The Missing Target: Why Industrialized Animal Farming Must Be at the Core of the Climate Agenda
Simple Summary
Abstract
1. Introduction
2. Methodology
2.1. Search Protocol
2.2. Study Screening
- Consider industrialized animal farming’s contribution to climate change and/or broader environmental impacts as a core part of its objective (not merely mention it).
- Mention animal agriculture (or an equivalent term) in the title, abstract, or keywords.
- Put a figure on animal agriculture’s (or a part of its) contribution to climate change (or other environmental harm) via an original assessment or systematic review.
- Include a comparative element—comparing animal agriculture with a reduction in animal use, comparing more intensive with less intensive systems, comparing impacts in or from different regions, or comparing impacts from the farming of different species. This was required so that the contribution figures assimilated could be meaningfully interpreted.
2.3. Study Analysis
3. Results and Discussion
3.1. General Characteristics of Shortlisted Studies
3.2. Global Studies
3.3. Spotlight on the Global South
3.4. Spotlight on Biodiversity Loss
3.5. Disagreements Among the Studies
3.6. Recommendations
3.7. Limitations of the Current Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Special Report on Climate Change and Land: Technical Summary. In Climate Change and Land; Cambridge University Press: Cambridge, UK, 2019; Available online: https://www.ipcc.ch/srccl/chapter/technical-summary/ (accessed on 23 September 2025). [CrossRef]
- COP28UAE. Declaration on Sustainable Agriculture, Resilient Food Systems and Climate Action. 2023. Available online: https://sdg2advocacyhub.org/wp-content/uploads/2023/12/COP28-UAE-Declaration-on-Sustainable-Agriculture-Resilient-Food-Systems-and-Climate-Action.pdf (accessed on 23 September 2025).
- Malley, C.S.; Borgford-Parnell, N.; Haeussling, S.; Howard, I.C.; Lefèvre, E.N.; Kuylenstierna, J.C.I. A roadmap to achieve the global methane pledge. Environ. Res. Clim. 2023, 2, 011003. [Google Scholar] [CrossRef]
- Robinson, E.; Serin, E. Could New Technology Solve Climate Change? The London School of Economics and Political Science. 2022. Available online: https://www.lse.ac.uk/granthaminstitute/news/could-new-technology-solve-climate-change/ (accessed on 23 September 2025).
- Clark, M.A.; Domingo, N.G.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global food system emissions could preclude achieving the 1.5° and 2 °C climate change targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Shahbandeh. Trade Value of Leading Beef Exporters Worldwide in 2023 (in Billion, U.S. Dollars). Statista. 2024. Available online: https://www.statista.com/statistics/917207/top-exporters-of-beef-global/ (accessed on 23 September 2025).
- FAO. FAOSTAT: Crops and Livestock Products: 2022. 2023. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 23 September 2025).
- Zhang, L.; Tian, H.; Shi, H.; Pan, S.; Chang, J.; Dangal, S.R.S.; Qin, X.; Wang, S.; Tubiello, F.N.; Canadell, J.G.; et al. A 130-year global inventory of methane emissions from livestock: Trends, patterns, and drivers. Glob. Change Biol. 2022, 28, 5142–5158. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, E.; Armenteras, D.; Lees, A.C.; Fearnside, P.M.; Alencar, A.; Almeida, C.; Aragão, L.; Barlow, J.; Bilbao, B.; Brando, P.; et al. Drivers and ecological impacts of deforestation and forest degradation in the Amazon. Acta Amaz. 2024, 54, e54es22342. [Google Scholar] [CrossRef]
- World of Stats. Biodiversity Rank by Country. 2025. Available online: https://worldostats.com/country-stats/biodiversity-rank-by-country/ (accessed on 23 September 2025).
- Scientific Panel for the Amazon. Amazon Assessment Report: Executive Summary. 2021. Available online: https://eng-ar21.sp-amazon.org/220717_SPA%20Executive%20Summary%202021%20(English).pdf (accessed on 23 September 2025).
- UNFCCC. Outcome of the First Global Stocktake. 2023. Available online: https://unfccc.int/topics/global-stocktake/about-the-global-stocktake/outcome-of-the-first-global-stocktake (accessed on 23 September 2025).
