Technology and Poultry Welfare
Abstract
:1. Introduction
2. Sensors
2.1. Environmental Sensors
2.2. Acoustic Sensors
2.3. Movement Sensors
2.4. Sensors for Health Status Detection
3. Image Technology
3.1. Image Analysis
3.2. Optical Flow
3.3. Infrared Thermal Imaging
3.4. Kinematic Analyses
4. Mobile Apps for Welfare Assessment
5. Mathematical Modelling
5.1. Environmental Conditions
5.2. Spatial Distribution and Activity Modelling
5.3. Precision Feeding
5.4. Monitoring Performance, Stress and Health Status
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- OIE (Office International des Epizooties). Terrestrial Animal Health Code; OIE: Paris, France, 2011. [Google Scholar]
- Muiruri, H.K.; Harrison, P.C. Effect of peripheral foot cooling on metabolic rate and thermoreregulation of fed and fasted chicken hens in a hot environment. Poult. Sci. 1991, 70, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Appleby, M.C.; Smith, S.F.; Hughes, B.O. Nesting, dust bathing and perching by laying hens in cages: Effects of design on behaviour and welfare. Br. Poult. Sci. 1993, 34, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Baxter, M.R. The welfare problems of laying hens in battery cages. Vet. Rec. 1994, 134, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Balnave, D.; Muheereza, S. Improving eggshell quality at high temperatures with dietary sodium bicarbonate. Poult. Sci. 1997, 76, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Meluzzi, A.; Sirri, F. Welfare of Broiler Chicken. Ital. J. Anim. Sci. 2009, 8, 161–173. [Google Scholar] [CrossRef]
- Tactacan, G.B.; Guenter, W.; Lewis, N.J.; Rodriguez-Lecompte, J.C.; House, J.D. Performance and welfare of laying hens in conventional and enriched cages. Poult. Sci. 2009, 88, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, M.S.; Donnelly, C.; Jones, T. Chicken welfare is influenced more by housing conditions than by stocking density. Nature 2004, 427, 342–344. [Google Scholar] [CrossRef] [PubMed]
- Appleby, M.C.; Mench, J.A.; Hughes, B.O. Poultry Behaviour and Welfare; CABI Publishing: Wallingford, UK, 2004. [Google Scholar]
- Mench, J.A. Assessing animal welfare at the farm and group level: A United States Perspectives. Anim. Welf. 2003, 12, 493–503. [Google Scholar]
- Welfare Quality. Assessment Protocol for Poultry, Broiler and Laying Hens; Welfare Quality: Lelystad, The Netherlands, 2009. [Google Scholar]
- De Jong, I.C.; Hindle, V.A.; Butterworth, A.; Engel, B.; Ferrari, P.; Gunnink, H.; Perez Moya, T.; Tuyttens, F.A.M.; van Reenen, C.G. Simplifying the Welfare Quality assessment protocol for broiler chicken welfare. Animal 2015, 10, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Marchewka, J.; Watanabe, T.T.N.; Ferrante, V.; Estevez, I. Welfare assessment in broiler farms: Transect walks versus individual scoring. Poult. Sci. 2013, 92, 2588–2599. [Google Scholar] [CrossRef] [PubMed]
- Marchewka, J.; Estevez, I.; Vezzoli, G.; Ferrante, V.; Makagon, M.M. The transect method: A novel approach to on-farm welfare assessment of commercial turkeys. Poult. Sci. 2015, 94, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock management. Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [PubMed]
- Mollo, M.N.; Vendrametto, O.; Okano, M.T. Precision livestock tools to improve products and processes in Broiler production: A review. Braz. J. Poult. Sci. 2009, 11, 211–218. [Google Scholar] [CrossRef]
- Corkery, G.; Ward, S.; Kenny, C.; Hemmingway, P. Incorporating smart sensing technologies into the poultry industry. J. World Poult. Res. 2013, 3, 106–128. [Google Scholar]
