The Gavorrano Monzogranite (Northern Apennines): An Updated Review of Host Rock Protoliths, Thermal Metamorphism and Tectonic Setting
Abstract
:1. Introduction
2. Geological Outline
3. Age of Hosting Rocks
4. The Contact Aureole
5. Structural and Kinematic Data
6. Conclusive Remarks
- The laccolithic monzongranite emplaced within the upper part of the Tuscan metamorphic succession, at the base of the Late Triassic carbonate succession. The exposed contact aureole at north of Ravi village is referred to the phyllitic-quartzite succession, similar to part of that one exposed at north of the Gavorrano village, underlying the metasandstone and quartz-metaconglomerate of the Triassic Verrucano Group. The succession exposed in the Gavorrano village and neighbourhood is referred to a transitional succession (i.e., Tocchi Fm) interposed between the Verrucano and late Triassic evaporite. The Palaeozoic succession hosting the monzogranite has a middle-late Permian age and can be referred to the coeval successions documented in the surroundings (e.g., Poggio al Carpino Fm, Filladi di Boccheggiano and Quarziti del Torrente Mersino formations). The decimetres-thick quartz-metasandstone levels interbedded within black phyllite, recognised in the Il Santo gallery, make this succession similar to the Poggio al Carpino Fm. On the contrary, the dominant black phyllite exposed at surface better corresponds to the Filladi di Boccheggiano and Quarziti del Torrente Mersino formations.
- The thermo-metamorphic paragenesis and Ti-in-biotite geothermometer point to a peak Temperature of c. 660 °C at a depth probably lower than 6 km. Dynamic recrystallisation of LP paragenesis suggests a syn-kinematic evolution of the contact aureole, in agreement with the active tectonic setting that assisted the magma emplacement, cooling and exhumation.
- We do not confirm the occurrence of regional and/or cartographic scale reverse faults, or thrust-related roof-anticline triggering the magma emplacement and hosting the magmatic intrusion, since those previously proposed interpretations contrast with field data evidence. The pluton emplacement was coeval with coexisting strike-slip and extensional tectonics that continued also after the magma cooling and produced the exhumation of the magmatic system and of its contact aureole. The tectonic setting did not change through time: strike-slip and normal faults coexisted at least since the early Pliocene (age of the monzogranite emplacement). The Gavorrano pluton emplaced within a SW-NE trending sub-vertical strike-slip brittle shear zone (i.e., transfer zone) that accompanied the development of low-to middle-angle normal faults formed in a E-NE trending extensional setting. SW-NE striking strike-slip faults were mainly linked by NS striking strike-slip faults in releasing step-over zones, favouring the development of sub-vertical dilatational volumes with enough permeability to channel the magma from the deeper to upper crustal levels.
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Bt 42 | Bt 43 | Bt 44 | Bt 45 | Bt 46 | Bt 47 | Bt 48 | |
---|---|---|---|---|---|---|---|
SiO2 | 33.25 | 33.19 | 34.24 | 34.98 | 33.63 | 34.64 | 35.57 |
TiO2 | 3.57 | 3.58 | 3.36 | 3.69 | 3.57 | 3.57 | 3.60 |
Al2O3 | 20.78 | 20.58 | 20.11 | 20.64 | 20.86 | 20.96 | 21.73 |
FeO | 17.42 | 17.42 | 17.98 | 17.91 | 17.39 | 17.27 | 15.88 |
MnO | 0.34 | 0.27 | 0.44 | 0.39 | 0.29 | ||
MgO | 8.36 | 8.36 | 8.51 | 8.79 | 8.18 | 8.62 | 8.87 |
Na2O | 0.18 | 0.23 | 0.18 | 0.32 | 0.30 | 0.18 | |
K2O | 9.92 | 10.17 | 10.10 | 10.21 | 10.14 | 10.08 | 9.93 |
Tot | 93.82 | 93.80 | 94.74 | 96.79 | 94.09 | 95.73 | 95.76 |
Si | 2.57 | 2.57 | 2.62 | 2.62 | 2.59 | 2.61 | 2.64 |
