wang, L.; Mo, X.; Yu, Z.; Popovich, P.G. Gut dysbiosis impairs recovery after spinal cord injury. J. Exp. Med. 2016, 213, 2603–2620. [Google Scholar] [CrossRef]
- Jiang, H.; Zeng, W.; Zhang, X.; Pei, Y.; Zhang, H.; Li, Y. The role of gut microbiota in patients with benign and malignant brain tumors: A pilot study. Bioengineered 2022, 13, 7846–7858. [Google Scholar] [CrossRef]
- BharathwajChetty, B.; Kumar, A.; Deevi, P.; Abbas, M.; Alqahtani, A.; Liang, L.; Sethi, G.; Liu, L.; Kunnumakkara, A.B. Gut microbiota and their influence in brain cancer milieu. J. Neuroinflamm. 2025, 22, 129. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, F.; Zhang, X.; Fang, H.; Qiu, T.; Li, Y.; Peng, A. Dysbiosis of the gut microbiota in glioblastoma patients and potential biomarkers for risk assessment. Microb. Pathog. 2024, 195, 106888. [Google Scholar] [CrossRef]
- Wang, C.; Fan, Y.; Zhang, L.; Zhao, Z.; Luo, F.; Sun, K.; Zeng, M.; Tian, H.; Peng, M.; Luo, Y.; et al. Deciphering the contributions of fecal microbiota from patients with high-grade glioma to tumor development in a humanized microbiome mouse model of glioma. Neuro-Oncol. Adv. 2025, 7, vdaf085. [Google Scholar] [CrossRef]
- Wei, X.; Xing, F.; Xu, Y.; Zhang, F.; Cheng, D.; Zhou, Y.; Zheng, F.; Zhang, W. Preoperative gut microbiota of POCD patients induces pre-and postoperative cognitive impairment and systemic inflammation in rats. J. Neuroinflamm. 2024, 21, 221. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Xu, Y.; Li, S.; Zhan, G.; Hua, D.; Tan, J.; Chi, X.; Xiang, H.; Guo, F.; Luo, A. Contribution of preoperative gut microbiota in postoperative neurocognitive dysfunction in elderly patients undergoing orthopedic surgery. Front. Aging Neurosci. 2023, 15, 1108205. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yin, X.; Chen, G.; Li, L.; Le, Y.; Xie, Z.; Ouyang, W.; Tong, J. Perioperative probiotic treatment decreased the incidence of postoperative cognitive impairment in elderly patients following non-cardiac surgery: A randomised double-blind and placebo-controlled trial. Clin. Nutr. 2021, 40, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Luo, M.; Huang, H.; Wu, L.; Ouyang, W.; Tong, J.; Le, Y. Perioperative probiotics attenuates postoperative cognitive dysfunction in elderly patients undergoing hip or knee arthroplasty: A randomized, double-blind, and placebo-controlled trial. Front. Aging Neurosci. 2023, 14, 1037904. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Lian, X.R.; Li, H.X.; Wang, T.H.; Zheng, H.; Yan, T. Relationship between gut microbiota and its metabolite dysregulation and postoperative cognitive dysfunction in elderly male C57BL/6J mice after laparotomy exploration. Zhonghua Yi Xue Za Zhi 2024, 104, 1316–1322. [Google Scholar]
- Han, D.; Li, Z.; Liu, T.; Yang, N.; Li, Y.; He, J.; Qian, M.; Kuang, Z.; Zhang, W.; Ni, C.; et al. Prebiotics regulation of intestinal microbiota attenuates cognitive dysfunction induced by surgery stimulation in APP/PS1 mice. Aging Dis. 2020, 11, 1029. [Google Scholar] [CrossRef]
- Minalyan, A.; Gabrielyan, L.; Scott, D.; Jacobs, J.; Pisegna, J.R. The gastric and intestinal microbiome: Role of proton pump inhibitors. Curr. Gastroenterol. Rep. 2017, 19, 42. [Google Scholar] [CrossRef]
- Janis, Z.; Sharma, S. Enhancing Gut Microbiome focusing on Anti-Inflammatory Foods, Dietary Fiber, and Polyphenols. InBIO Web Conf. 2025, 178, 02013. [Google Scholar] [CrossRef]
- Hernandez, S.E.; Etchill, E.W.; Zuckerbraun, B.S. The Immunosuppressed Patient. In Complications in Acute Care Surgery: The Management of Difficult Clinical Scenarios; Springer: Berlin/Heidelberg, Germany, 2016; pp. 267–303. [Google Scholar]
