Effects of α-Ketoglutarate Peripartum Supplementation on Reproductive, Lactational, Productive and Immunological Outcomes in Dairy Cows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Management
2.2. Sample Collection and Processing
2.3. Statistical Analysis
3. Results
3.1. Effect of AKG Supplementation on Metabolism and Liver Function of Cows in Their Periparturient
3.2. Effect of AKG Supplementation on Blood Biochemical Indexes of Cows in Their Periparturient Period
3.3. Effect of AKG Supplementation on Serum Immunological Indexes of Cows in Their Periparturient Period
3.4. Effect of AKG Supplementation on Serum Antioxidant Capacity of Cows in Their Periparturient Period
3.5. Effect of AKG Supplementation on Serum Reproductive Hormones of Cows in Their Periparturient Period
3.6. Effect of AKG Supplementation During Periparturient Period on Incidence of Postpartum Diseases and Postpartum Mating Pregnancy Rates
3.7. Effect of AKG Supplementation During Periparturient Period on Calf Birth Weight and Open Days
3.8. Effect of AKG Supplementation During Periparturient Period on Lactation Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aleri, J.W.; Hine, B.C.; Pyman, M.F.; Mansell, P.D.; Wales, W.J.; Mallard, B.; Fisher, A.D. Periparturient immunosuppression and strategies to improve dairy cow health during the periparturient period. Res. Vet. Sci. 2016, 108, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Ingvartsen, K.L.; Moyes, K. Nutrition, immune function and health of dairy cattle. Animal 2013, 7 (Suppl. S1), 112–122. [Google Scholar] [CrossRef] [PubMed]
- McFadden, J.W. Review: Lipid biology in the periparturient dairy cow: Contemporary perspectives. Animal 2020, 14, s165–s175. [Google Scholar] [CrossRef]
- Hayirli, A.; Grummer, R.R.; Nordheim, E.V.; Crump, P.M. Animal and dietary factors affecting feed intake during the prefresh transition period in Holsteins. J. Dairy Sci. 2002, 85, 3430–3443. [Google Scholar] [CrossRef] [PubMed]
- de Vries, M.J.; Veerkamp, R.F. Energy balance of dairy cattle in relation to milk production variables and fertility. J. Dairy Sci. 2000, 83, 62–69. [Google Scholar] [CrossRef]
- Zhang, F.; Nan, X.; Wang, H.; Zhao, Y.; Guo, Y.; Xiong, B. Effects of Propylene Glycol on Negative Energy Balance of Postpartum Dairy Cows. Animals 2020, 10, 1526. [Google Scholar] [CrossRef]
- Antanaitis, R.; Juozaitiene, V.; Jonike, V.; Cukauskas, V.; Urbsiene, D.; Urbsys, A.; Baumgartner, W.; Paulauskas, A. Relationship between Temperament and Stage of Lactation, Productivity and Milk Composition of Dairy Cows. Animals 2021, 11, 1840. [Google Scholar] [CrossRef]
- Ingvartsen, K.L. Feeding- and management-related diseases in the transition cow: Physiological adaptations around calving and strategies to reduce feeding-related diseases. Anim. Feed. Sci. Technol. 2006, 126, 175–213. [Google Scholar] [CrossRef]
- Casaro, S.; Prim, J.G.; Gonzalez, T.D.; Bisinotto, R.S.; Chebel, R.C.; Marrero, M.G.; Silva, A.; Santos, J.; Nelson, C.D.; Laporta, J.; et al. Unraveling the immune and metabolic changes associated with metritis in dairy cows. J. Dairy Sci. 2023, 106, 9244–9259. [Google Scholar] [CrossRef]
