Inventory and Assessment of the Geomorphosites in Central Cyclades, Greece: The Case of Paros and Naxos Islands
Abstract
:1. Introduction
2. Study Area
Geomorphological Regime
3. Materials and Methods
4. Results and Discussion
4.1. Description of the Geomorphosites
4.2. Quantitative Assessment of the Geomorphosites
4.3. The Geotouristic Potential of Paros and Naxos Islands
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reynard, E.; Fontana, G.; Kozlik, L.; Scapozza, C. A method for assessing “scientific” and “additional values” of geomorphosites. Geogr. Helv. 2007, 62, 148–158. [Google Scholar] [CrossRef]
- Brilha, J.B. Património Geológico e Geoconservação: A Conservação da Natureza na sua Vertente Geológica; Palimage: Coimbra, Portugal, 2005. [Google Scholar]
- Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature; Wiley: Oxford, UK, 2004. [Google Scholar]
- Martini, G. (Ed.) Actes du Premier Symposium International sur la Protection du Patrimoine Géologique, Digne-les-Bains, 11–16 June 1991; Société Géologique de France: Paris, France, 1994. [Google Scholar]
- Panizza, M. Geomorphosites: Concepts, methods and example of geomorphological survey. Chin. Sci. Bull. 2001, 46, 4–5. [Google Scholar] [CrossRef]
- Panizza, M.; Piacente, S. Geomorphological assets evaluation. Z. Geomorphol. 1993, 87, 13–18. [Google Scholar]
- Grandgirard, V. Géomorphologie, Protection de la Nature et Gestion du Paysage. Ph.D. Thesis, Faculté des Sciences, Université de Fribourg, Fribourg, Switzerland, 1997. (In French). [Google Scholar]
- Reynard, E.; Panizza, M. Geomorphosites: Definition, assessment and mapping. Géomorphologie Relief Process. Environ. 2005, 11, 177–180. [Google Scholar] [CrossRef] [Green Version]
- Panizza, M.; Piacente, S. Geomorfologia Culturale; Pitagora: Bologna, Italy, 2003. [Google Scholar]
- Fassoulas, C.; Zouros, N. Evaluating the influence of Greek geoparks to the local communities. Bull. Geol. Soc. Greece 2017, 43, 896. [Google Scholar] [CrossRef] [Green Version]
- Rivas, V.; Rix, K.; Francés, E.; Cendrero, A.; Brunsden, D. Geomorphological indicators for environmental impact assessment: Consumable and non-consumable geomorphological resources. Geomorphology 1997, 18, 169–182. [Google Scholar] [CrossRef]
- Cendrero, A.; Panizza, M. Geomorphology and environmental impact assessment: An introduction. Suppl. Geogr. Fis. Din. Quat. 1999, 3, 167–172. [Google Scholar]
- Bruschi, V.M.; Cendrero, A. Geosite evaluation: Can we measure intangible values? Il Quat. 2005, 18, 293–306. [Google Scholar]
- Bruschi, V.M.; Cendrero, A. Direct and parametric methods for the assessment of geosites and geomorphosites. In Geomorphosites; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Pfeil: München, Germany, 2009; pp. 73–88. [Google Scholar]
- Reynard, E.; Perret, A.; Bussard, J.; Grangier, L.; Martin, S. Integrated approach for the inventory and management of geomorphological heritage at the regional scale. Geoheritage 2016, 8, 43–60. [Google Scholar] [CrossRef]