- O’Riordan, K.J.; Moloney, G.M.; Keane, L.; Clarke, G.; Cryan, J.F. The gut microbiota-immune-brain axis: Therapeutic implications. Cell Rep. Med. 2025, 6, 101982. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Cha, J.; Sim, M.; Jung, S.; Chun, W.Y.; Baik, H.W.; Shin, D.M. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: A randomized, double-blind, placebo-controlled, multicenter trial. J. Gerontol. Ser. A 2021, 76, 32–40. [Google Scholar] [CrossRef]
- Tan, G.S.; Tay, H.L.; Tan, S.H.; Lee, T.H.; Ng, T.M.; Lye, D.C. Gut microbiota modulation: Implications for infection control and antimicrobial stewardship. Adv. Ther. 2020, 37, 4054–4067. [Google Scholar] [CrossRef]
- Vinelli, V.; Biscotti, P.; Martini, D.; Del Bo’, C.; Marino, M.; Meroño, T.; Nikoloudaki, O.; Calabrese, F.M.; Turroni, S.; Taverniti, V.; et al. Effects of dietary fibers on short-chain fatty acids and gut microbiota composition in healthy adults: A systematic review. Nutrients 2022, 14, 2559. [Google Scholar] [CrossRef]
- Suda, K.; Matsuda, K. How Microbes Affect Depression: Underlying Mechanisms via the Gut–Brain Axis and the Modulating Role of Probiotics. Int. J. Mol. Sci. 2022, 23, 1172. [Google Scholar] [CrossRef] [PubMed]
- Bu, L.; Wang, C.; Bai, J.; Song, J.; Zhang, Y.; Chen, H.; Suo, H. Gut microbiome-based therapies for alleviating cognitive impairment: State of the field, limitations, and future perspectives. Food Funct. 2024, 15, 1116–1134. [Google Scholar] [CrossRef] [PubMed]
- Baldi, S.; Mundula, T.; Nannini, G.; Amedei, A. Microbiota shaping—The effects of probiotics, prebiotics, and fecal microbiota transplant on cognitive functions: A systematic review. World J. Gastroenterol. 2021, 27, 6715. [Google Scholar] [CrossRef]
- D’Amato, A.; Di Cesare Mannelli, L.; Lucarini, E.; Man, A.L.; Le Gall, G.; Branca, J.J.; Ghelardini, C.; Amedei, A.; Bertelli, E.; Regoli, M.; et al. Faecal microbiota transplant from aged donor mice affects spatial learning and memory via modulating hippocampal synaptic plasticity-and neurotransmission-related proteins in young recipients. Microbiome 2020, 8, 140. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Lin, Z.; Zheng, C.; Chen, S.; Zhou, H.; Liu, Z. Preliminary evidence for developing safe and efficient fecal microbiota transplantation as potential treatment for aged related cognitive impairments. Front. Cell. Infect. Microbiol. 2023, 13, 1103189. [Google Scholar] [CrossRef]
- Xiang, S.; Ji, J.-L.; Li, S.; Cao, X.-P.; Xu, W.; Tan, L.; Tan, C.-C. Efficacy and Safety of Probiotics for the Treatment of Alzheimer’s Disease, Mild Cognitive Impairment, and Parkinson’s Disease: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2022, 14, 730036. [Google Scholar] [CrossRef]
- Ge, S.; Zhang, S.; She, L.; Gu, T.; Wang, S.; Huang, X.; Wang, L.; Miao, M. Synergistic therapy of Chinese herbal medicine and gut microbiota modulation for post-stroke cognitive recovery: Focus on microbial metabolite and immunoinflammation. Front. Microbiol. 2025, 16, 1623843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, X.D.; Wang, L.K.; Wu, H.Y.; Jiao, L. Effects of prebiotic galacto-oligosaccharide on postoperative cognitive dysfunction and neuroinflammation through targeting of the gut-brain axis. BMC Anesthesiol. 2018, 18, 177. [Google Scholar] [CrossRef]
