Evidence for the Association of a Deleted Variant in the 5′-Flanking Region of the Chicken serotonin transporter (5-HTT) Gene with a Temporary Increase in Feed Intake and Growth Rate
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Body Weight and Feed Intake
2.3. Determination of Ghrelin
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grinker, J.A.; Drewnowski, A.; Enns, M.; Kissileff, H. Effects of d-amphetamine and fenfluramine on feeding pattens and activity of obese and lean Zucker rats. Pharmacol. Biochem. Behav. 1980, 12, 265–275. [Google Scholar] [CrossRef]
- Kennett, G.A.; Curzon, G. Evidence that hypophagia induced by mCPP and TFMPP requires 5-HT1C and 5-HT1B receptors; hypophagia induced by RU 24969 only requires 5-HT1B receptors. Psychopharmacology 1988, 96, 93–100. [Google Scholar] [CrossRef] [PubMed]
- McGuirk, J.; Silverstone, T. The effect of the 5-HT re-uptake inhibitor fluoxetine on food intake and body weight in healthy male subjects. Int. J. Obes. 1990, 14, 361–372. [Google Scholar] [PubMed]
- McGuirk, J.; Goodall, E.; Silverstone, T.; Willner, P. Differential effects of d-fenfluramine, l-fenfluramine and d-amphetamine on the microstructure of human eating behaviour. Behav. Pharmacol. 1991, 2, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Halford, J.C.; Wanninayake, S.C.; Blundell, J.E. Behavioral satiety sequence (BSS) for the diagnosis of drug action on food intake. Pharmacol. Biochem. Behav. 1998, 61, 159–168. [Google Scholar] [CrossRef]
- Fletcher, P.J.; Ming, Z.H.; Zack, M.H.; Coscina, D.V. A comparison of the effects of the 5-HT1 agonists TFMPP and RU 24969 on feeding following peripheral or medial hypothalamic injection. Brain Res. 1992, 580, 265–272. [Google Scholar] [CrossRef]
- Blundell, J.E.; Latham, C.J. Serotonergic influences on food intake: Effect of 5-hydroxytryptophan on parameters of feeding behaviour in deprived and free-feeding rats. Pharmacol. Biochem. Behav. 1979, 11, 431–437. [Google Scholar] [CrossRef]
- Latham, C.J.; Blundell, J.E. Evidence for the effect of tryptophan on the pattern of food consumption in free feeding and food deprived rats. Life Sci. 1979, 24, 1971–1978. [Google Scholar] [CrossRef]
- Breisch, S.T.; Zemlan, F.P.; Hoebel, B.G. Hyperphagia and obesity following serotonin depletion by intraventricular p-chlorophenylalanine. Science 1976, 192, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.K.; Oury, F.; Suda, N.; Liu, Z.W.; Gao, X.B.; Confavreux, C.; Klemenhagen, K.C.; Tanaka, K.F.; Gingrich, J.A.; Guo, X.E.; et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 2009, 138, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Redman, L.M.; Ravussin, E. Lorcaserin for the treatment of obesity. Drugs Today 2010, 46, 901–910. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, P.M.; Smith, S.R.; Weissman, N.J.; Fidler, M.C.; Sanchez, M.; Zhang, J.; Raether, B.; Anderson, C.M.; Shanahan, W.R. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: The BLOOM-DM study. Obesity 2012, 20, 1426–1436. [Google Scholar] [CrossRef] [PubMed]
- Tecott, L.H.; Sun, L.M.; Akana, S.F.; Strack, A.M.; Lowenstein, D.H.; Dallman, M.F.; Julius, D. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 1995, 374, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Nonogaki, K.; Abdallah, L.; Goulding, E.H.; Bonasera, S.J.; Tecott, L.H. Hyperactivity and reduced energy cost of physical activity in serotonin 5-HT2C receptor mutant mice. Diabetes 2003, 52, 315–520. [Google Scholar] [CrossRef] [PubMed]
- Phi-van, L.; Holtz, M.; Kjaer, J.B.; van Phi, V.D.; Zimmermann, K. A functional variant in the 5′-flanking region of the chicken serotonin transporter gene is associated with increased body weight and locomotor activity. J. Neurochem. 2014, 131, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Tschöp, M.; Smiley, D.L.; Heiman, M.L. Ghrelin induces adiposity in rodents. Nature 2000, 407, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Nakazato, M.; Murakami, N.; Date, Y.; Kojima, M.; Matsuo, H.; Kangawa, K.; Matsukura, S. A role for ghrelin in the central regulation of feeding. Nature 2001, 409, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Kaiya, H.; Kangawa, K.; Miyazato, M. Update on ghrelin biology in birds. Gen. Comp. Endocrinol. 2013, 190, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Denbow, D.M.; Van Krey, H.P.; Cherry, J.A. Feeding and drinking response of young chicks to injections of serotonin into the lateral ventricle of the brain. Poult. Sci. 1982, 61, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Hocking, P.M.; Bernard, R. Evaluation of putative appetite suppressants in the domestic fowl (Gallus domesticus). Br. Poult. Sci. 1993, 34, 393–404. [Google Scholar] [CrossRef]
