Abstract
The iron-oxide-copper-gold (IOCG) skarns of the Tatatila-Las Minas mining district in central Mexico represent a structurally-controlled, exhumed fossil geothermal system located in the eastern sector of the Trans-Mexican Volcanic Belt (TMVB). The district was historically exploited for gold and copper mineralization. The emplacement of the ore bodies was controlled by regional Neogene–Quaternary NE- and NW-striking fault systems formed during the extensional evolution of the TMVB. These faults acted as conduits for high-temperature hydrothermal fluids circulating during the cooling of the Neogene magmatic intrusions. By integrating detailed field study with available exploration borehole data, the spatial distribution of the skarn bodies was reconstructed. Three main emplacement geometries were identified: (a) at contacts between magmatic bodies and host rocks, (b) as lenticular or irregular bodies parallel to the host rock foliation, and (c) at the intersections of near-orthogonal faults. Although structural controls on skarn formation represent a key factor in ore emplacement, their analysis remains scarcely explored. This paper therefore contributes to filling this gap by providing a detailed characterization of the structural framework governing IOCG skarn development at Tatatila–Las Minas. The results improve understanding of IOCG systems formation and provide predictive criteria for mineral exploration in similar geological settings, potentially reducing exploration and mining risks.