- Pralong, J.-P. Géotourisme et Utilisation de Sites Naturels D’intérêt Pour les Sciences de la Terre. Les Régions de Crans-Montana Sierre (Valais, Alpes Suisses) et Chamonix-Mont-Blanc (Haute-Savoie, Alpes françaises); Travaux et Recherches; Institut de Géographie: Lausanne, Switzerland, 2006; Volume 32, 224p. [Google Scholar]
- Reynard, E.; Holzmann, C.; Guex, D. Géomorphologie et tourisme: Quelles relations? In Géomorphologie et Tourisme; Travaux et Recherches; Reynard, E., Holzmann, C., Guex, D., Summermatter, N., Eds.; Institut de Géographie: Lausanne, Switzerland, 2003; Volume 24, pp. 1–10. [Google Scholar]
- Grandgirard, V. L’évaluation des géotopes. Geol. Insubrica 1999, 4, 59–66. [Google Scholar]
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Giusti, C.; Calvet, M. The inventory of French geomorphosites and the problem of nested scales and landscape complexity. Geomorphol. Relief Process. Environ. 2010, 2, 223–244. [Google Scholar] [CrossRef] [Green Version]
- de Lima, F.F.; Brilha, J.B.; Salamuni, E. Inventorying geological heritage in large territories: A methodological proposal applied to Brazil. Geoheritage 2010, 2, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Mucivuna, V.C.; Reynard, E.; da Glória Motta Garcia , M. Geomorphosites assessment methods: Comparative analysis and typology. Geoheritage 2019, 111, 1799–1815. [Google Scholar] [CrossRef]
- Reynard, E.; Coratza, P.; Hobléa, F. Current Research on Geomorphosites. Geoheritage 2016, 8, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Reynard, E. Scientific research and tourist promotion of geomorphological heritage. Geogr. Fis. Din. Quat. 2008, 31, 225–230. [Google Scholar]
- Bissig, G. Mapping geomorphosites: An analysis of geotourist maps. Geotourism/Geoturystyka 2008, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- Carton, A.; Coratza, P.; Marchetti, M. Guidelines for geomorphological sites mapping: Examples from Italy. Géomorphologie 2005, 3, 209–218. [Google Scholar] [CrossRef]
- Carton, A.; Coratza, P.; Marchetti, M. Nota preliminare sulla cartografia dei geomorfositi. In La Memoria della Terra, la Terra della Memoria; Piacente, S., Poli, G., Eds.; L’Inchiostroblu: Bologna, Italy, 2003; pp. 114–120. [Google Scholar]
- Papanikolaou, D.I. Geology of Greece; Patakis: Athens, Greece, 2015. [Google Scholar]
- Goldsworthy, M.; Jackson, J. Active normal fault evolution in Greece revealed by geomorphology and drainage patterns. J. Geol. Soc. 2020, 157, 967–981. [Google Scholar] [CrossRef]
- Zouros, N.C. Geomorphosite assessment and management in protected areas of Greece. Geogr. Helv. 2007, 62, 169–180. [Google Scholar] [CrossRef]
- Hellenic Geoparks Forum. Available online: http://www.hellenicgeoparks.gr/?page_id=46 (accessed on 20 September 2021).
- Gaki-Papanastassiou, K.; Evelpidou, N.; Maroukian, H.; Vassilopoulos, A. Palaeogeographic Evolution of the Cyclades Islands (Greece) during the Holocene; Springer: Dordrecht, The Netherlands, 2009; pp. 297–304. [Google Scholar]
- Evelpidou, N. Geological and Geomorphological Observations in Paros Island (Cyclades) Using Photo Interpretation and GIS Methods. Master’s Thesis, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece, 1997. [Google Scholar]