- Wathes, C.M.; Kristensen, H.H.; Aerts, J.M.; Berkmans, D. Is livestock precision farming is an engineer’s daydream or a nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall. Comput. Electron. Agric. 2008, 64, 2–10. [Google Scholar] [CrossRef]
- Moura, D.J.; Naas, I.A.; Pereira, D.F.; Silva, R.B.T.R.; Carmago, G.A. Animal welfare concepts and strategy for poultry production: A review. Braz. J. Poult. Sci. 2006, 8, 137–148. [Google Scholar] [CrossRef]
- Robins, A.; Phillips, C.J.C. International approaches to the welfare of meat chickens. World Poult. Sci. J. 2011, 67, 351–369. [Google Scholar] [CrossRef]
- Kashiha, M.; Pluk, A.; Bahr, C.; Vranken, E.; Berckmans, D. Development of an early warning system for a broiler house using computer vision. Biosyst. Eng. 2013, 116, 36–45. [Google Scholar] [CrossRef]
- Siegford, J.M.; Berezowski, J.; Biswas, S.K.; Daigle, C.L.; Gebhardt-Henrich, S.G.; Hernandez, C.E.; Thurner, S.; Toscano, M.J. Assessing activity and location of individual laying hens in large group using modern technology. Animals 2016, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, M. Opportunities of Wireless Sensors and Controls for Building Operation. Energy Eng. 2005, 102, 27–48. [Google Scholar] [CrossRef]
- Ruiz-Garcia, L.; Lunadei, L.; Barreiro, P.; Robla, J.I. A review of Wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors 2009, 9, 4728–4750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, T.A.; Donnelly, C.; Dawkins, M.S. Environmental and management factors affecting the welfare of chickens on commercial farms in the United Kingdom and Denmark stocked at different densities. Poult. Sci. 2005, 84, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Meng, Q.P.; Guo, Y.M.; Wang, Y.Z.; Wang, Z.L.; Shan, T.Z. Effect of atmospheric ammonia on growth performance and immunological response of Broiler chickens. Asian J. Anim. Vet. Adv. 2010, 9, 2802–2806. [Google Scholar] [CrossRef]
- Olanrewaju, H.A.; Dozier, W.A.; Purswell, J.L.; Branton, S.L.; Miles, D.M.; Lott, B.D.; Pescatore, A.J.; Thaxton, J.P. Growth performance and physiological variables for broiler chickens subjected to short-term elevated carbon dioxide concentrations. Poult. Sci. 2008, 7, 738–742. [Google Scholar] [CrossRef]
- Bustamante, E.; Guijaro, E.; García-Diego, F.J.; Balach, S.; Hospitaler, A.; Torres, A.G. Multisensor systems for isotemporal measurements to assess indoor climatic conditions in poultry farms. Sensors 2012, 12, 5752–5774. [Google Scholar] [CrossRef] [PubMed]
- Jackman, P.; Ward, S.; Brennan, L.; Corkery, G.; McCarthy, U. Application of wireless technologies to forward predict crop yields in the poultry production chain. Agric. Eng. Int. 2015, 17, 287–295. [Google Scholar]
- Tefera, M. Acoustic signals in domestic chickens (Gallus gallus): A tool for teaching veterinary ethology and implications for language learning. Ethiop. Vet. J. 2012, 16, 77–84. [Google Scholar] [CrossRef]
- SCAHAW. The Welfare of Chickens Kept for Meat Production (Broilers); Report of the Scientific Committee in Animal Health and Animal Welfare; European Commission, Health and Consumer Protection Directorate General: Brussels, Belgium, 2000. [Google Scholar]
- Marx, G.; Leppelt, J.; Ellendorff, F. Vocalisation in chicks (Gallus gallus dom.) during stepwise social isolation. Appl. Anim. Behav. Sci. 2001, 75, 61–74. [Google Scholar] [CrossRef]
- Koene, P.; Ruiten, S.; van Bokkers, E.A.M. The effect of increasing broiler behaviour possibilities by giving extra furniture and a slimmer body: The effects of perches and feed restriction. In Proceedings of the 33rd International Congress of the International Society for Applied Ethology, Lillehammer, Norway, 17–21 August 1999; Boe, K.E., Bakken, M., Braastad, B.O., Eds.; p. 136.