- Klucinski, W.; Degorski, A.; Miernik-Degorska, E.; Targowski, S.; Winnicka, A. Effect of ketone bodies on the phagocytic activity of bovine milk macrophages and polymorphonuclear leukocytes. Zentralbl. Vet. A 1988, 35, 632–639. [Google Scholar]
- Legendre, F.; MacLean, A.; Appanna, V.P.; Appanna, V.D. Biochemical pathways to alpha-ketoglutarate, a multi-faceted metabolite. World J. Microbiol. Biotechnol. 2020, 36, 123. [Google Scholar] [CrossRef] [PubMed]
- Long, L.H.; Halliwell, B. Artefacts in cell culture: Alpha-Ketoglutarate can scavenge hydrogen peroxide generated by ascorbate and epigallocatechin gallate in cell culture media. Biochem. Biophys. Res. Commun. 2011, 406, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Velvizhi, S.; Dakshayani, K.B.; Subramanian, P. Effects of alpha-ketoglutarate on antioxidants and lipid peroxidation products in rats treated with ammonium acetate. Nutrition 2002, 18, 747–750. [Google Scholar] [CrossRef]
- Albaugh, V.L.; Mukherjee, K.; Barbul, A. Proline Precursors and Collagen Synthesis: Biochemical Challenges of Nutrient Supplementation and Wound Healing. J. Nutr. 2017, 147, 2011–2017. [Google Scholar] [CrossRef]
- Jiang, Q.; Adebowale, T.O.; Tian, J.; Yin, Y.; Yao, K. Effects of maternal alpha-ketoglutarate supplementation during lactation on the performance of lactating sows and suckling piglets. Arch. Anim. Nutr. 2019, 73, 457–471. [Google Scholar] [CrossRef]
- Wang, L.; Hou, Y.; Yi, D.; Li, Y.; Ding, B.; Zhu, H.; Liu, J.; Xiao, H.; Wu, G. Dietary supplementation with glutamate precursor alpha-ketoglutarate attenuates lipopolysaccharide-induced liver injury in young pigs. Amino Acids 2015, 47, 1309–1318. [Google Scholar] [CrossRef] [PubMed]
- van der Veen, J.W.; Boling, J.A.; Bunting, L.D. Alteration of nitrogen metabolism by alpha-ketoglutarate administration in growing lambs fed high nonprotein nitrogen-containing diets. J. Anim. Sci. 1989, 67, 2386–2392. [Google Scholar] [CrossRef]
- Harrison, A.P.; Tygesen, M.P.; Sawa-Wojtanowicz, B.; Husted, S.; Tatara, M.R. Alpha-ketoglutarate treatment early in postnatal life improves bone density in lambs at slaughter. Bone 2004, 35, 204–209. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, X.; Wang, L.; Fu, Y.; Yao, S.; Liu, X.; Chen, B.; Gao, J.; Zhai, Y.; Shen, Z.; et al. The dose-dependent dual effects of alpha-ketoglutarate (AKG) on cumulus oocyte complexes during in vitro maturation. Cell Commun. Signal. 2024, 22, 472. [Google Scholar] [CrossRef]
- Duffield, T.F.; Lissemore, K.D.; McBride, B.W.; Leslie, K.E. Impact of hyperketonemia in early lactation dairy cows on health and production. J. Dairy Sci. 2009, 92, 571–580. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Contreras, G.A.; Aitken, S.L. Metabolic factors affecting the inflammatory response of periparturient dairy cows. Anim. Health Res. Rev. 2009, 10, 53–63. [Google Scholar] [CrossRef]
- Ospina, P.A.; Nydam, D.V.; Stokol, T.; Overton, T.R. Evaluation of nonesterified fatty acids and beta-hydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases. J. Dairy Sci. 2010, 93, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Chapinal, N.; Carson, M.; Duffield, T.F.; Capel, M.; Godden, S.; Overton, M.; Santos, J.E.; LeBlanc, S.J. The association of serum metabolites with clinical disease during the transition period. J. Dairy Sci. 2011, 94, 4897–4903. [Google Scholar] [CrossRef]