Ti | 0.21 | 0.21 | 0.19 | 0.21 | 0.21 | 0.20 | 0.20 |
AlIV | 1.43 | 1.43 | 1.38 | 1.38 | 1.41 | 1.39 | 1.36 |
AlVI | 0.46 | 0.45 | 0.44 | 0.44 | 0.48 | 0.47 | 0.55 |
Fe | 1.12 | 1.13 | 1.15 | 1.12 | 1.12 | 1.09 | 0.99 |
Mn | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | ||
Mg | 0.96 | 0.96 | 0.97 | 0.98 | 0.94 | 0.97 | 0.98 |
Na | 0.03 | 0.04 | 0.03 | 0.05 | 0.04 | 0.03 | |
K | 0.98 | 1.00 | 0.99 | 0.97 | 0.99 | 0.97 | 0.94 |
∑cat | 7.78 | 7.81 | 7.77 | 7.77 | 7.79 | 7.76 | 7.69 |
∑O | 11.00 | 11.01 | 11.00 | 11.01 | 11.02 | 11.00 | 11.00 |
Fe3+ | 0.03 | 0.06 | 0.04 | 0.05 | 0.11 | 0.10 | 0.16 |
Fe2+ | 1.09 | 1.07 | 1.11 | 1.07 | 1.01 | 0.99 | 0.83 |
T, °C * | 657 | 657 | 641 | 652 | 668 | 659 | 679 |
References
- Brunet, C.; Monié, P.; Jolivet, L.; Cadet, J.P. Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics 2000, 321, 127–155. [Google Scholar] [CrossRef]
- Rossetti, F.; Faccenna, C.; Jolivet, L.; Goffé, B.; Funiciello, R. Structural signature and exhumation P-T–t paths of the blueschist units exposed in the interior of the Northern Apennine chain, tectonic implication. Boll. Soc. Geol. It. 2002, 1, 829–842. [Google Scholar]
- Bianco, C.; Godard, G.; Halton, A.; Brogi, A.; Liotta, D.; Caggianelli, A. The lawsonite-glaucophane blueschists of Elba Island (Italy). Lithos 2019, 348–349. [Google Scholar] [CrossRef]
- Carmignani, L.; Decandia, F.A.; Disperati, L.; Fantozzi, P.L.; Lazzarotto, A.; Liotta, D.; Oggiano, G. Relationships between the Tertiary structural evolution of the Sardinia-Corsica-Provencal Domain and the northern Apennines. Terra Nova 1995, 7, 128–137. [Google Scholar] [CrossRef]
- Bartole, R. The North Tyrrhenian-Northern Apennines post- collisional system: Constraints for a geodynamic model. Terra Nova 1995, 7, 7–30. [Google Scholar] [CrossRef]
- Calcagnile, G.; Panza, G.F. The main characteristics of the lithosphere–asthenosphere system in Italy and surrounding regions. Pure Appl. Geophys. 1980, 119, 865–879. [Google Scholar] [CrossRef]
- Locardi, E.; Nicolich, R. Geodinamica del Tirreno e dell’Appennino centro-meridionale: La nuova carta della Moho. Mem. Soc. Geol. It. 1992, 41, 121–140. [Google Scholar]
- Di Stefano, R.; Bianchi, I.; Ciaccio, M.G.; Carrara, G.; Kissling, E. Three-dimensional Moho topography in Italy: New constraints from receiver functions and controlled source seismology. Geochem. Geophys. Geosyst. 2011, 12, 1–15. [Google Scholar] [CrossRef]
- Marinelli, G. Genèse des magmas du volcanisme Plio-Quaternaire des Apennines. Geol. Rdsch. 1967, 57, 127–141. [Google Scholar] [CrossRef]
- Peccerillo, A. Plio-Quaternary magmatism in Italy. Episodes 2003, 26, 222–226. [Google Scholar] [CrossRef]
- Elter, P.; Giglia, G.; Tongiorgi, M.; Trevisan, L. Tensional and compressional areas in the recent (Tortonian to Present) evolution of north Apennines. Boll. Geofis. Teor. Appl. 1975, 17, 3–18. [Google Scholar]
- Serri, G.; Innocenti, F.; Manetti, P. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. Tectonophysics 1993, 223, 117–214. [Google Scholar] [CrossRef]
- Carmignani, L.; Decandia, F.A.; Disperati, L.; Fantozzi, P.L.; Kligfield, R.; Lazzarotto, A.; Liotta, D.; Meccheri, M. Inner northern Apennines. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Vai, G.B., Martini, I.P., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 2001; pp. 197–213. [Google Scholar]
- Gianelli, G.; Puxeddu, M.; Batini, F.; Bertini, G.; Dini, I.; Pandeli, E.; Nicolich, R. Geological model of a young volcano-plutonic system: The geothermal region of Monte Amiata (Tuscany, Italy). Geothermics 1988, 17, 719–734. [Google Scholar] [CrossRef]
- Dini, A.; Gianelli, G.; Puxeddu, M.; Ruggieri, G. Origin and evolution of Pliocene-Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy). Lithos 2005, 81, 1–31. [Google Scholar] [CrossRef]