- Zimmerman, P.H.; Koene, P.; Van Hooff, J.A. The vocal expression of feeding motivation and frustration in the domestic layinh hens Gallus gallus domesticus. Appl. Anim. Behav. Sci. 2000, 69, 265–273. [Google Scholar] [CrossRef]
- Bright, A. Vocalisation and acoustic parameters of flock noise from feather pecking and non-feather pecking laying flocks. Poult. Sci. 2008, 49, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Aydin, A.; Bahr, C.; Viazzi, S.; Exadaktylos, V.; Buyse, J.; Berckmans, D. A novel method to automatically measure the feed intake of broiler chickens by sound technology. Comput. Electron. Agric. 2014, 101, 17–23. [Google Scholar] [CrossRef]
- Fontana, I.; Tullo, E.; Butterworth, A.; Guarino, M. An innovative approach to predict the growth in intensive poultry farming. Comput. Electron. Agric. 2015, 119, 178–183. [Google Scholar] [CrossRef]
- Moura, D.J.; Nääs, I.A.; Alves, E.C.S.; Carvalho, T.M.R.; Vale, M.M.; Lima, K.A.O. Noise analysis to evaluate chick thermal comfort. Sci. Agric. 2008, 65, 438–443. [Google Scholar] [CrossRef]
- Pereira, E.M.; Naas, I.; Garcia, R. Identification of acoustic parameters for broiler welfare estimate. Eng. Agric. 2014, 34, 413–421. [Google Scholar] [CrossRef]
- Lee, J.; Byeongjoon, N.; Jang, S.; Park, D.; Chung, Y.; Chang, A.-H. Stress detection and classification of laying hens by sound analysis. Asian-Australas J. Anim. Sci. 2015, 28, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Van de Ven, L.J.F.; van Wagenberg, V.; Debonne, M.; Decuypere, E.; Kemp, B. Hatching system and time effects on broiler physiology and posthatch growth. Poult. Sci. 2011, 90, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- The Poultry Site. Available online: http://www.thepoultrysite.com/articles/1117/hatchery-management-the-hatch-window/ (accessed on 20 January 2016).
- Nielsen, B.L.; Juul-Madsen, H.R.; Steenfeldt, S.; Kjaer, J.B.; Sørensen, P. Feeding activity in groups of newly hatched broiler chicks: Effects of strain and hatching time. Poult. Sci. 2010, 89, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Løtvedt, P. Effects of Hatching Time on Behavior and Weight Development of Chickens. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Exadaktylos, V.; Silva, M.; Berckmans, D. Real-time analysis of chicken embryo sounds to monitor different incubation stages. Comput. Electron. Agric. 2011, 75, 321–326. [Google Scholar] [CrossRef]
- Brambell Committee. Report of the Technical Committee to Enquire into the Welfare of Animals Kept under Intensive Livestock Husbandry Systems; Command Paper 2836; Her Majesty’s Stationery Office: London, UK, 1965. [Google Scholar]
- Newberry, R.C.; Hall, J.W. Use of pen space by broiler chickens: Effects of age and pen size. Appl. Anim. Behav. Sci. 1990, 25, 135–136. [Google Scholar] [CrossRef]
- Cornetto, T.L.; Estévez, I. Behavior of the domestic fowl in presence of vertical panels. Poult. Sci. 2001, 80, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Leone, E.H.; Estévez, I. Use of space in the domestic fowl: Separating the effects of enclosure size, group size, and density. Anim. Behav. 2008, 76, 1673–1682. [Google Scholar] [CrossRef]
- Naas, I.; Paz, I.; Baracho, M.; Mezenes, A.; Bueno, L.; Almeida, I.; Moura, D.J. Impact of lameness on broiler well-being. J. Appl. Poult. Res. 2009, 18, 432–439. [Google Scholar] [CrossRef]
