Using Satellite Remote Sensing to Estimate Rangeland Carrying Capacity for Sustainable Management of the Marismeño Horse in Doñana National Park, Spain
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Location and General Setting
2.1.2. Climate, Hydrology, and Soils
2.1.3. Vegetation and Pasture Resources
2.1.4. Livestock Use, Land Tenure, and Management Constraints
2.1.5. Ecological and Conservation Context
2.2. Satellite Data
2.3. Image Preprocessing
2.4. Data Processing and Analytical Workflow
2.5. Field Data and Validation
2.6. Modeling Procedures
3. Results
3.1. Climate Backdrop (2015–2020)
3.2. Multi-Year Vegetation and Forage Dynamics by Grazing Unit
3.2.1. El Rincón
3.2.2. Marisma de Hinojos
3.2.3. Matochal
3.2.4. La Vera y Sotos
3.2.5. Las Nuevas y Marismillas
3.3. Seasonal Windows of Suitability and Spatial Refugia
3.4. Sensor-Stack Performance and Uncertainty
4. Discussion
4.1. Seasonal and Interannual Patterns of Forage Dynamics
4.2. The Role of Landscape Heterogeneity and Ecological Refugia
4.3. Grazing Pressure Dynamics and Carrying Capacity Implications
4.4. Methodological Contributions and Limitations
4.5. Conservation and Cultural Dimensions
4.6. Future Perspectives Under Climate Change
4.7. Implications for Sustainability and the Sustainable Development Goals (SDGs)
4.8. Broader Applicability
4.9. Synthesis and Key Contributions
- Remote sensing showed a clear separation between biomass and forage quality, especially in late summer. This shows how easy it is to overestimate carrying capacity.
- Ecotones and mixed uplands have become important refuges that help with seasonal shortages and should be given top priority in management.
- Interannual variability caused by the length of the hydroperiod showed that we need to monitor things over a long period of time and be able to change our plans as needed.
- The harmonization of multi-sensor datasets was effective for multi-year ecological assessments, although some uncertainties remained.
- To protect the Marismeño horse, we need to look at it from cultural, ecological, and climate points of view. Remote sensing is a useful tool for making decisions about this.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-Delgado, C. Conservation management of an European Natural Area: Doñana National Park, Spain. In Principles of Conservation Biology, 3rd ed.; Groom, M.J., Meffe, G.K., Carroll, C.R., Eds.; Sinauer Associates, Inc. Publishers: Sunderland, MA, USA, 2006; pp. 536–543. [Google Scholar]
- Martín-López, B.; García-Llorente, M.; Palomo, I.; Montes, C. The conservation against development paradigm in protected areas: Valuation of ecosystem services in the Doñana social-ecological system (Southwestern Spain). Ecol. Econ. 2011, 70, 1481–1491. [Google Scholar] [CrossRef]
- Murphy, M.D.; González Faraco, J.C. Las yeguas marismeñas de Doñana: Naturaleza, tradición e identidades sociales en un espacio protegido. Disparidades 2002, 57, 5–40. [Google Scholar] [CrossRef]
- MAPA, Ministerio de Agricultura, Pesca y Alimentación. Raza Marismeña. 2025. Available online: https://www.mapa.gob.es/es/ganaderia/temas/zootecnia/razas-ganaderas/razas/catalogo-razas/equino-caballar/marismena (accessed on 5 July 2025). (In Spanish).
- Ministry of Agriculture, Fisheries and Food. Real Decreto 527/2023. De 20 de Junio, por el que se Modifican el Anexo I del Real Decreto 45/2019, de 8 de Febrero, para Actualizar el Catálogo Oficial de Razas de Ganado de España, y el Anexo II, de Codificación de Razas, del Real Decreto 429/2022, de 7 de Junio. Boletín Oficial Del Estado, 147, 87369–87375; Ministry of Agriculture, Fisheries and Food: Madrid, Spain, 2023. [Google Scholar]
- Pablo Gómez, M.; Landi, V.; Martínez, A.M.; Gómez Carpio, M.; Nogales Baena, S.; Delgado Bermejo, J.V.; Oom, M.d.M.; Luis, C.; Ouragh, L.; Vega-Pla, J.L. Genetic diversity of the semi-feral Marismeño horse breed assessed with microsatellites. Ital. J. Anim. Sci. 2017, 16, 14–21. [Google Scholar] [CrossRef]
- Teague, R.; Kreuter, U. Managing grazing to restore soil health, ecosystem function, and ecosystem services. Front. Sustain. Food Syst. 2020, 4, 534187. [Google Scholar] [CrossRef]
- Cavadini, J.; Paine, L. Grazier’s Math: Calculating Carrying Capacity 2024. Available online: https://cropsandsoils.extension.wisc.edu/files/2024/03/025-2024-FS-Carrying-Capacity-2.pdf (accessed on 10 September 2025).