- Brogi, A.; Lazzarotto, A.; Liotta, D.; Ranalli, G. Crustal structures in the geothermal areas of southern Tuscany (Italy): Insights from the CROP 18 deep seismic reflection. J. Volcanol. Geotherm. Res. 2005, 148, 60–80. [Google Scholar] [CrossRef]
- Gola, G.; Bertini, G.; Bonini, M.; Botteghi, S.; Brogi, A.; De Franco, R.; Dini, A.; Donato, A.; Gianelli, G.; Liotta, D.; et al. Data integration and conceptual modelling of the Larderello geothermal area, Italy. Energy Proc. 2017, 125, 300–309. [Google Scholar] [CrossRef]
- Rochira, F.; Caggianelli, A.; De Lorenzo, S. Regional thermo-rheological field related to granite emplacement in the upper crust: Implications for the Larderello area (Tuscany, Italy). Geodin. Acta 2018, 30, 225–240. [Google Scholar] [CrossRef] [Green Version]
- Della Vedova, B.; Bellani, S.; Pellis, G.; Squarci, P. Deep temperatures and surface heat flow distribution. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Vai, G.B., Martini, I.P., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 2001; pp. 65–76. [Google Scholar]
- Brogi, A. Kinematics and geometry of Miocene low-angle detachments and exhumation of the metamorphic units in the hinterland of the Northern Apennines (Italy). J. Struct. Geol. 2008, 30, 2–20. [Google Scholar] [CrossRef]
- Liotta, D.; Brogi, A. Pliocene-Quaternary fault kinematics in the Larderello geothermal area (Italy): Insights for the interpretation of the present stress field. Geothermics 2020, 83, 101714. [Google Scholar] [CrossRef]
- Gianelli, G.; Manzella, A.; Puxeddu, M. Crustal models of the geothermal areas of Southern Tuscany. Tectonophysics 1997, 281, 221–239. [Google Scholar] [CrossRef]
- Batini, F.; Brogi, A.; Lazzarotto, A.; Liotta, D.; Pandeli, E. Geological features of the Larderello–Travale and Mt. Amiata geothermal areas (southern Tuscany, Italy). Episodes 2003, 26, 239–244. [Google Scholar] [CrossRef]
- Dallmeyer, R.D.; Liotta, D. Extension, uplift of rocks cooling ages in thinned continental provinces: The Larderello geothermal area (inner Northern Apennines, Italy). Geol. Mag. 1998, 135, 193–202. [Google Scholar] [CrossRef]
- Marinelli, G. L’intrusione terziaria di Gavorrano. Atti. Soc. Tosc. Sci. Nat. 1961, 68, 117–194. [Google Scholar]
- Dallegno, A.; Gianelli, G.; Lattanzi, P.; Tanelli, G. Pyrite deposits of the Gavorrano area, Grosseto. Atti. Soc. Tosc. Sci. Nat. Mem. 1979, 86, 127–165. [Google Scholar]
- Borsi, S.; Ferrara, G.; Tongiorgi, E. Determinazione con il metodo K/Ar della età delle rocce magmatiche della Toscana. Boll. Soc. Geol. It. 1967, 86, 403–410. [Google Scholar]
- Serri, G.; Innocenti, F.; Manetti, P. Magmatism from Mesozoic to present: Petrogenesis, time-space distribution and geodynamic implications. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Vai, G.B., Martini, I.P., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 2001; pp. 77–103. [Google Scholar]
- Arisi Rota, F.; Vighi, L. Le mineralizzazioni a pirite ed a solfuri misti. Rend. Soc. Ital. Mineral. Petrol. 1971, 27, 370–420. [Google Scholar]
- Lotti, B. Sulla geologia del Gruppo di Gavorrano. Boll. R. Com. Geol. Ital. 1877, 8, 53–63. [Google Scholar]
- Bencini, A.; Duchi, V.; Minissale, A.; Tanelli, G. Distribuzione di alcuni elementi metallici nelle rocce intrusive e carbonatiche associate alle mineralizzazioni a pirite di Gavorrano (Grosseto). Rend. Soc. Ital. Mineral. Petrol. 1980, 36, 599–609. [Google Scholar]
- Cocozza, T.; Lazzarotto, A.; Vai, G.B. Flysch e molassa ercinici del Torrente Farma. Boll. Soc. Geol. It. 1974, 93, 115–128. [Google Scholar]