- Zendehdel, M.; Mokhtarpouriani, K.; Babapour, V.; Baghbanzadeh, A.; Pourrahimi, M.; Hassanpour, S. The effect of serotonergic system on nociceptin/orphanin FQ induced food intake in chicken. J. Physiol. Sci. 2013, 63, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Didehvar, D.; Wang, G.; Yi, J.; Gilbert, E.R.; Cline, M.A. Anorexigenic effect of serotonin is associated with changes in hypothalamic nuclei activity in an avian model. Gen. Comp. Endocrinol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Rabii, J.; Buonomo, F.; Scanes, C.G. Role of serotonin in the regulation of growth hormone and prolactin secretion in the domestic fowl. J. Endocrinol. 1981, 90, 355–358. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, M.C.; Cogburn, L.A. Measurement of developmental changes in plasma insulin-like growth factor-I levels of broiler chickens by radioreceptor assay and radioimmunoassay. Gen. Comp. Endocrinol. 1990, 79, 446–458. [Google Scholar] [CrossRef]
- Burnside, J.; Cogburn, L.A. Developmental expression of hepatic growth hormone receptor and insulin-like growth factor-I mRNA in the chicken. Mol. Cell. Endocrinol. 1992, 89, 91–96. [Google Scholar] [CrossRef]
Age (Week) | W/W (n = 90) | W/D (n = 90) | D/D (n = 90) | p-Value |
---|---|---|---|---|
Body Weight (g) | ||||
1 | 62.1 ± 0.90 | 64.8 ± 0.71 | 64.1 ± 0.81 | n.s. |
2 | 105.4 ± 0.98 | 109.0 ± 1.27 | 109.2 ± 1.36 | n.s. |
3 | 161.6 ± 1.79 | 169.2 ± 2.09 | 167.3 ± 1.95 | n.s. |
4 | 231.6 ± 2.82 | 239.2 ± 3.35 | 236.7 ± 2.89 | n.s. |
5 | 308.3 b ± 4.18 | 319.2 a ± 4.46 | 322.4 a ± 4.01 | <0.05 |
6 | 394.0 b ± 5.35 | 414.8 a ± 5.78 | 420.0 a ± 7.25 | <0.05 |
7 | 485.2 b ± 6.62 | 517.2 a ± 6.73 | 527.3 a ± 6.99 | <0.01 |
8 | 585.7 b ± 7.60 | 625.9 a ± 7.51 | 638.2 a ± 8.88 | <0.01 |
9 | 658.0 b ± 8.34 | 707.2 a ± 9.08 | 725.1 a ± 9.56 | <0.01 |
10 | 732.3 b ± 9.62 | 783.7 a ± 9.86 | 795.0 a ± 10.64 | <0.01 |
11 | 818.2 b ± 10.38 | 877.9 a ± 11.14 | 883.6 a ± 11.57 | <0.01 |
(a) | ||||
Age (Week) | W/W (n = 6) | W/D (n = 6) | D/D (n = 6) | p-Value |
0–1 | 1736.5 ± 71.23 | 1916.2 ± 59.24 | 1888.0 ± 54.05 | n.s. |
1–2 | 1691.7 ± 40.55 | 1688.8 ± 49.04 | 1676.8 ± 43.53 | n.s. |
2–3 | 1343.8 ± 26.60 | 1455.5 ± 42.27 | 1386.3 ± 32.11 | n.s. |
3–4 | 1139.9 ± 16.58 | 1237.7 ± 35.84 | 1183.2 ± 28.14 | n.s. |
4–5 | 919.1 b ± 21.05 | 975.0 a,b ± 31.39 | 1016.2 a ± 16.11 | <0.05 |
5–6 | 833.9 b ± 15.92 | 888.0 a,b ± 26.29 | 904.5 a ± 13.68 | <0.05 |
6–7 | 730.6 b ± 12.15 | 745.8 a,b ± 10.72 | 779.0 a ± 11.62 | <0.05 |
7–8 | 678.2 ± 6.87 | 683.4 ± 3.78 | 689.9 ± 7.12 | n.s. |
8–9 | 565.0 ± 7.15 | 566.9 ± 9.85 | 583.4 ± 12.91 | n.s. |
9–10 | 595.5 ± 8.72 | 575.1 ± 4.57 | 577.1 ± 12.68 | n.s. |
10–11 | 596.5 ± 3.71 | 598.9 ± 8.93 | 596.2 ± 7.55 | n.s. |
(b) | ||||
Period 1 | W/W | W/D | D/D | p-Value |
A | 6.13 ± 0.09 | 6.30 ± 0.09 | 6.20 ± 0.09 | n.s. |
B | 8.50 b ± 0.15 | 9.44 a ± 0.15 | 9.78 a ± 0.15 | <0.001 |
C | 8.32 ± 0.17 | 8.74 ± 0.17 | 8.90 ± 0.17 | n.s. |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kjaer, J.B.; Phi-van, L. Evidence for the Association of a Deleted Variant in the 5′-Flanking Region of the Chicken serotonin transporter (5-HTT) Gene with a Temporary Increase in Feed Intake and Growth Rate. Animals 2016, 6, 63. https://doi.org/10.3390/ani6100063
Kjaer JB, Phi-van L. Evidence for the Association of a Deleted Variant in the 5′-Flanking Region of the Chicken serotonin transporter (5-HTT) Gene with a Temporary Increase in Feed Intake and Growth Rate. Animals. 2016; 6(10):63. https://doi.org/10.3390/ani6100063
Chicago/Turabian StyleKjaer, Joergen B., and Loc Phi-van. 2016. "Evidence for the Association of a Deleted Variant in the 5′-Flanking Region of the Chicken serotonin transporter (5-HTT) Gene with a Temporary Increase in Feed Intake and Growth Rate" Animals 6, no. 10: 63. https://doi.org/10.3390/ani6100063
APA StyleKjaer, J. B., & Phi-van, L. (2016). Evidence for the Association of a Deleted Variant in the 5′-Flanking Region of the Chicken serotonin transporter (5-HTT) Gene with a Temporary Increase in Feed Intake and Growth Rate. Animals, 6(10), 63. https://doi.org/10.3390/ani6100063