- Kurpińska, A.; Skrzypczak, W. Hormonal changes in dairy cows during periparturient period. Acta Sci. Pol. Zootech. 2020, 18, 13–22. [Google Scholar] [CrossRef]
- Singh, H.; Pandey, A.K.; Kumar, S.; Saini, G.; Duggal, R.; Bangar, Y.C.; Kumar, S.; Saini, R.; Kumar, H. 5d CIDR-Heatsynch improves the circulatory estradiol levels, estrus expression and conception rate in anestrus buffalo (Bubalus bubalis). Anim. Biotechnol. 2023, 34, 4488–4499. [Google Scholar] [CrossRef]
- Guo, H.; Li, J.; Wang, Y.; Cao, X.; Lv, X.; Yang, Z.; Chen, Z. Progress in Research on Key Factors Regulating Lactation Initiation in the Mammary Glands of Dairy Cows. Genes 2023, 14, 1163. [Google Scholar] [CrossRef] [PubMed]
- Kindahl, H.; Kornmatitsuk, B.; Gustafsson, H. The cow in endocrine focus before and after calving. Reprod. Domest. Anim. 2004, 39, 217–221. [Google Scholar] [CrossRef]
- Gyanwali, B.; Lim, Z.X.; Soh, J.; Lim, C.; Guan, S.P.; Goh, J.; Maier, A.B.; Kennedy, B.K. Alpha-Ketoglutarate dietary supplementation to improve health in humans. Trends Endocrinol. Metab. 2022, 33, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Naeini, S.H.; Mavaddatiyan, L.; Kalkhoran, Z.R.; Taherkhani, S.; Talkhabi, M. Alpha-ketoglutarate as a potent regulator for lifespan and healthspan: Evidences and perspectives. Exp. Gerontol. 2023, 175, 112154. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Aitken, S.L. Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunopathol. 2009, 128, 104–109. [Google Scholar] [CrossRef] [PubMed]
- York, A.G.; Skadow, M.H.; Oh, J.; Qu, R.; Zhou, Q.D.; Hsieh, W.Y.; Mowel, W.K.; Brewer, J.R.; Kaffe, E.; Williams, K.J.; et al. IL-10 constrains sphingolipid metabolism to limit inflammation. Nature 2024, 627, 628–635. [Google Scholar] [CrossRef]
- Asadi, S.A.; Edgar, D.; Liao, C.Y.; Hsu, Y.M.; Lucanic, M.; Asadi, S.A.; Wiley, C.D.; Gan, G.; Kim, D.E.; Kasler, H.G.; et al. Alpha-Ketoglutarate, an Endogenous Metabolite, Extends Lifespan and Compresses Morbidity in Aging Mice. Cell Metab. 2020, 32, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Duan, R.; Wang, L.; Hou, Y.; Tan, L.; Cheng, Q.; Liao, M.; Ding, B. Dietary alpha-ketoglutarate supplementation improves hepatic and intestinal energy status and anti-oxidative capacity of Cherry Valley ducks. Anim. Sci. J. 2017, 88, 1753–1762. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Ncho, C.M.; Goel, A.; Jeong, C.M.; Choi, Y.H. Effects of In Ovo Injection of alpha-Ketoglutaric Acid on Hatchability, Growth, Plasma Metabolites, and Antioxidant Status of Broilers. Antioxidants 2022, 11, 2102. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Feng, J.; Zhu, H.; Wu, J.; Zhang, H.; Xiao, S.; Jing, Z.; Zhou, J.; Niu, H.; et al. Alpha-ketoglutarate ameliorates abdominal aortic aneurysm via inhibiting PXDN/HOCL/ERK signaling pathways. J. Transl. Med. 2022, 20, 461. [Google Scholar] [CrossRef]