- Bagnoli, G.; Tongiorgi, M. The Tuscan Paleozoic: A critical review. In Report on the Tuscan Paleozoic Basement; Tongiorgi, M., Ed.; Consiglio Nazionale delle Ricerche: Rome, Italy, 1978; pp. 9–26. [Google Scholar]
- Musumeci, G.; Mazzarini, F.; Corti, G.; Barsella, M.; Montanari, D. Magma emplacement in a thrust ramp anticline: The Gavorrano Granite (northern Apennines, Italy). Tectonics 2005, 24, 1–17. [Google Scholar] [CrossRef]
- Rossetti, F.; Faccenna, C.; Funiciello, R.; Pascucci, V.; Pietrini, M.; Sandrelli, F. Neogene strike-slip faulting and pluton emplacement in the colline metallifere region (Southern Tuscany, Italy): The Gavorrano-Capanne Vecchie area. Boll. Soc. Geol. It. 2001, 120, 15–30. [Google Scholar]
- Musumeci, G.; Mazzarini, F.; Barsella, M. Pliocene crustal shortening on the Tyrrhenian side of the northern Apennines: Evidence from the Gavorrano antiform (southern Tuscany, Italy). J. Geol. Soc. Lond. 2008, 165, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Sani, F.; Bonini, M.; Cerrina Feroni, A.; Mazzarini, F.; Moratti, G.; Musumeci, G.; Corti, G.; Iatta, F.; Ellero, A. Messinian-Early Pliocene crustal shortening along the Tyrrhenian margin of Tuscany, Italy. Ital. J. Geosci. 2009, 128, 593–604. [Google Scholar] [CrossRef]
- Montanari, D.; Corti, G.; Sani, F.; Del Ventisette, C.; Bonini, M.; Moratti, G. Experimental investigation on granite emplacement during shortening. Tectonophysics 2010, 484, 147–155. [Google Scholar] [CrossRef]
- Lotti, B. I Depositi Minerari Metalliferi; Ind. Min.: Roma, Italy, 1928; p. 236. [Google Scholar]
- Santi, G. Viaggio Terzo per le Due Provincie Senesi che Forma il Seguito del Viaggio al Montamiata; Ranieri Prosperi Stamp: Pisa, Italy, 1806; 182p. [Google Scholar]
- Savi, P.; Meneghini, G. Considerazioni sulla geologia stratigrafica della Toscana. In Memorie Sulla Struttura Geologica delle Alpi, degli Appennini e dei Carpazi; Sir Murchison, R.E., Ed.; Stamperia Granducale: Firenze, Italy, 1851; pp. 279–522. [Google Scholar]
- Lotti, B. Sull’età e origine dei graniti toscani. Boll. R. Com. Geol. It. 1886, 1–15. [Google Scholar]
- Lotti, B. Sul giacimento di pirite di Gavorrano in Toscana. Rass. Min. 1901, 1–8, 116. [Google Scholar]
- Marocchi, E. Studio sul granito di Gavorrano. Atti. Soc. Tosc. Sco Nat. Mem. 1897, 15, 171–187. [Google Scholar]
- Martelli, A. Ricerche petrografiche e chimiche sulle formazioni granitiche di Gavorrano. Atti. R. Acc. Lincei Rend. 1909, 18, 1–7. [Google Scholar]
- Barberi, F.; Innocenti, F.; Ricci, C.A. Il magmatismo. Rend. Soc. Ital. Mineral. Petral. 1971, 27, 169–210. [Google Scholar]
- Mazzarini, F.; Corti, G.; Musumeci, G.; Innocenti, F. Tectonic control on laccolith emplacement in the northern Apennines fold-thrust belt: The Gavorrano intrusion (southern Tuscany, Italy). In Physical Geology of High-Level Magmatic Systems; Geological; Breitkreez, C., Petford, N., Eds.; Society, Special Publications: London, UK, 2004; Volume 234, pp. 151–161. [Google Scholar] [CrossRef]
- Lotti, B. Osservazioni sulla memoria di L. de Launay “La métallogénie de l’Italie”. Boll. R. Com. Geol. d’Italia 1907, 38, 3–23. [Google Scholar]
- Lotti, B. Geologia della Toscana. Mem. Descritt. Carta Geol. Ital. 1910, 13, 484. [Google Scholar]
- Lotti, B. Sui rapporti genetico-tettonici del giacimento di pirite dell’Isola del Giglio con quello di Gavorrano. La Min. Ital. 1930, 14, 206–209. [Google Scholar]
- Toso, P. Sul modo di formazione dei principali giacimenti metalliferi aventi forma di irregolari ammassi o di strati, coltivati in Toscana ed in altre regioni d’Italia. BolI. R. Com. Geol. d’Italia 1912, 3, 113–233. [Google Scholar]