- De Jong, I.; Berg, C.; Butterworth, A.; Estevez, I. Scientific Report Updating the EFSA Opinion on the Welfare of Broilers and Broiler Breeders; External Scientific Report; EFSA: Parma, Italy, 2012; p. 116. [Google Scholar]
- Naas, I.; Paz, I.; Baracho, M.; Gomes de Mezenes, A.; Oliveira de Lima, K.; Freitas Bueno, L.; Neto, M.; Ciaco de Carvalho, V.; Almeida, I.; Luiz de Souza, A. Assessing locomotion deficiency in broiler chicken. Sci. Agric. 2010, 67, 129–135. [Google Scholar]
- Daigle, C.L.; Banerjee, D.; Montgomery, R.A.; Biswas, S.; Siegford, J. Moving GIS Research Indoors: Spatiotemporal analysis of agricultural animals. PLoS ONE 2014, 9, e104002. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M.; Nicol, C.; Murrell, J. Do laying hens with keel bone fractures experience pain? PLoS ONE 2012, 7, e42420. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Daigle, C.L.; Dong, B.; Wurtz, K.; Newberry, R.C.; Siegford, J.M.; Biswas, S. Detection of jumping and landing force in laying hens using wireless wearable sensors. Poult. Sci. 2014, 93, 2724–2733. [Google Scholar] [CrossRef] [PubMed]
- Richards, G.J.; Wilkins, L.J.; Knowles, T.G.; Booth, F.; Toscano, M.J.; Nicol, C.J.; Brown, S.N. Pop hole use by hens with different keel fracture status monitored throughout the laying period. Vet. Rec. 2012, 170, 494. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Itoh, T.; Suzuki, K.; Tsukamoto, K. Wireless sensor system for detection of avian influenza outbreak farms at an early stage. In Proceedings of the 2009 IEEE Sensors Conference, University of Warwick, Warwick, UK, 25–28 October 2009.
- Okada, H.; Suzuki, K.; Tsukamoto, K.; Itoh, T. Applicability of Wireless activity sensor network to avian influenza monitoring system in poultry farms. J. Sens. Technol. 2014, 4, 18–23. [Google Scholar] [CrossRef]
- Aydin, A.; Cangar, O.; Eren Ozcan, S.; Bahr, C.; Berckmans, D. Application of a fully automatic analysis tool to assess the activity of broiler chickens with different gait scores. Comput. Electron. Agric. 2010, 73, 194–199. [Google Scholar] [CrossRef]
- Leroy, T.; Vranken, E.; Van Brecht, A.; Struelens, E.; Sonck, B.; Berckmans, D. A computer vision method for on-line behavioural quantification of individually caged poultry. Trans. ASABE 2006, 49, 795–802. [Google Scholar] [CrossRef]
- Kestin, S.C.; Kowles, T.G.; Tinch, A.E.; Gregory, N.G. Prevalence of leg weakness in broiler chicken and its relationship with genotype. Vet. Rec. 1992, 131, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Vanderhasselt, R.F.; Sprenger, M.; Duchateau, L.; Tuyttens, F.A. Automated assessment of footpad dermatitis in broiler chickens at the slaughter-line: Evaluation and correspondence with human expert scores. Poult. Sci. 2013, 92, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, N.; Bianca, C.; Delitatla, M. Complexity analysis and mathematical tolos towards modelling of living systems. Phys. Life Rev. 2009, 6, 144–175. [Google Scholar] [CrossRef] [PubMed]
- Giles, A.B.; Massom, R.A.; Warner, R.C. A method for sub-pixel scale feature-tracking using Radarset images applied to the Mertz Glacier Tongue, East Antarctica. Remote Sens. Environ. 2009, 113, 1691–1699. [Google Scholar] [CrossRef]
- Cheng, J.R.; Koh, E.G.I.; Ahmed, S.; Rajapakse, J. Tracking of cell morphology and motion. Lect. Notes Bioinform. 2009, 5780, 36–45. [Google Scholar]
- Dawkins, M.S.; Cain, R.; Roberts, S.J. Optical flow, flock behaviour and chicken welfare. Anim. Behav. Sci. 2012, 84, 219–223. [Google Scholar] [CrossRef]
