Total and Bioaccessible Soil Arsenic and Lead Levels and Plant Uptake in Three Urban Community Gardens in Puerto Rico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Descriptions
2.2. Plant and Soil Sample Collection
2.3. Soil Sample Processing and Physicochemical Characterization
2.4. Bioaccessibility Assays
2.5. Plant Sample Processing and Physicochemical Characterization
2.6. Relationship of Soil As and Pb to Plant Uptake
3. Results
3.1. Soil As and Pb Levels
3.2. Soil As and Pb Bioaccessibility and Bioavailability
3.3. Plant Uptake of As and Pb
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
Disclaimer
References
- U.S. Environmental Protection Agency (USEPA). Brownfields and Urban Agriculture: Interim Guidelines for Safe Gardening Practices. 2011. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/bf_urban_ag.pdf (accessed on 15 February 2017).
- Adriano, D. Trace Elements in Terrestrial Environments. In Biogeochemistry, Bioavailability and Risks of Metals; Springer-Verlag: New York, NY, USA, 2001. [Google Scholar]
- Alloway, J. Heavy Metals in Soils; Blackie and Son: London, UK, 1990. [Google Scholar]
- U.S. Environmental Protection Agency (USEPA). Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment; OSWER 9285.7-80; USEPA: Washington, DC, USA, 2007.
- Bradham, K.; Scheckel, K.; Nelson, C.; Seales, P.; Lee, G.; Hughes, M.; Miller, B.; Yeow, A.; Gilmore, T.; Harper, S.; et al. Relative Bioavailability and Bioaccessibility and Speciation of Arsenic in Contaminated Soils. Environ. Health Perspect. 2011, 119, 1629–1634. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Andreotta, M.; Brusseau, M.; Artiola, J.; Maiera, R. A greenhouse and field-based study to determine the accumulation of arsenic in common homegrown vegetables grown in mining-affected soils. Sci. Total Environ. 2013, 443, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Peryea, F.J. Gardening on Lead- and Arsenic-Contaminated Soils. 2015. Available online: http://www.ecy.wa.gov/programs/tcp/area_wide/AW/AppK_gardening_guide.pdf (accessed on 16 February 2015).
- Moir, A.M.; Thornton, I. Lead and cadmium in urban allotment and garden soils and vegetables in the United Kingdom. Environ. Geochem. Health 1989, 11, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.E. Plant-available lead and other metals in British garden soils. Sci. Total Environ. 1978, 9, 243–262. [Google Scholar] [CrossRef]
- Xu, J.; Thornton, I. Arsenic in garden soils and vegetable crops in Cornwall, England: Implications for human health. Environ. Geochem. Health 1985, 7, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Yu, H.Y.; Chen, J.J.; Li, F.B.; Zhang, H.H.; Liu, C.P. Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environ. Monit. Assess. 2014, 186, 1547–1560. [Google Scholar] [CrossRef] [PubMed]
- Puerto Rico. 18°25′37°N 66°03′09′W. Google Earth. Available online: http://satellites.pro/Puerto_Rico#18.034998,-66.282891,11 (accessed on 3 January 2018).
- U.S. Environmental Protection Agency (USEPA). Guidance for Sample Collection for In Vitro Bioaccessibility Assay for Lead (Pb) in Soil; OSWER 9200.3-100; USEPA: Washington, DC, USA, 2015.
- Pastaka, R. Traditional Malawian Dishes. Available online: http://honestcooking.com/six-traditional-malawian-dishes/ (accessed on 8 March 2016).
- Maundu, P.M. The Status of Traditional Vegetable Utilization in Kenya. 1995. Available online: http://www.bioversityinternational.org/fileadmin/bioversity/publications/Web_version/500/ch09.htm#The%20status%20of%20traditional%20vegetable%20utilization%20in%20Kenya (accessed on 8 March 2016).
- Commission, S.P. South Pacific Foods, Leaflet No. 12—Pumpkin. 1995. Available online: http://www.fao.org/WAIRdocs/x5425e/x5425e00.htm#Contents (accessed on 9 March 2016).
- Rayment, G.; Higginson, F. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press: Melbourne, Australia, 1992; Volume 3. [Google Scholar]
- Teaf, C.M.; Covert, D.J.; Teaf, P.A.; Page, E.; Starks, M.J. Arsenic Cleanup Criteria for Soils in the US and Abroad: Comparing Guidelines and Understanding Inconsistencies. In Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, Amherst, MA, USA, 18–21 October 2010; Volume 15. Article 10. [Google Scholar]
- U.S. Environmental Protection Agency (USEPA). Clarification to the 1994 Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities; OSWER 9200.4-27; USEPA: Washington, DC, USA, 1998.
- U.S. Environmental Protection Agency (USEPA). Technical Review Workgroup Recommendations Regarding Gardening and Reducing Exposure to Lead-contaminated Soils; OSWER 9200.2-142; USEPA: Washington, DC, USA, 2014.