- De Launay, L. Gites minéraux et métallifères. In Traité de Métallogénie. Gites Minéraux et Métallifères. Gisements, Recherche, Production et Commerce des Minéraux Utiles et Minerais, Description des Principales Mines; Librairie Polytechnique Ch. Béranger: Paris, France, 1913; Volume 1, pp. 350–353. [Google Scholar]
- Sappa, G. Breve descrizione geologico-mineraria del giacimento di pirite di Gavorrano-Ravi. Boll. Soc. Geol. Ital. 1921, 40, 68–69. [Google Scholar]
- Pompei, A. Giacimenti di Pirite, di Fe e di Fosfati; Ministero Economia Nazionale: Roma, Italy, 1927. [Google Scholar]
- De Wijkerslooth, P. The mineralization of the Tuscan Mountains in connection with their tectonic evolution. Proc. Konink. Akad. Wetensch. 1930, 33, 557–564. [Google Scholar]
- De Wukerslooth, P. Der Deckenbau Süd-Toskanas. Proc. Konink. Akad. Wetensch. 1930, 33, 1189–1200. [Google Scholar]
- De Wukerslooth, P. Bau und Entwicklung des Apennins besonders der Gebirge Toskanas; Geologisch Instituut: Amsterdam, The Netherlands, 1934; 426p. [Google Scholar]
- Turacchi, A. Pirite e miniere di pirite della Maremma. Ind. Min. 1954, 5, 15–26. [Google Scholar]
- Trefzger, E.F. Ueber die Schwefelkies Lagerstatten der Toskanischen Maremma. N. Jahrb. Min. Mon. 1954, 1, 73–95. [Google Scholar]
- Cavinato, A. Giacimenti Minerari; UTET: Torino, Italy, 1964; 686p. [Google Scholar]
- Arnold, M. Etude préliminaire des sulfures des gisements de Niccioleta et de Gavorrano (Toscane). C.R. Acad. Sci. Paris 1973, 276, 445–447. [Google Scholar]
- Natale, P. Relitti di bassa temperatura nelle piriti di alcuni giacimenti della Toscana. Boll. Ass. Min. Subalp. 1974, 2, 1–12. [Google Scholar]
- Leonardelli, A. Toscana: Pirite e solfuri misti. In Memoria Illustrativa della Carta Mineraria d’Italia; Castaldo, G., Stampanoni, G., Eds.; Servizio Geologico d’Italia: Roma, Italy, 1975. [Google Scholar]
- Bencini, A.; Martini, M.; Rebezzi, P.; Tanelli, G. Osservazioni preliminari sulla distribuzione di Fe, Mn, Ti, Li, Cu, Pb, Zn nelle rocce magmatiche del Campigliese (Campiglia Marittima, Toscana). Rend. Soc. It. Min. Petr. 1978, 34, 197. [Google Scholar]
- Cortecci, G.; Lattanzi, P.; Leone, G.; Pochini, A.; Tanelli, G. Gli isotopi dello zolfo dei giacimenti a piriti di Niccioleta, Gavorrano, Boccheggiano e Ritorto, Toscana Meridionale. Rend. Soc. It. Min. Petr. 1980, 36, 261–277. [Google Scholar]
- Jenks, W.E. Origin of some massive pyritic ore deposits of Western Europe. Econ. Geol. 1975, 70, 488–498. [Google Scholar] [CrossRef]
- Rocchi, S.; Dini, A.; Mazzarini, F.; Poli, G. Campiglia Marittima and Gavorrano intrusive magmatism. Per. Mineral. 2003, 72, 127–132. [Google Scholar]
- Bodechtel, J. Zur Genesis der Eisenerze der Toskana und der Insel Elba. N. MineraI. Abh. 1965, 103, 147–162. [Google Scholar]
- Zuffardi, P. La metallogenesi italiana in relazione alla evoluzione del Mediterraneo. Mem. Soc. Geol. It. 1974, 13, 359–365. [Google Scholar]
- Minguzzi, C. Dosatura spettrografica dell’oro in piriti italiane. Atti. Soc. Tosc. Soc. Nat. 1947, 54, 210–243. [Google Scholar]
- Minguzzi, C.; Talluri, A. Indagini e considerazioni sulla presenza e sulla distribuzione di costituenti minori nelle piriti. Atti. Soc. Tosc. Soc. Nat. 1951, 58, 89–102. [Google Scholar]
- Talluri, A. Studio genetico e geochimico del giacimento di pirite di Ravi Marchi. Rend. Soc. Min. It. 1953, 9, 264–266. [Google Scholar]
- Caglioti, V.; Bettinali, C.; Giardini-Guidoni, A.; Mele, A. Isotopic abundance of some native sulphur and sulphide minerals. In Proceedings of the Summer Course on Nuclear Geology (CNEN 1960), Ravenna, Italy, 11 August 1960; pp. 202–213. [Google Scholar]
- Ancarani-Rossiello, L.; Bettinali, C.; Faina, G. Sulla composizione isotopica dello zolfo nelle piriti della Maremma Toscana e dell’Isola d’Elba. Per. MineraI. 1962, 31, 369–373. [Google Scholar]