- Hua, W.; Zhang, X.; Tang, H.; Li, C.; Han, N.; Li, H.; Ma, H.; Liu, P.; Zhou, Y.; Zhang, H.; et al. AKG Attenuates Cerebral Ischemia-Reperfusion Injury through c-Fos/IL-10/Stat3 Signaling Pathway. Oxid. Med. Cell. Longev. 2022, 2022, 6839385. [Google Scholar] [CrossRef]
- Nickerson, S.C. Milk production: Factors affecting milk composition. In Milk Quality; Harding, F., Ed.; Springer: Boston, MA, USA, 1995; pp. 3–24. [Google Scholar]
- Kim, J.E.; Lee, H.G. Amino Acids Supplementation for the Milk and Milk Protein Production of Dairy Cows. Animals 2021, 11, 2118. [Google Scholar] [CrossRef]
- Liu, G.; Lu, J.; Sun, W.; Jia, G.; Zhao, H.; Chen, X.; Wang, J. Alpha-ketoglutaric acid attenuates oxidative stress and modulates mitochondrial dynamics and autophagy of spleen in a piglet model of lipopolysaccharide-induced sepsis. Free Radic. Bio. Med. 2024, 214, 80–86. [Google Scholar] [CrossRef]
- Jiang, Q.; He, L.; Hou, Y.; Chen, J.; Duan, Y.; Deng, D.; Wu, G.; Yin, Y.; Yao, K. Alpha-ketoglutarate enhances milk protein synthesis by porcine mammary epithelial cells. Amino Acids 2016, 48, 2179–2188. [Google Scholar] [CrossRef]
- Tian, J.; Yang, F.; Bao, X.; Jiang, Q.; Li, Y.; Yao, K.; Yin, Y. Dietary Alpha-Ketoglutarate Supplementation Improves Bone Growth, Phosphorus Digestion, and Growth Performance in Piglets. Animals 2023, 13, 569. [Google Scholar] [CrossRef] [PubMed]
Items | Control | 1 g | 5 g | 10 g |
---|---|---|---|---|
Total | 45 | 45 | 45 | 45 |
Retained placenta | 7 | 3 | 3 | 0 |
Metritis | 3 | 1 | 0 | 0 |
Mastitis | 12 | 10 | 8 | 8 |
Postpartum paralysis | 0 | 0 | 0 | 0 |
Ketosis | 1 | 0 | 0 | 1 |
Diarrhea | 1 | 3 | 1 | 3 |
Healthy | 21 | 28 | 33 | 33 |
Affected | 24 | 17 | 12 | 12 |
Incidence rate (%) | 53.3 b | 37.8 ab | 26.7 a | 26.7 a |
Items | Control | 1 g | 5 g | 10 g |
---|---|---|---|---|
Total | 45 | 45 | 45 | 45 |
First insemination pregnancy number | 10 | 16 | 19 | 23 |
First insemination pregnancy rate (%) | 22.22 a | 35.56 b | 42.22 b | 51.51 b |
Second insemination pregnancy number | 15 | 25 | 29 | 30 |
Second insemination pregnancy rate (%) | 33.33 a | 55.56 b | 61.70 b | 66.67 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Hu, X.; Shan, X.; Gao, J.; Guo, F.; Wang, B.; Liu, G. Effects of α-Ketoglutarate Peripartum Supplementation on Reproductive, Lactational, Productive and Immunological Outcomes in Dairy Cows. Animals 2025, 15, 1110. https://doi.org/10.3390/ani15081110
Wang P, Hu X, Shan X, Gao J, Guo F, Wang B, Liu G. Effects of α-Ketoglutarate Peripartum Supplementation on Reproductive, Lactational, Productive and Immunological Outcomes in Dairy Cows. Animals. 2025; 15(8):1110. https://doi.org/10.3390/ani15081110
Chicago/Turabian StyleWang, Peng, Xin Hu, Xiang’ao Shan, Jiarui Gao, Fei Guo, Bingyuan Wang, and Guoshi Liu. 2025. "Effects of α-Ketoglutarate Peripartum Supplementation on Reproductive, Lactational, Productive and Immunological Outcomes in Dairy Cows" Animals 15, no. 8: 1110. https://doi.org/10.3390/ani15081110
APA StyleWang, P., Hu, X., Shan, X., Gao, J., Guo, F., Wang, B., & Liu, G. (2025). Effects of α-Ketoglutarate Peripartum Supplementation on Reproductive, Lactational, Productive and Immunological Outcomes in Dairy Cows. Animals, 15(8), 1110. https://doi.org/10.3390/ani15081110