- Vanselow, K.A.; Zandler, H.; Samimi, C. Methods of Assessing Vegetation Dynamics and Pasture Potentials in Arid Mountain Regions. In Exploring and Optimizing Agricultural Landscapes; Mueller, L., Sychev, V.G., Dronin, N.M., Eulenstein, F., Eds.; Innovations in Landscape Research; Springer International Publishing: Cham, Switzerland, 2021; pp. 373–382. ISBN 978-3-030-67448-9. [Google Scholar]
- Zandler, H.; Vanselow, K.A.; Faryabi, S.P.; Rajabi, A.M.; Ostrowski, S. High-resolution assessment of the carrying capacity and utilization intensity in mountain rangelands with remote sensing and field data. Heliyon 2023, 9, e21583. [Google Scholar] [CrossRef] [PubMed]
- Jansen, V.; Kolden, C.; Schmalz, H.; Karl, J.; Taylor, R. Using Satellite-Based Vegetation Data for Short-Term Grazing Monitoring to Inform Adaptive Management. Rangel. Ecol. Manag. 2021, 76, 30–42. [Google Scholar] [CrossRef]
- Jansen, V.; Traynor, A.C.E.; Karl, J.W.; Lepak, N.; Sprinkle, J. Monitoring grazing use: Strategies for leveraging technology and adapting to variability. Rangelands 2022, 44, 64–77. [Google Scholar] [CrossRef]
- Lumbierres, M.; Méndez, P.F.; Bustamante, J.; Soriguer, R.; Santamaría, L. Modeling Biomass Production in Seasonal Wetlands Using MODIS NDVI Land Surface Phenology. Remote Sens. 2017, 9, 392. [Google Scholar] [CrossRef]
- Giralt-Rueda, J.M.; Santamaria, L. Complementary Differences in Primary Production and Phenology among Vegetation Types Increase Ecosystem Resilience to Climate Change and Grazing Pressure in an Iconic Mediterranean Ecosystem. Remote Sens. 2021, 13, 3920. [Google Scholar] [CrossRef]
- Almalki, R.; Khaki, M.; Saco, P.M.; Rodriguez, J.F. Monitoring and Mapping Vegetation Cover Changes in Arid and Semi-Arid Areas Using Remote Sensing Technology: A Review. Remote Sens. 2022, 14, 5143. [Google Scholar] [CrossRef]
- Wang, H.; Singh, K.D.; Poudel, H.P.; Natarajan, M.; Ravichandran, P.; Eisenreich, B. Forage Height and Above-Ground Biomass Estimation by Comparing UAV-Based Multispectral and RGB Imagery. Sensors 2024, 24, 5794. [Google Scholar] [CrossRef]
- Zhang, R.P.; Zhou, J.H.; Guo, J.; Miao, Y.H.; Zhang, L.L. Inversion Models of Aboveground Grassland Biomass in Xinjiang Based on Multisource Data. Front. Plant Sci. 2023, 14, 1152432. [Google Scholar] [CrossRef]
- Kearney, S.P.; Porensky, L.M.; Augustine, D.J.; Gaffney, R.; Derner, J.D. Monitoring Standing Herbaceous Biomass and Thresholds in Semiarid Rangelands from Harmonized Landsat 8 and Sentinel-2 Imagery to Support Within-Season Adaptive Management. Remote Sens. Environ. 2022, 271, 112907. [Google Scholar] [CrossRef]
- Law, B.E.; Abatzoglou, J.T.; Schwalm, C.R.; Byrne, D.; Fann, N.; Nassikas, N.J. Anthropogenic Climate Change Contributes to Wildfire Particulate Matter and Related Mortality in the United States. Commun. Earth Environ. 2025, 6, 336. [Google Scholar] [CrossRef]
- Zoffoli, M.L.; Gernez, P.; Oiry, S.; Godet, L.; Dalloyau, S.; Rowe Davies, B.F.; Barillé, L. Remote Sensing in Seagrass Ecology: Coupled Dynamics between Migratory Herbivorous Birds and Intertidal Meadows Observed by Satellite during Four Decades. Remote Sens. Ecol. Conserv. 2022, 9, 420–433. [Google Scholar] [CrossRef]
- Irob, K.; Blaum, N.; Weiss-Aparicio, A.; Hauptfleisch, M.; Hering, R.; Uiseb, K.; Tietjen, B. Savanna Resilience to Droughts Increases with the Proportion of Browsing Wild Herbivores and Plant Functional Diversity. J. Appl. Ecol. 2023, 60, 251–262. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L. A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. Drones 2023, 7, 398. [Google Scholar] [CrossRef]