- Garavelli, C.L. Contenuto in Fe e temperatura di formazione di blende italiane. Atti. Soc. Tosc. Sci. Nat. 1962, 69, 52–96. [Google Scholar]
- Bralia, A.; Sabatini, G.; Troja, F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Evidences from Southern Tuscany pyritic deposit. Miner. Depos. 1979, 14, 353–374. [Google Scholar] [CrossRef]
- Zia, R. Carta Geologica di Scarlino e Gavorrano (Grosseto); Centro Studi Geologia Appennino C.N.R.: Pisa, Italy, 1954. [Google Scholar]
- Costantini, A.; Gandin, A.; Lazzarotto, A.; Mazzanti, R.; Sandrelli, F. Neotettonica dei Fogli 111-Livorno, 112-Volterra, 113-Castelfiorentino, 119-Massa Marittima, 120-Siena, 121-Montepulciano, 126-Isola d’Elba, 127-Piombino, 128-Grosseto, 129-S. Fiora. Contr. Prelim. Realizz. Carta Neotett. Ital. 1980, 356, 1075–1186. [Google Scholar]
- Costantini, A.; Decandia, F.A.; Lazzarotto, A.; Sandrelli, F. L’unità di Monticiano-Roccastrada fra la Montagnola senese ed il Monte Leoni (Toscana meridionale). Atti. Tic. Sc. Terra 1988, 31, 382–420. [Google Scholar]
- Rau, A.; Tongiorgi, M. Geologia dei Monti Pisani a Sud-Est della Valle del Guappero. Mem. Soc. Geol. It. 1974, 13, 227–408. [Google Scholar]
- Pacltová, B. Palynology of metamorphic rocks (methodological study). Rev. Palaeobot. Palynol. 1986, 48, 347–356. [Google Scholar] [CrossRef]
- Hanel, M.; Montenari, M.; Kalt, A. Determining sedimentation ages of high-grade metamorphic gneisses by their palynological record: A case study in the northern Schwarzwald (Variscan Belt, Germany). Int. J. Earth Sci. 1999, 88, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Schito, A.; Corrado, S.; Trolese, M.; Aldega, L.; Caricchi, C.; Cirilli, S.; Grigo, D.; Guedes, A.; Romano, C.; Spina, A.; et al. Assessment of thermal evolution of Paleozoic successions of the Holy Cross Mountains (Poland). Mar. Pet. Geol. 2017, 80, 112–132. [Google Scholar] [CrossRef]
- Schito, A.; Spina, A.; Corrado, S.; Cirilli, S.; Romano, C. Comparing optical and Raman spectroscopic investigations of phytoclasts and sporomorphs for thermal maturity assessment: The case study of Hettangian continental facies in the Holy cross Mts. (central Poland). Mar. Pet. Geol. 2019, 104, 331–345. [Google Scholar] [CrossRef]
- Spina, A.; Vecoli, M.; Riboulleau, A.; Clayton, G.; Cirilli, S.; Di Michele, A.; Marcogiuseppe, A.; Rettori, R.; Sassi, P.; Servais, T.; et al. Application of Palynomorph Darkness Index (PDI) to assess the thermal maturity of palynomorphs: A case study from North Africa. Int. J. Coal Geol. 2018, 188, 64–78. [Google Scholar] [CrossRef]
- Spina, A.; Capezzuoli, E.; Brogi, A.; Cirilli, S.; Liotta, D. Middle-late Permian microfloristic evidences in the metamorphic successions of Northern Apennines: Insights for age constraining and palaeogeographic correlations. J. Geol. Soc. 2019, 176, 1262–1272. [Google Scholar] [CrossRef]
- Cirilli, S.; Decandia, F.A.; Lazzarotto, A.; Pandeli, E.; Rettori, R.; Sandrelli, F.; Spina, A. Stratigraphy and depositional environment of the Mt. Argentario sandstones (southern Tuscany, Italy). Boll. Soc. Geol. It. 2002, 1, 489–498. [Google Scholar]
- Lazzarotto, A.; Aldinucci, M.; Cirilli, S.; Costantini, A.; Decandia, F.A.; Pandeli, E.; Sandrelli, F.; Spina, A. Stratigraphic correlation of the Upper Palaeozoic-Triassic successions in southern Tuscany, Italy. Boll. Soc. Geol. It. 2003, 2, 25–35. [Google Scholar]
- Aldinucci, M.; Brogi, A.; Spina, A. Middle-Late Permian sporomorphs from the Farma Formation (Monticiano-Roccastrada Ridge, southern Tuscany): New constraints for the tectono-sedimentary history of the Tuscan Domain. Ital. J. Geosci. 2008, 127, 581–597. [Google Scholar]