- Dawkins, M.S.; Cain, R.; Merelie, K.; Roberts, S.J. In search of the behavioural correlates of optical flow patterns in the automated assessment of broiler chicken welfare. Appl. Anim. Behav. Sci. 2013, 145, 44–50. [Google Scholar] [CrossRef]
- Sonka, M.; Hlavac, V.; Boyle, R. Image Processing Analysis and Machine Vision, 3rd ed.; PWS Publishing: London, UK, 1999. [Google Scholar]
- Roberts, S.J.; Cain, R.; Dawkins, M.S. Prediction of welfare outcomes for broiler chickens using Bayesian regression on continuous optical flow data. J. R. Soc. Interface 2012, 9, 3436–3443. [Google Scholar] [CrossRef] [PubMed]
- Colles, F.; Cain, R.; Nickson, T.; Smith, A.; Roberts, S.; Maiden, M.; Lunn, D.; Dawkins, M.S. Monitoring chicken flock behaviour provides early warning of infection by human pathogen Campylobaster. Proc. R. Soc. B 2016, 283. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Roberts, S.J.; Drake, K.A.; Dawkins, M.S. Prediction of feather damage in laying hens using optical flows and Markov models. J. R. Soc. Interface 2010, 8, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Bright, A.; Jones, T.A.; Dawkins, M. A non-intrusive method of assessing plumage conditions in commercial flocks of laying hens. Anim. Welf. 2006, 15, 113–118. [Google Scholar]
- Estevez, I.; Tablante, N.L.; Pettit-Riley, R.; Carr, L. Use of cool perches by broiler chickens. Poult. Sci. 2002, 81, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Lara, L.; Rostagno, M. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Naas, I.A.; Garcia, R.G.; Caldara, F.R. Infrared thermal image for assessing animal health and welfare. J. Anim. Behav. Biometeorol. 2014, 2, 66–72. [Google Scholar] [CrossRef]
- Yahav, S.; Straschnow, A.; Luger, D.; Shinder, D.; Tanny, J.; Cohen, S. Ventilation, sensible heat loss, broiler energy, and water balance under harsh environmental conditions. Poult. Sci. 2004, 83, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Francisco, N.S.; Belloni, M.; Aguirre, G.M.Z.; Caldara, F.R.; Naas, I.A.; Garcia, R.G.; Almeida Paz, I.C.L.; Polycarpo, G.V. Infrared thermography applied to the evaluation of metabolic heat loss of chicks fed with different energy density. Braz. J. Poult. Sci. 2010, 13, 113–118. [Google Scholar] [CrossRef]
- Giloh, M.; Shinder, D.; Yahav, S. Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status. Poult. Sci. 2012, 91, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Shinder, D.; Rusal, M.; Giloh, M.; Yahav, S. Effect of repetitive acute cold exposures during the last phase of broiler embryogenesis on cold resistance through life span. Poult. Sci. 2009, 88, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Naas, I.A.; Bites Romanini, C.E.; Neves, D.P.; Rodrigues do Nasciemiento, G.; Vercellino, R.A. Broiler Surface temperature distribution of 42 day old chickens. Sci. Agric. 2010, 67, 497–502. [Google Scholar] [CrossRef]
- Wilcox, C.S.; Patterson, J.; Cheng, H.W. Use of thermography to screen for subclinical bumblefoot in poultry. Poult. Sci. 2009, 88, 1176–1180. [Google Scholar] [CrossRef] [PubMed]
- Lay, D.C.; Fulton, R.M.; Hester, P.Y.; Karcher, D.M.; Kjaer, J.B.; Mench, J.A.; Mullens, B.A.; Newberry, R.C.; Nicol, C.J.; O’Sullivan, N.P.; et al. Hen welfare in different housing systems. Poult. Sci. 2011, 90, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xin, H.; Dong, B. Use of infrared thermography to assess laying hen feather coverage. Poult. Sci. 2013, 92, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Beggs, J.S. Kinematics, 2nd ed.; Hemisphere Publishing Corporation: Washington, DC, USA, 1983. [Google Scholar]