- Cao, Q.; Yu, G.; Qiao, Z. Application and Recent Progress of Inland Water Monitoring Using Remote Sensing Techniques. Environ. Monit. Assess. 2023, 195, 125. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Luo, J. Deep Learning for Processing and Analysis of Remote Sensing Big Data: A Technical Review. Big Earth Data 2021, 6, 527–560. [Google Scholar] [CrossRef]
- Reinermann, S.; Boos, C.; Kaim, A.; Schucknecht, A.; Asam, S.; Gessner, U.; Annuth, S.H.; Schmitt, T.M.; Koellner, T.; Kiese, R. Grassland Yield Estimations—Potentials and Limitations of Remote Sensing in Comparison to Process-Based Modeling and Field Measurements. Biogeosciences 2025, 22, 4969–4992. [Google Scholar] [CrossRef]
- Straffelini, E. Cultural Landscapes Under Global Environmental Change: Monitoring and Assessment Through Remote Sensing and GIS. Ph.D. Thesis, Università Degli Studi di Padova, Padova, Italy, 2025. Available online: https://hdl.handle.net/20.500.14242/190501 (accessed on 2 December 2025).
- Reeves, M.C.; Robert, A.; Angerer, J.; Hunt, E.R., Jr.; Wasantha, R.; Kumar, L. A Global view of remote sensing of rangelands: Evolution, applications, future pathways. In Remote Sensing Handbook; CRC Press Inc.: Boca Raton, FL, USA, 2024; pp. 237–266. [Google Scholar]
- Hu, X.; Feng, H.; Tang, Y.; Wang, S.; Wang, S.; Wang, W.; Huang, J. Detection of the Contribution of Vegetation Change to Global Net Primary Productivity: A Satellite Perspective. Remote Sens. 2024, 16, 4692. [Google Scholar] [CrossRef]
- Liu, Q.; Yao, F.; Garcia-Garcia, A.; Zhang, J.; Li, J.; Ma, S.; Peng, J. The Response and Sensitivity of Global Vegetation to Water Stress: A Comparison of Different Satellite-Based NDVI Products. Int. J. Appl. Earth Obs. Geoinf. 2023, 120, 103341. [Google Scholar] [CrossRef]
- Upreti, M.; Kumar, A. Evaluating Functional Traits of Urban Green Spaces in Mitigating Land Surface Temperature in Megacities. Discov. Cities 2025, 2, 31. [Google Scholar] [CrossRef]
- Cabello-Franco, E.J.; Antón, D.; Ramírez-Juidias, E.; Perea-Torres, F. Optimizing Water Demand in Citrus Orchards: A Novel Model Using Evolutionary Algorithms on Sentinel-1 Time Series Data. Cogent Food Agric. 2025, 11, 2544960. [Google Scholar] [CrossRef]
- Ramírez-Juidias, E.; Amaro-Mellado, J.-L. Prediction of Erosive Processes in the Río Piedras and Flecha de El Rompido Salt Marsh (Huelva, Spain) Using Iterative Models and GIS. Limnol. Rev. 2023, 23, 190–202. [Google Scholar] [CrossRef]
- Ramírez-Juidias, E.; Antón, D. Geospatial Analysis of the Roman Site of Munigua Based on RGB Airborne Imagery. Remote Sens. 2025, 17, 3224. [Google Scholar] [CrossRef]
- Leiva-Piedra, J.L.; Ramírez-Juidias, E.; Amaro-Mellado, J.-L. Use of Geomatic Techniques to Determine the Influence of Climate Change on the Evolution of the Doñana Salt Marshes’ Flooded Area between 2009 and 2020. Appl. Sci. 2024, 14, 6919. [Google Scholar] [CrossRef]
- Confederación Hidrográfica del Guadalquivir; Ministerio para la Transmisión Ecológica y el Reto Demográfico (Gobierno de España). Informe de Estado de los Acuíferos del Entorno de Doñana. Año Hidrológico 2022–2023; Ministerio para la Transición Ecológica y el Reto Demográfico: Seville, Spain, 2024. [Google Scholar]
- Blanco-Doval, A.; Barron, L.J.R.; Aldai, N. Nutritional Quality and Socio-Ecological Benefits of Mare Milk Produced under Grazing Management. Foods 2024, 13, 1412. [Google Scholar] [CrossRef]
- Curz-Moriana, V. Evaluación y Valorización de la Multifuncionalidad en Sistemas Extensivos de Rumiantes de Aptitud Cárnica Basados en Razas Locales Amenazadas. Ph.D. Thesis, Universidad de Sevilla, Seville, Spain, 2024. idUS Repository. Available online: https://idus.us.es/server/api/core/bitstreams/1113f73e-2b66-4b46-9dc4-92843042030a/content (accessed on 2 December 2025).