- Spina, A.; Cirilli, S.; Utting, J.; Jansonius, J. Palynology of the Permian and Triassic of the Tesero and Bulla sections (Western Dolomites, Italy) and consideration about the enigmatic species Reduviasporonites chalastus. Rev. Palaeobot. Palynol. 2015, 218, 3–14. [Google Scholar] [CrossRef]
- Visscher, H.; Brinkhuis, H.; Dilcher, D.L.; Elsik, W.C.; Looy, C.V.; Rampino, M.R.; Traverse, A. The terminal Paleozoic fungal event: Evidence of terrestrial ecosystem destabilization and collapse. PNAS USA 1996, 93, 2155–2158. [Google Scholar] [CrossRef] [Green Version]
- Foster, C.B.; Stephenson, M.H.; Marshall, C.; Logan, G.A.; Greenwood, P.F. A revision of Reduviasporonites Wilson 1962: Description, illustration, comparison and biological affinities. Palynology 2002, 26, 35–58. [Google Scholar] [CrossRef]
- Steiner, M.B.; Eshet, Y.; Rampino, M.R.; Schwindt, D.M. Fungal abundance spike and the Permian–Triassic boundary in the Karoo Supergroup (South Africa). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 194, 405–414. [Google Scholar] [CrossRef]
- Galasso, F.; Fernandes, P.; Montesi, G.; Marques, J.; Spina, A.; Pereira, Z. Thermal history and basin evolution of the Moatize—Minjova Coal Basin (N’Condédzi sub-basin, Mozambique) constrained by organic maturation levels. J. Afr. Earth Sci. 2019, 153, 219–238. [Google Scholar] [CrossRef]
- Galasso, F.; Pereira, Z.; Fernandes, P.; Spina, A.; Marques, J. First record of Permo-Triassic palynomorphs of the N’Condédzi sub-basin, Moatize-Minjova Coal Basin, Karoo Supergroup, Mozambique. Rev. Micropaleontol. 2019, 64. [Google Scholar] [CrossRef]
- Stephenson, M.H.; Osterloff, P.L.; Filatoff, J. Palynological biozonation of the Permian of Oman and Saudi Arabia: Progress and challenges. GeoArabia 2003, 8, 467–496. [Google Scholar]
- Stephenson, M.H. Stratigraphic Note: Update of the standard Arabian Permian palynological biozonation; definition and description of OSPZ5 and 6. GeoArabia 2006, 11, 173–178. [Google Scholar]
- Stephenson, M.H. Spores and pollen from the middle and upper Gharif members (Permian) of Oman. Palynology 2008, 32, 157–182. [Google Scholar] [CrossRef]
- Stephenson, M.H. Permian palynostratigraphy: A global overview. In The Permian Timescale, Lucas, S.G., Shen, S.Z., Eds.; Geology Society: London, UK, 2018; Volume 450, pp. 321–347. [Google Scholar] [CrossRef] [Green Version]
- Spina, A.; Stephenson, M.H.; Cirilli, S.; Aria-Nasab, M.; Rettori, R. Palynostratigraphy of the Permian Faraghan Formation in the Zagros Basin, southern Iran. Riv. Ital. Paleontol. Strat. 2018, 124, 573–595. [Google Scholar]
- Spina, A.; Cirilli, S.; Ghorbani, M.; Rettori, R.; Sorci, A.; Servais, T. Middle-late Cambrian acritarchs of the Zagros Basin, southwestern Iran. Palynology 2020. [Google Scholar] [CrossRef]
- Lindström, S. Palynology of Permian shale, clay and sandstone clasts from the Basen till in northern Vestfjella, Dronning Maud Land. Antarct. Sci. 2005, 17, 87–96. [Google Scholar] [CrossRef]
- Burt, D.M. Mineralogy and petrology of skarn deposits. Rend. Soc. Ital. Mineral. Petrol. 1977, 33, 859–874. [Google Scholar]
- Roy, R.; Osborn, E.F. The system Al2O3–SiO2–H2O. Am. Mineral. 1954, 39, 853–885. [Google Scholar]
- Kretz, R. Symbols for rock-forming minerals. Am. Mineral. 1983, 68, 277–279. [Google Scholar]
- Ferril, D.A.; Morris, A.P.; Evans, M.A.; Burkhard, M.; Groshong, J.R.H.; Onasch, C.M. Calcite twin morphology: A low-temperature deformation geothermometer. J. Struct. Geol. 2004, 26, 1521–1529. [Google Scholar] [CrossRef] [Green Version]
- Pattison, D.R.M.; Harte, B. Petrography and mineral chemistry of pelites. In Equilibrium and Kinetics in Contact Metamorphism: The Ballachulish Igneous Complex and Its Aureole; Voll, G., Topel, J., Pattison, D.R.M., Seifert, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 135–179. [Google Scholar] [CrossRef]