- Pe-Piper, G.; Kotopouli, C.N.; Piper, D.J. Granitoid rocks of Naxos, Greece: Regional geology and petrology. Geol. J. 1997, 32, 153–171. [Google Scholar] [CrossRef]
- Angelier, J.; Lyberis, N.; Le Pichon, X.; Barrier, E.; Huchon, P. The tectonic development of the Hellenic arc and the Sea of the Crete: A synthesis (Mediterranean). Tectonophysics 1982, 86, 159–196. [Google Scholar] [CrossRef]
- Jansen, J.B.H. Geological Map of Greece, Island of Naxos (1:50,000); Institute for Geology and Mineral Resources: Athens, Greece, 1973. [Google Scholar]
- Bargnesi, E.A.; Stockli, D.F.; Mancktelow, N.; Soukis, K. Miocene core complex development and coeval supradetachment basin evolution of Paros, Greece, insights from (U–Th)/He thermochronometry. Tectonophysics 2013, 595, 165–182. [Google Scholar] [CrossRef]
- Gautier, P.; Brun, J.P.; Moriceau, R.; Sokoutis, D.; Martinod, J.; Jolivet, L. Timing, kinematics and cause of Aegean extension: A scenario based on a comparison with simple analogue experiments. Tectonophysics 1999, 315, 31–72. [Google Scholar] [CrossRef]
- Gautier, P.; Brun, J.P. Crustal-scale geometry and kinematics of late-orogenic extension in the central Aegean (Cyclades and Ewia Island). Tectonophysics 1994, 238, 399–424. [Google Scholar] [CrossRef]
- Jolivet, L. A comparison of geodetic and finite strain pattern in the Aegean, geodynamic implications. Earth Planet. Sci. Lett. 2001, 187, 95–104. [Google Scholar] [CrossRef]
- Tirel, C.; Gueydan, F.; Tiberi, C.; Brun, J.P. Aegean crustal thickness inferred from gravity inversion. Geodynamical implications. Earth Planet. Sci. Lett. 2004, 228, 267–280. [Google Scholar] [CrossRef]
- Zhu, L.; Mitchell, B.J.; Akyol, N.; Cemen, I.; Kekovali, K. Crustal thickness variations in the Aegean region and implications for the extension of continental crust. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Soukis, K.; Koufosotiri, E.; Stournaras, G. Special Landforms on Tinos Island: Spheroidal Weathering “TAFONI” Forms, 3rd ed.; International Scientific Symposium of Protected Areas and Natural Monuments: Mytilini, Greece, 1998. (In Greek) [Google Scholar]
- Theodoropoulos, D. Honeycomb weathering phenomena (TAFONI) on Tinos Island. Ann. Géologiques Pays Helléniques 1975, 26, 149–158. (In Greek) [Google Scholar]
- Cordier, S.; Schlüchter, M.-L.; Evelpidou, N.; Pavlopoulos, K.; Bouchet, M.; Frechen, M. Morphology and OSL-420 based geochronology of the Holocene coastal dunes fields of Naxos Island (Cyclades, Greece): Preliminary 421 results. In Proceedings of the XVIII INQUA Congress, Bern, Switzerland, 21–27 July 2011. [Google Scholar]
- Evelpidou, N.; Melini, D.; Pirazzoli, P.; Vassilopoulos, A. Evidence of a recent rapid subsidence in the S–E 417 Cyclades (Greece): An effect of the 1956 Amorgos earthquake? Cont. Shelf Res. 2012, 39–40, 27–40. [Google Scholar] [CrossRef]
- Evelpidou, N.; Melini, D.; Pirazzoli, P.A.; Vassilopoulos, A. Evidence of repeated late Holocene rapid subsidence 439 in the SE Cyclades (Greece) deduced from submerged notches. Int. J. Earth Sci. 2013, 103, 381–395. [Google Scholar] [CrossRef]