- Acreman, M.; Casier, R.; Salathe, T. Evidence-Based Risk Assessment of Ecological Damage Due to Groundwater Abstraction: The Case of Doñana Natural Space, Spain. Wetlands 2022, 42, 63. [Google Scholar] [CrossRef]
- Junta de Andalucía. Análisis de la Evolución Futura Bajo Escenarios de Cambio Climático de las Variables Climáticas y de las Variables Derivadas; Junta de Andalucía: Seville, Spain, 2022. [Google Scholar]
- EOS Data Analytics LandViewer. Available online: https://eos.com/landviewer/ (accessed on 14 August 2025).
- Spanish Association of Marismeño Horse Breeders. Available online: https://razamarismena.com/ (accessed on 17 August 2025).
- Climate Data. Climate Data for Cities Worldwide. 2024. Available online: https://en.climate-data.org/ (accessed on 15 August 2025).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 10 August 2025).
- Gomes, A.M.N.; Sousa, A.M.d.; Carvalho, M.W.L.; Sousa, W.d.S.; Silva, M.V.d.; de Araújo Santos, G.A.; Medeiros, A.d.S.; Silva, J.L.B.d.; Oliveira-Júnior, J.F.d.; Machado, N.A.F. Assessment of Land Degradation in the State of Maranhão to Support Sustainable Development Goal 15.3.1 in the Agricultural Frontier of MATOPIBA, Brazil. ISPRS Int. J. Geo-Inf. 2025, 14, 356. [Google Scholar] [CrossRef]




















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Juidias, E.; Díaz de la Serna-Moreno, Á.; Delgado-Pertíñez, M. Using Satellite Remote Sensing to Estimate Rangeland Carrying Capacity for Sustainable Management of the Marismeño Horse in Doñana National Park, Spain. Animals 2025, 15, 3507. https://doi.org/10.3390/ani15243507
Ramírez-Juidias E, Díaz de la Serna-Moreno Á, Delgado-Pertíñez M. Using Satellite Remote Sensing to Estimate Rangeland Carrying Capacity for Sustainable Management of the Marismeño Horse in Doñana National Park, Spain. Animals. 2025; 15(24):3507. https://doi.org/10.3390/ani15243507
Chicago/Turabian StyleRamírez-Juidias, Emilio, Ángel Díaz de la Serna-Moreno, and Manuel Delgado-Pertíñez. 2025. "Using Satellite Remote Sensing to Estimate Rangeland Carrying Capacity for Sustainable Management of the Marismeño Horse in Doñana National Park, Spain" Animals 15, no. 24: 3507. https://doi.org/10.3390/ani15243507
APA StyleRamírez-Juidias, E., Díaz de la Serna-Moreno, Á., & Delgado-Pertíñez, M. (2025). Using Satellite Remote Sensing to Estimate Rangeland Carrying Capacity for Sustainable Management of the Marismeño Horse in Doñana National Park, Spain. Animals, 15(24), 3507. https://doi.org/10.3390/ani15243507