- Caplen, G.; Hothersall, B.; Murrell, J.C.; Nicol, C.; Waterman-Pearson, A.E.; Weeks, C.A.; Colborne, G.R. Kinematic analysis quantifies gait abnormalities associated with lameness in broiler chickens and identifies evolutionary gait differences. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Mench, J.A.; Blatchford, R.A. Determination of space use by laying hens using kinematic analysis. Poult. Sci. 2014, 93, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.J. Computational Fluid Dynamic, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; Hemisphere Publishing Corporation: Washington, DC, USA, 1980. [Google Scholar]
- Bustamante, E.; García-Diego, F.J.; Calvet, S.; Estellés, F.; Beltrán, P.; Hospitaler, A.; Torres, A.G. Exploring ventilation efficiency in poultry buildings: The validation of computational fluid dynamics (CFD) in a cross-mechanically ventilated broiler farm. Energies 2013, 6, 2605–2623. [Google Scholar] [CrossRef]
- Rojano, F.; Bournet, P.E.; Hassouna, M.; Robin, P.; Kacira, M.; Choi, C.Y. Modelling heat and mass transfer of a broiler house using computational fluid dynamic. Biosyst. Eng. 2015, 136, 25–38. [Google Scholar] [CrossRef]
- OIE (Office International des Epizooties). Terrestrial Animal Health Code; OIE: Paris, France, 2015. [Google Scholar]
- Costa, A.; Borgonovo, F.; Leroy, T.; Berckmans, D.; Guarino, M. Dust concentration variation in relation to animal activity in a pig barn. Biosyst. Eng. 2009, 104, 118–124. [Google Scholar] [CrossRef]
- Youssef, A.; Exadactylos, V.; Berckmans, D. Towards real time control of chicken activity in a ventilated chamber. Biosyst. Eng. 2015, 135, 31–43. [Google Scholar] [CrossRef]
- Ferket, P.R.; Gernat, A.G. Factors that affect feed intake for meat birds: A review. Int. J. Poult. Sci. 2006, 5, 905–911. [Google Scholar] [CrossRef]
- Gates, R.; Xin, H. Extracting poultry behaviour from time-series weigh scale records. Comput. Electron. Agric. 2008, 62, 8–14. [Google Scholar] [CrossRef]
- Lin, H.; Mertens, K.; Kemps, B.; Govaerts, T.; De Ketelaere, B.; De Baerdemaeker, J.; Decuypere, E.; Buyse, J. New approach of testing the effect of heat stress on eggshell quality: Mechanical and material properties of eggshell and membrane. Br. Poult. Sci. 2004, 45, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Ebeid, T.A.; Suzuki, T.; Sugiyama, T. High temperature influences eggshell quality and calbindin-D28k localization of eggshell gland and all intestinal segments of laying hens. Poult. Sci. 2012, 91, 2282–2287. [Google Scholar] [CrossRef] [PubMed]
- Barbosa Filho, J.; Silva, M.A.N.; Silva, I.J.O.; Coelho, A.A.D. Egg quality in layers housed in different production systems and submitted to two environmental conditions. Braz. J. Poult. Sci. 2006, 8, 23–28. [Google Scholar] [CrossRef]
- Mertens, K.; Vaesen, I.; Loffel, J.; Ostyn, B.; Kemps, B.; Kamers, B.; Bamelis, F.; Zoons, J.; Darius, P.; Decuypere, E. Data-based designs of an intelligent control chart for the daily monitoring of the average egg weight. Comput. Elecron. Agric. 2008, 61, 222–232. [Google Scholar] [CrossRef]