- Parker, A.; Romano, S.; Ansorge, R.; Aboelnour, A.; Le Gall, G.; Savva, G.M.; Pontifex, M.G.; Telatin, A.; Baker, D.; Jones, E.; et al. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. Microbiome 2022, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Elangovan, S.; Borody, T.J.; Holsinger, R.D. Fecal microbiota transplantation reduces pathology and improves cognition in a mouse model of Alzheimer’s disease. Cells 2022, 12, 119. [Google Scholar] [CrossRef] [PubMed]
- Long, D.R.; Cifu, A.; Salipante, S.J.; Sawyer, R.G.; Machutta, K.; Alverdy, J.C. Preventing surgical site infections in the era of escalating antibiotic resistance and antibiotic stewardship. JAMA Surg. 2024, 159, 949–956. [Google Scholar] [CrossRef]
- Zhang, S.H.; Jia, X.Y.; Wu, Q.; Jin, J.; Xu, L.S.; Yang, L.; Han, J.G.; Zhou, Q.H. The involvement of the gut microbiota in postoperative cognitive dysfunction based on integrated metagenomic and metabolomics analysis. Microbiol. Spectr. 2023, 11, e0310423. [Google Scholar] [CrossRef]
- Liang, X.; Fu, Y.; Cao, W.T.; Wang, Z.; Zhang, K.; Jiang, Z.; Jia, X.; Liu, C.Y.; Lin, H.R.; Zhong, H.; et al. Gut microbiome, cognitive function and brain structure: A multi-omics integration analysis. Transl. Neurodegener. 2022, 11, 49. [Google Scholar] [CrossRef]
- Inau, E.T.; Sack, J.; Waltemath, D.; Zeleke, A.A. Initiatives, concepts, and implementation practices of the findable, accessible, interoperable, and reusable data principles in health data stewardship: Scoping review. J. Med. Internet Res. 2023, 25, e45013. [Google Scholar] [CrossRef]
- Singh, R.K.; Nagpal, A.; Jadhav, A.; Madalli, D.P. Assessment of FAIR (Findability, Accessibility, Interoperability, and Reusability) data implementation frameworks: A parametric approach. arXiv 2024, arXiv:2504.06268. [Google Scholar]
- Serbanescu, M.; Lee, S.; Li, F.; Boppana, S.H.; Elebasy, M.; White, J.R.; Mintz, C.D. Effects of perioperative exposure on the microbiome and outcomes from an immune challenge in C57Bl/6 adult mice. Anesth. Analg. 2025. [Google Scholar] [CrossRef] [PubMed]
- Nadeem-Tariq, A.; Kazemeini, S.; Michelberger, M.; Fang, C.; Maitra, S.; Nelson, K. The Role of Gut Microbiota in Orthopedic Surgery: A Systematic Review. Microorganisms 2025, 13, 1048. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Dai, H.; Hao, Q.; Song, J.; Ji, K.; Xu, H.; Chen, G.; Lu, J. Effect of perioperative probiotic intervention on postoperative cognitive dysfunction in elderly patients: A randomized double-blinded and placebo-controlled trial. J. Transl. Med. 2025, 23, 637. [Google Scholar] [CrossRef]
Study | Model/Population | Intervention/Exposure | Key Microbiota Findings | Neurocognitive Outcomes |
---|---|---|---|---|
Wang et al. (2021) [49] | (Human) Elderly patients undergoing non-cardiac surgery (RCT) | Daily multi-strain probiotic pre- and postop vs. placebo | Enhanced microbial stability in the probiotic group | Reduced incidence of POCD at discharge compared to placebo |
Hu et al. (2023) [50] | (Human) Elderly patients after hip/knee arthroplasty (RCT) | Probiotic supplementation perioperatively | Microbial modulation “Increased Faecalibacterium and Bifidobacterium” | Attenuation of POCD incidence vs. placebo |
Wei et al. (2024) [47] | (Animal) Aged rats administered FMT from preoperative POCD patients vs. control donors | FMT into antibiotic-depleted rats | Recipients of POCD-patient microbiota had increased Desulfobacterota genera; altered β-diversity | Impaired spatial memory (Morris water maze), elevated serum/hippocampal TNF-α, IL-1β; increased microglial activation |
Cheng et al. (2024) [51] | (Animal) Aged mice undergoing surgery (exploratory laparotomy) | Surgery vs. sham; some groups received FMT from young donors | Surgery induced gut dysbiosis: ↑ Bacteroides, ↓ Akkermansia | Aged surgery group developed cognitive deficits; FMT from young donors improved cognition, reduced microglial activation, and restored barrier function |