- Karkani, A.; Evelpidou, N.; Vacchi, M.; Morhange, C.; Tsukamoto, S.; Frechen, M.; Maroukian, H. Tracking 427 shoreline evolution in central Cyclades (Greece) using beachrocks. Mar. Geol. 2017, 388, 25–37. [Google Scholar] [CrossRef]
- Saitis, G.; Koutsopoulou, E.; Karkani, A.; Anastasatou, M.; Stamatakis, M.; Gatou, M.-A.; Evelpidou, N. A multi- analytical study of beachrock formation in Naxos and Paros Islands, Aegean Sea, Greece and their palaeoenvironmental significance. Z. Geomorphol. 2021, 63, 19–32. [Google Scholar] [CrossRef]
- Karkani, A. Study of the geomorphological and environmental evolution of the coastal zone of Central Cyclades. Ph.D. Thesis, National and Kapodistrian University of Athens, Athens, Greece, 2017. [Google Scholar]
- Sakellariou, D.; Galanidou, N. Pleistocene submerged landscapes and Palaeolithic archaeology in the tectonically 451 active Aegean region. Geol. Soc. Lond. Spec. Publ. 2016, 411, 145–178. [Google Scholar] [CrossRef]
- Desruelles, S.; Fouache, É.; Ciner, A.; Dalongeville, R.; Pavlopoulos, K.; Kosun, E.; Coquinot, Y.; Potdevin, J.-L. 447 Beachrocks and sea level changes since Middle Holocene: Comparison between the insular group of Mykonos– 448 Delos–Rhenia (Cyclades, Greece) and the southern coast of Turkey. Glob. Planet. Chang. 2009, 66, 19–33. [Google Scholar] [CrossRef]
- Bouzekraoui, H.; Barakat, A.; Touhami, F.; Mouaddine, A.; El Youssi, M. Inventory and assessment of geomorphosites for geotourism development: A case study of Aït Bou Oulli valley (Central High-Atlas, Morocco). Area 2018, 50, 331–343. [Google Scholar] [CrossRef]
- Gray, M. “Simply the best”: The search for the world’s top geotourism destinations. In The Geotourism Industry in the 21st Century; Sadry, B.N., Ed.; Apple Academic Press: Boca Raton, FL, USA, 2020; pp. 207–226. ISBN 9780429292798. [Google Scholar]
Identification Code | Scientific Value | Ecological Value | Aesthetic Value | Cultural Value | Economic Value |
---|---|---|---|---|---|
STEwea001 | 0.56 | 0.25 | 0.75 | 0 | 0 |
CHRwea001 | 0.31 | 0.125 | 0.625 | 0 | 0 |
PLAwea001 | 0.44 | 0.75 | 0.75 | 0 | 0 |
KINwea001 | 0.44 | 0.25 | 0.5 | 0 | 0 |
STEwea001 | 0.56 | 0.625 | 0.625 | 0 | 0 |
VIGwea001 | 0.44 | 0.625 | 0.75 | 0 | 0 |
KORkar001 | 0.31 | 0 | 0.25 | 0 | 0 |
MOUkar001 | 0.31 | 0 | 0.25 | 0 | 0 |
NAXdifr001 | 0.75 | 0.125 | 0.875 | 0 | 0 |
GEOlit001 | 0.44 | 0.25 | 0.625 | 0 | 0 |
ANNlit001 | 0.50 | 0.75 | 0.75 | 0 | 0 |
PLAlit001 | 0.25 | 0.625 | 0.75 | 0 | 0 |
KASlit001 | 0.50 | 0.75 | 0.75 | 0 | 0.25 |
GLYlit001 | 0.75 | 1 | 0.75 | 0 | 0.25 |
PYRlit001 | 0.56 | 0.75 | 0.75 | 0 | 0 |
KANlit001 | 0.50 | 0.75 | 0.625 | 0 | 0 |
AZAlit001 | 0.38 | 0.125 | 0.5 | 0 | 0 |
MANkar001 | 0.56 | 0.25 | 0.5 | 0 | 0 |
VIGlit002 | 0.63 | 0.875 | 0.875 | 0 | 0 |
GLYlit001 | 0.50 | 0.875 | 0.75 | 0 | 0 |
PROlit001 | 0.56 | 1 | 1 | 0 | 0 |
GEOlit001 | 0.56 | 0 | 1 | 0 | 0.25 |
AGIlit001 | 0.63 | 1 | 1 | 0.75 | 0.25 |
GEOlit002 | 0.56 | 0 | 1 | 0 | 0 |
PLAlit002 | 0.75 | 0.75 | 0.375 | 0 | 0 |
ZASkar001 | 0.56 | 0.75 | 0.375 | 0.75 | 0.5 |
GEOlit003 | 0.81 | 0.125 | 0.375 | 0.5 | 0 |
PLAlit003 | 0.81 | 0.625 | 0.5 | 0.5 | 0 |