- U.S. Environmental Protection Agency (USEPA). SW-846 Update VI. Method 1340 In Vitro Bioaccessibility Assay for Lead in Soil; Revision 1; USEPA: Washington, DC, USA, February 2017.
- Diamond, G.L.; Bradham, K.D.; Brattin, W.J.; Burgess, M.; Griffin, S.; Hawkins, C.A.; Juhasz, A.L.; Klotzbach, J.M.; Nelson, C.; Lowney, Y.W.; et al. Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility. J. Toxicol. Environ. Health A 2016, 79, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M.; Chirgawi, M.B. The assessment of air and soil as contributors of some trace metals to vegetable plants III. Experiments with field-grown plants. Sci. Total Environ. 1989, 83, 47–62. [Google Scholar] [CrossRef]
- Cave, M.R.; Wragg, J.; Harrison, H. Measurement modelling and mapping of arsenic bioaccessibility in Northampton, United Kingdom. J. Environ. Sci. Health Part A 2013, 48, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, A.L.; Smith, E.; Weber, J.; Rees, M.; Rofe, A.; Kuchel, T.; Sansom, L.; Naidu, R. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere 2007, 69, 961–966. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (USEPA). Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children; OSWER 9285.7-15-1; USEPA: Washington, DC, USA, 1994.
- U.S. Environmental Protection Agency (USEPA). Recommendations for Default Value for Relative Bioavailability of Arsenic in Soil; OSWER 9200.1-113; USEPA: Washington, DC, USA, 2012.
- Brattin, W.; Drexler, J.; Lowney, Y.; Griffin, S.; Diamond, G.; Woodbury, L. An in vitro method for estimation of arsenic relative bioavailability in soil. J. Toxicol. Environ. Health A 2013, 76, 458–478. [Google Scholar] [CrossRef] [PubMed]
- Bradham, K.D.; Nelson, C.; Juhasz, A.L.; Smith, E.; Scheckel, K.; Obenour, D.R.; Miller, B.W.; Thomas, D.J. Independent data validation of an in vitro method for the prediction of the relative bioavailability of arsenic in contaminated soils. Environ. Sci. Technol. 2015, 49, 6312–6318. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (USEPA). Soil Screening Guidance: Technical Background Document; OSWER 9355.4-17A; USEPA: Washington, DC, USA, 1996.
- Liu, H.; Probst, A.; Liao, B. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 2005, 339, 153–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Defoe, P.P.; Hettiarachchi, G.M.; Benedict, C.; Martin, S. Safety of gardening on lead and arsenic contaminated urban brownfields. J. Environ. Qual. 2014, 43, 2064–2078. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, P.; McBride, M.B.; Xia, H.; Li, N.; Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Merecki, N.; Agic, R.; Sunic, L.; Milenkovic, L.; Illic, Z.S. Transfer factor as indicator of heavy metals content in plants. Fresen. Environ. Bull. 2015, 24, 4212–4219. [Google Scholar]
- Luo, C.L.; Liu, C.P.; Wang, Y.; Liu, X.; Li, F.B.; Zhang, C.; Li, X.D. Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J. Hazard. Mater. 2011, 186, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef] [PubMed]
- Finster, M.E.; Gray, K.A.; Binns, H.J. Lead levels of edibles grown in contaminated residential soils: A field survey. Sci. Total Environ. 2004, 320, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Roychowdhury, T.; Uchino, T.; Tokunaga, H.; Ando, M. Survey of arsenic in food composites from an arsenic affected area of West Bengal, India. Food Chem. Toxicol. 2002, 40, 1611–1621. [Google Scholar] [CrossRef]
- Bundschuh, J.; Nath, B.; Bhattacharya, P.; Liu, C.; Armineta, M.A.; Lopez, M.V.M.; Lopez, D.L.; Jean, J.; Cornejo, L.; Macedo, L.F.L.; et al. Arsenic in the human food chain: The Latin American perspective. Sci. Total Environ. 2012, 429, 92–106. [Google Scholar] [CrossRef] [PubMed]