Han et al., 2020 [52] | (Animal) APP/PS1 transgenic mice with surgical stimulation | XOS prebiotic supplementation | XOS restored tight junction proteins (ZO-1, occludin), improved microbial composition | Preservation of BBB integrity, reduced neuroinflammation, reversal of POCD-associated cognitive decline |
Study | Intervention | Evidence Base | Microbiota Effects | Neurocognitive/Clinical Outcomes |
---|---|---|---|---|
Hu et al. (2023) [50] | Perioperative probiotics | RCT in elderly non-cardiac surgery (hip/knee arthroplasty) in China | Modulated gut microbial composition (genus-level changes), likely improved resilience | Reduced POCD incidence (26.7% vs. 56.9%); better verbal memory; lowered IL-6 and IL-1β |
Wang et al. (2021) [49] | Probiotic capsules (multi-strain) | Randomized double-blind trial in elderly non-cardiac surgery patients | Greater perioperative stability in gut genera; presumed SCFA-producer preservation | Lower postoperative cognitive impairment rate (6.3% vs. 22.2%); reduced IL-6 and cortisol |
Yang et al. (2018) [67] | Prebiotic supplementation (B-GOS) | Rat model of abdominal surgery under isoflurane | Enriched beneficial taxa; mitigated microglial activation markers (Iba-1), M1/M2 balance preserved | Reduced surgery-induced cognitive impairment (novel object recognition task outcomes) |
Han et al. (2020) [52] | XOS prebiotic | APP/PS1 transgenic mice with surgical stress | Restored microbial SCFA-producer taxa; preserved tight junction protein expression | Attenuated spatial memory deficits post-surgery (Morris water maze performance) |
Parker et al. (2022) [68] | FMT—aged → young mice | Aged mice receiving young donor FMT intervention | Increased diversity; decreased pro-inflammatory taxa; improved tight-junction proteins | Reduced microglial activation; partial cognitive improvements in memory tests |
Elangovan et al. (2022) [69] | FMT in Alzheimer’s mouse model | 5xFAD mice receiving FMT from young wildtype mice | Shift toward healthy microbial profile; improved SCFA-associated metabolites | Significant cognitive improvement on Y-maze and novel object recognition; reduced amyloid burden |
Long et al. (2024) [70] | Antibiotic stewardship | Review of gut microbiome recovery after perioperative antibiotic exposure | Avoidance of broad-spectrum antibiotics preserves anaerobic SCFA producers | Mitigates long-term dysbiosis, potential reduction in neuroinflammation risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, I.A.; Khan, S.; Hassan, F.E. Gut–Brain Axis and Perioperative Gut Microbiome in Postoperative Cognitive Dysfunction: Implications for Neurosurgical Patients. Med. Sci. 2025, 13, 236. https://doi.org/10.3390/medsci13040236
Abdullah IA, Khan S, Hassan FE. Gut–Brain Axis and Perioperative Gut Microbiome in Postoperative Cognitive Dysfunction: Implications for Neurosurgical Patients. Medical Sciences. 2025; 13(4):236. https://doi.org/10.3390/medsci13040236
Chicago/Turabian StyleAbdullah, Ismail A., Sariya Khan, and Fatma E. Hassan. 2025. "Gut–Brain Axis and Perioperative Gut Microbiome in Postoperative Cognitive Dysfunction: Implications for Neurosurgical Patients" Medical Sciences 13, no. 4: 236. https://doi.org/10.3390/medsci13040236
APA StyleAbdullah, I. A., Khan, S., & Hassan, F. E. (2025). Gut–Brain Axis and Perioperative Gut Microbiome in Postoperative Cognitive Dysfunction: Implications for Neurosurgical Patients. Medical Sciences, 13(4), 236. https://doi.org/10.3390/medsci13040236