ORKlit001 | 0.69 | 0.625 | 0.5 | 0 | 0 |
VIGlit003 | 0.38 | 0.625 | 0.5 | 0 | 0 |
GLYlit002 | 0.69 | 0.75 | 0.625 | 0 | 0 |
RAMlit001 | 0.31 | 0.625 | 0.5 | 0 | 0 |
GALlit001 | 0.50 | 0.25 | 0.625 | 0 | 0 |
KAMlit001 | 0.44 | 0.25 | 0.625 | 0 | 0 |
AGIlit002 | 0.56 | 0.25 | 0.625 | 0 | 0 |
FARlit002 | 0.44 | 0.125 | 0.375 | 0 | 0 |
APOlit002 | 0.56 | 0.125 | 0.5 | 0 | 0 |
LIOlit001 | 0.56 | 0.25 | 0.5 | 0 | 0 |
HILlit001 | 0.69 | 0.25 | 0.625 | 0 | 0 |
HILlit002 | 0.69 | 0.25 | 0.625 | 0 | 0 |
HILlit003 | 0.69 | 0.25 | 0.625 | 0 | 0 |
HILlit004 | 0.69 | 0.25 | 0.625 | 0 | 0 |
MAVflu001 | 0.50 | 0.125 | 0.625 | 0 | 0 |
PYRflu001 | 0.50 | 0.125 | 0.625 | 0 | 0 |
XIRflu001 | 0.50 | 0.125 | 0.625 | 0 | 0 |
PARflu001 | 0.50 | 0.125 | 0.625 | 0 | 0 |
ZASkar001 | 0.56 | 0.5 | 0.75 | 0 | 0 |
MOUkar002 | 0.56 | 0.5 | 0.5 | 0 | 0 |
LANeol001 | 0.38 | 0.25 | 0.875 | 0 | 0 |
ALIeol001 | 0.19 | 0 | 0.625 | 0 | 0 |
MOLeol001 | 0.25 | 0.5 | 0.5 | 0 | 0 |
MARlit001 | 0.19 | 0.375 | 0.625 | 0 | 0 |
LAGlit001 | 0.50 | 0.375 | 1 | 0 | 0 |
LANlit001 | 0.50 | 0.125 | 0.875 | 0 | 0 |
MARlit002 | 0.56 | 0.125 | 0.5 | 0 | 0 |
TSOlit001 | 0.44 | 0.125 | 0.375 | 0 | 0 |
PARLIT001 | 0.50 | 0 | 0.375 | 0 | 0 |
GAILIT001 | 0.50 | 0.5 | 0.375 | 0 | 0 |
LAGlit002 | 0.50 | 0 | 0.375 | 0 | 0 |
KOUlit001 | 0.44 | 0 | 0.375 | 0 | 0 |
PARlit002 | 0.44 | 0 | 0.375 | 0 | 0 |
KOLwea001 | 0.44 | 0.5 | 0.5 | 0 | 0 |
LAGlit003 | 0.44 | 0.75 | 0.75 | 0 | 0 |
SANlit001 | 0.25 | 0.625 | 0.5 | 0 | 0 |
PANkar001 | 0.38 | 0.375 | 0.5 | 0.75 | 0.25 |
ANDkar001 | 0.50 | 0.25 | 0.5 | 0 | 0.25 |
DRAKkar001 | 0.50 | 0.25 | 0.5 | 0 | 0.25 |
MOUlit001 | 0.44 | 0 | 0.75 | 0 | 0 |
MAMlit001 | 0.38 | 0 | 0.625 | 0 | 0 |
APEdifr001 | 0.75 | 0.125 | 0.875 | 0 | 0 |
APEdifr002 | 0.75 | 0.125 | 0.875 | 0 | 0 |
SIFdifr001 | 0.75 | 0.125 | 0.875 | 0 | 0 |
KERdifr001 | 0.75 | 0.125 | 0.875 | 0 | 0 |
AGPlit001 | 0.56 | 0.75 | 0.625 | 0 | 0.25 |
AGNlit001 | 0.38 | 0.625 | 0.375 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evelpidou, N.; Karkani, A.; Tzouxanioti, M.; Spyrou, E.; Petropoulos, A.; Lakidi, L. Inventory and Assessment of the Geomorphosites in Central Cyclades, Greece: The Case of Paros and Naxos Islands. Geosciences 2021, 11, 512. https://doi.org/10.3390/geosciences11120512
Evelpidou N, Karkani A, Tzouxanioti M, Spyrou E, Petropoulos A, Lakidi L. Inventory and Assessment of the Geomorphosites in Central Cyclades, Greece: The Case of Paros and Naxos Islands. Geosciences. 2021; 11(12):512. https://doi.org/10.3390/geosciences11120512
Chicago/Turabian StyleEvelpidou, Niki, Anna Karkani, Maria Tzouxanioti, Evangelos Spyrou, Alexandros Petropoulos, and Lida Lakidi. 2021. "Inventory and Assessment of the Geomorphosites in Central Cyclades, Greece: The Case of Paros and Naxos Islands" Geosciences 11, no. 12: 512. https://doi.org/10.3390/geosciences11120512
APA StyleEvelpidou, N., Karkani, A., Tzouxanioti, M., Spyrou, E., Petropoulos, A., & Lakidi, L. (2021). Inventory and Assessment of the Geomorphosites in Central Cyclades, Greece: The Case of Paros and Naxos Islands. Geosciences, 11(12), 512. https://doi.org/10.3390/geosciences11120512