Garden | Soil ID | Arsenic | Lead | Al (%) | Fe (%) | pH | ||||
---|---|---|---|---|---|---|---|---|---|---|
Total (mg/kg) | IVBA (%) 1 | RBA (%) 2 | Total (mg/kg) | IVBA (%) 1 | RBA (%) 3 | |||||
1 | Soil 1 | 55.4 | 32 | 28 | 130.9 | 74 | 62 | 1.26 | 2.44 | 7.4 |
Soil 2 | 14.8 | 29 | 26 | 87.0 | 77 | 65 | 1.10 | 2.17 | 7.8 | |
Soil 3 | 11.3 | 19 | 18 | 56.6 | 65 | 54 | 1.27 | 2.60 | 7.9 | |
Soil 4 | 9.8 | 21 | 20 | 82.2 | 63 | 53 | 1.23 | 3.24 | 8.0 | |
Soil 5 | 12.0 | 20 | 19 | 54.7 | 61 | 51 | 1.21 | 2.70 | 8.0 | |
Composite | 14.1 | 26 | 24 | 172.0 | 78 | 66 | 1.52 | 2.82 | 8.2 | |
2 | Soil 1 | 8.8 4 | 24 | 22 | 34.5 | 65 | 54 | 2.19 | 3.24 | 7.9 |
Soil 2 | 6.6 4 | 24 | 22 | 30.7 | 68 | 57 | 1.42 | 2.42 | 7.8 | |
Soil 3 | 7.2 4 | 24 | 22 | 43.6 | 73 | 61 | 1.35 | 2.32 | 7.8 | |
Soil 4 | 9.1 4 | 25 | 23 | 35.9 | 78 | 66 | 1.40 | 2.50 | 7.9 | |
Soil 5 | 5.7 4 | 20 | 19 | 21.6 | 61 | 51 | 1.25 | 1.90 | 7.6 | |
Composite | 8.8 4 | 29 | 26 | 34.7 | 76 | 64 | 1.49 | 2.53 | 7.8 | |
3 | Soil 1 | 5.3 4 | 24 | 22 | 41.7 | 72 | 60 | 0.86 | 2.06 | 8.0 |
Soil 2 | 2.0 4 | 32 | 28 | 19.1 | 87 | 74 | 1.10 | 1.82 | 7.9 | |
Soil 3 | 6.7 4 | 42 | 36 | 22.9 | 100 | 85 | 1.56 | 2.36 | 8.0 | |
Soil 4 | 8.5 4 | 31 | 27 | 40.0 | 75 | 63 | 0.96 | 2.15 | 8.0 | |
Soil 5 | 9.6 4 | 22 | 20 | 30.1 | 93 | 79 | 1.27 | 2.38 | 7.9 | |
Composite | 8.1 4 | 19 | 18 | 35.6 | 68 | 57 | 1.47 | 2.97 | 7.9 |
Garden | Plant | Tissue | Plant As (mg/kg) 1 | Soil As (mg/kg) | As TF | Plant Pb (mg/kg) 1 | Soil Pb (mg/kg) | Pb TF |
---|---|---|---|---|---|---|---|---|
1 | Avocado | Flesh | 0.51 ± 0.03 | 55.4 | 0.009 | 0.22 ± 0.02 | 130.9 | 0.002 |
Tomato | Flesh | <0.04 | 11.3 | 0.000 | 0.09 ± 0.01 | 56.6 | 0.002 | |
Sweet Pepper 2 | Flesh | 0.11 | 14.8 | 0.007 | 0.28 | 87.0 | 0.003 | |
2 | Eggplant | Flesh | 0.48 ± 0.22 | 6.6 | 0.073 | 0.38 ± 0.12 | 30.7 | 0.012 |
Yucca | Flesh | 0.17 ± 0.01 | 8.8 | 0.019 | 0.20 ± 0.01 | 33.5 | 0.006 | |
Basil | Leaf | 0.66 ± 0.01 | 9.1 | 0.073 | 2.1 ± 0.1 | 35.9 | 0.058 | |
Culantro 2 | Leaf | 3.2 | 7.2 | 0.444 | 8.9 | 43.6 | 0.204 | |
3 | Lettuce | Leaf | 0.87 ± 0.01 | 6.7 | 0.130 | 2.9 ± 0.1 | 22.9 | 0.127 |
Pumpkin | Leaf | 2.1 ± 0.1 | 9.6 | 0.219 | 5.2 ± 0.2 | 30.1 | 0.173 | |
Basil2 | Leaf | 0.31 | 2.0 | 0.155 | 0.44 | 19.1 | 0.023 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misenheimer, J.; Nelson, C.; Huertas, E.; Medina-Vera, M.; Prevatte, A.; Bradham, K. Total and Bioaccessible Soil Arsenic and Lead Levels and Plant Uptake in Three Urban Community Gardens in Puerto Rico. Geosciences 2018, 8, 43. https://doi.org/10.3390/geosciences8020043
Misenheimer J, Nelson C, Huertas E, Medina-Vera M, Prevatte A, Bradham K. Total and Bioaccessible Soil Arsenic and Lead Levels and Plant Uptake in Three Urban Community Gardens in Puerto Rico. Geosciences. 2018; 8(2):43. https://doi.org/10.3390/geosciences8020043
Chicago/Turabian StyleMisenheimer, John, Clay Nelson, Evelyn Huertas, Myriam Medina-Vera, Alex Prevatte, and Karen Bradham. 2018. "Total and Bioaccessible Soil Arsenic and Lead Levels and Plant Uptake in Three Urban Community Gardens in Puerto Rico" Geosciences 8, no. 2: 43. https://doi.org/10.3390/geosciences8020043
APA StyleMisenheimer, J., Nelson, C., Huertas, E., Medina-Vera, M., Prevatte, A., & Bradham, K. (2018). Total and Bioaccessible Soil Arsenic and Lead Levels and Plant Uptake in Three Urban Community Gardens in Puerto Rico. Geosciences, 8(2), 43. https://doi.org/10.3390/geosciences8020043