- Wu, C.-M.; Chen, H.-X. Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites. Sci. Bull. 2015, 60, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, C.C.; Al-Ameen, S.I. Muscovite breakdown and corundum growth at anomalously low ƒH2O: A study of contact metamorphism and convective fluid movement around the Omey granite, Connemara, Ireland. Mineral. Mag. 1985, 49, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, N.D.; Johannes, W. Thermal stability and standard thermodynamic properties of synthetic 2M muscovite, KAl2AlSi3O10(OH)2. Contrib. Mineral. Petrol. 1974, 48, 89–114. [Google Scholar] [CrossRef]
- Boettcher, A.L.; Wyllie, P.J. Melting of granite with excess water to 30 kilobars pressure. J. Geol. 1968, 76, 235–244. [Google Scholar] [CrossRef]
- Holdaway, M.J. Stability of andalusite and the aluminum silicate phase diagram. Am. J. Sci. 1971, 271, 97–131. [Google Scholar] [CrossRef]
- Pattison, D.R. Stability of andalusite and sillimanite and the Al2SiO5 Triple point: Constraints from the Ballachulish aureole, Scotland. J. Geol. 1992, 100, 423–446. [Google Scholar] [CrossRef]
- Cesare, B.; Marchesi, C.; Hermann, J.; Gómez-Pugnaire, M. Primary melt inclusions in andalusite from anatectic graphitic metapelites: Implications for the position of the Al2SiO5 triple point. Geology 2003, 31, 573. [Google Scholar] [CrossRef]
- Acocella, V.; Rossetti, F. The role of extensional tectonics at different crustal levels on granite ascent and emplacement: An example from Tuscany (Italy). Tectonophysics 2002, 354, 71–83. [Google Scholar] [CrossRef]
- Liotta, D. The Arbia-Val Marecchia line, Northern Apennines. Eclogae Geol. Helv. 1991, 84, 413–430. [Google Scholar]
- Dini, A.; Westerman, D.S.; Innocenti, F.; Rocchi, S. Magma emplacement in a transfer zone: The Miocene mafic Orano dyke swarm of Elba Island, Tuscany, Italy. Geol. Soc. Lond. Spec. Publ. 2008, 302, 131–148. [Google Scholar] [CrossRef]
- Liotta, D.; Brogi, A.; Meccheri, M.; Dini, A.; Bianco, C.; Ruggieri, G. Coexistence of low-angle normal and high-angle strike- to oblique-slip faults during Late Miocene mineralization in eastern Elba Island (Italy). Tectonophysics 2015, 660, 17–34. [Google Scholar] [CrossRef]
- Dymek, R.F. Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. Am. Mineral. 1983, 68, 880–899. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brogi, A.; Caggianelli, A.; Liotta, D.; Zucchi, M.; Spina, A.; Capezzuoli, E.; Casini, A.; Buracchi, E. The Gavorrano Monzogranite (Northern Apennines): An Updated Review of Host Rock Protoliths, Thermal Metamorphism and Tectonic Setting. Geosciences 2021, 11, 124. https://doi.org/10.3390/geosciences11030124
Brogi A, Caggianelli A, Liotta D, Zucchi M, Spina A, Capezzuoli E, Casini A, Buracchi E. The Gavorrano Monzogranite (Northern Apennines): An Updated Review of Host Rock Protoliths, Thermal Metamorphism and Tectonic Setting. Geosciences. 2021; 11(3):124. https://doi.org/10.3390/geosciences11030124
Chicago/Turabian StyleBrogi, Andrea, Alfredo Caggianelli, Domenico Liotta, Martina Zucchi, Amalia Spina, Enrico Capezzuoli, Alessandra Casini, and Elena Buracchi. 2021. "The Gavorrano Monzogranite (Northern Apennines): An Updated Review of Host Rock Protoliths, Thermal Metamorphism and Tectonic Setting" Geosciences 11, no. 3: 124. https://doi.org/10.3390/geosciences11030124
APA StyleBrogi, A., Caggianelli, A., Liotta, D., Zucchi, M., Spina, A., Capezzuoli, E., Casini, A., & Buracchi, E. (2021). The Gavorrano Monzogranite (Northern Apennines): An Updated Review of Host Rock Protoliths, Thermal Metamorphism and Tectonic Setting. Geosciences, 11(3), 124. https://doi.org/10.3390/geosciences11030124