- Mertens, K.; Vaesen, I.; Loffel, J.; Kemps, B.; Kamers, C.; Zoons, J.; Darius, P.; Decuypere, E.; De Baerdemaeker, J.; De Ketelaere, B. An intelligent control chart for monitoring of autocorrelated egg production process data based on a synergic control strategy. Comput. Elecron. Agric. 2009, 69, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Mertens, K.; Vaesen, I.; Loffel, J.; Kemps, B.; Kamers, B.; Perianu, C.; Zoons, J.; Darius, P.; Decuypere, E.; De Baerdemaeker, J.; et al. The transmission colour value: A novel egg quality measure for recording Shell colour used for monitoring the stress and health status of a Brown layer flock. Poult. Sci 2010, 89, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Hepworth, P.J.; Nefedov, A.V.; Muchnick, I.B.; Morgan, K.L. Broiler chickens can benefit from machine learning: Support vector machine analysis of observational epidemiological data. J. R. Soc. Interface 2012, 9, 1934–1942. [Google Scholar] [CrossRef] [PubMed]
- Vapnik, V. The Nature of Statistical Learning Theory, 2nd ed.; Jordan, M., Lauritzen, S.L., Lawless, J.F., Nair, V., Eds.; Springer: New York, NY, USA, 1995; pp. 154–196. [Google Scholar]
- Banhazi, T.M.; Lehr, H.; Black, J.L.; Crabtree, H.; Schofield, P.; Tscharke, M.; Berckmans, D. Precision livestock farming: An international review of scientific and commercial aspects. Int. J. Agric. Biol. Eng. 2012, 5, 1–9. [Google Scholar] [CrossRef]
- ProHealth Project. Available online: http://www.fp7-prohealth.eu/ (accessed on 15 June 2016).
- Daigle, C.L. Incorporating the philosophy of technology into animal welfare assessment. J. Agric. Environ. Ethics 2014, 27, 633–647. [Google Scholar] [CrossRef]
- Banhazi, T.M.; Lehr, H.; Black, J.L.; Crabtree, H.; Schofield, P.; Tscharke, M.; Berckmans, D. Precision livestock farming: Scientific concept and commercial reality. In Proceedings of the XVth International Congress on Animal Hygiene: Animal Hygiene and Sustainable Livestock Production, Vienna, Austria, 3–7 July 2011.
Sensor Type | Reference | Applications | |
---|---|---|---|
Air quality | [27] | Indoor climatic conditions’ assessment | |
[28] | Broilers’ final weight prediction | ||
Sound | Broiler incubation | [44] | Monitoring hatching windows for better productivity |
Broilers | [35] | Feed intake measurements | |
[36] | Growth prediction | ||
[38] | Thermal comfort estimation within farms | ||
Laying Hens | [39] | Stress detection induced by environmental temperature variation and fear | |
[34] | Determination of feather pecking conditions | ||
Locomotion | [52] | Assessing locomotion deficiency in broilers | |
[53] | Use of Geographic Information Systems (GIS) to evaluate space use and different behaviours in laying hens | ||
[55] | Study of hens’ jumps between perches and its impact on bone breakage occurrence | ||
[56] | Study of hens’ use of pop holes and its effect on keel fracture incidence | ||
Health status | [57] | Detection of avian influenza by the measure of broilers’ temperature variations | |
[58] | Detection of avian influenza by the measure of broilers’ activity |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Sassi, N.; Averós, X.; Estevez, I. Technology and Poultry Welfare. Animals 2016, 6, 62. https://doi.org/10.3390/ani6100062
Ben Sassi N, Averós X, Estevez I. Technology and Poultry Welfare. Animals. 2016; 6(10):62. https://doi.org/10.3390/ani6100062
Chicago/Turabian StyleBen Sassi, Neila, Xavier Averós, and Inma Estevez. 2016. "Technology and Poultry Welfare" Animals 6, no. 10: 62. https://doi.org/10.3390/ani6100062
APA StyleBen Sassi, N., Averós, X., & Estevez, I. (2016). Technology and Poultry Welfare. Animals, 6(10), 62. https://doi.org/10.3390/ani6100062