- Goodland, R.; Anhang, J. Livestock and Climate Change. World Watch. 2009. Available online: https://awellfedworld.org/wp-content/uploads/Livestock-Climate-Change-Anhang-Goodland.pdf (accessed on 23 September 2025).
- Wolvers, A.; Tappe, O.; Salveda, T.; Schwarz, T. Concepts of the Global South: Introduction. Voices from Around the World, University of Cologne. 2015. Available online: https://gssc.uni-koeln.de/sites/gssc/Medien/Voices/Issue_1/2015/1_Introduction_voices012015_concepts_of_the_global_south_Kopie.pdf (accessed on 23 September 2025).
- Stevens, A.; Hersi, M.; Garritty, C.; Hartling, L.; Shea, B.J.; Stewart, L.A.; Welch, V.A.; Tricco, A.C. Rapid review method series: Interim guidance for the reporting of rapid reviews. BMJ Evid.-Based Med. 2025, 30, 118–123. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- PRISMA. PRISMA Extensions in Development. 2025. Available online: https://www.prisma-statement.org/in-development (accessed on 23 September 2025).
- Garritty, C.; Hamel, C.; Trivella, M.; Gartlehner, G.; Nussbaumer-Streit, B.; Devane, D.; Kamel, C.; Griebler, U.; King, V.J. Updated recommendations for the Cochrane rapid review methods guidance for rapid reviews of effectiveness. BMJ 2024, 384, e076335. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; Delgado López-Cózar, E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics 2021, 126, 871–906. [Google Scholar] [CrossRef]
- Meyer, J.G.; Urbanowicz, R.J.; Martin, P.C.N.; O’Connor, K.; Li, R.; Peng, P.; Bright, T.J.; Tatonetti, N.; Won, K.J.; Gonzalez-Hernandez, G.; et al. ChatGPT and large language models in academia: Opportunities and challenges. BioData Min. 2023, 16, 20. [Google Scholar] [CrossRef]
- Mace, J.L.; Knight, A. AI Model Selection for Research and Writing: An Animal Advocacy Case Study. Faunalytics. 2025. Available online: https://faunalytics.org/ai-model-selection-for-research-and-writing-an-animal-advocacy-case-study/ (accessed on 23 September 2025).
- FAO. Pathways Towards Lower Emissions; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Eating Better. We Need to Talk About Industrial Livestock Production. 2025. Available online: https://www.eating-better.org/site/assets/files/11779/we_need_to_talk_about_industrial_livestock_production_final.pdf (accessed on 23 September 2025).
- Pinillos, R.G.; Appleby, M.; Manteca, X.; Scott-Park, F.; Smith, C.; Velarde, V. One Welfare—A platform for improving human and animal welfare. Vet Rec. 2016, 179, 412–413. [Google Scholar] [CrossRef]
- Broom, D.M. Animal welfare complementing or conflicting with other sustainability issues. Appl. Anim. Behav. Sci. 2019, 219, 104829. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Overland, I.; Fossum Sagbakken, H.; Isataeva, A.; Kolodzinskaia, G.; Simpson, N.P.; Trisos, C.; Vakulchuk, R. Funding flows for climate change research on Africa: Where do they come from and where do they go? Clim. Dev. 2021, 14, 705–724. [Google Scholar] [CrossRef]
- He, T.; Lin, X.; Qu, Y.; Wei, C. Study on the relationship between economic growth of animal husbandry and carbon emission based on Logarithmic Average Index Method and Decoupling Model: A case study of Heilongjiang Province. Sustainability 2023, 15, 9964. [Google Scholar] [CrossRef]
- Wang, X.; Qiang, W.; Liu, X.; Yan, S.; Qi, Y.; Jia, Z.; Liu, G. The spatiotemporal patterns and network characteristics of emissions embodied in the international trade of livestock products. J. Environ. Manag. 2022, 322, 116128. [Google Scholar] [CrossRef] [PubMed]
- Deteix, L.; Salou, T.; Loiseau, E. Joint assessment of the environmental impacts and resource criticality of French food consumption scenarios in 2050 from a regionalised life cycle perspective. Sustain. Prod. Consum. 2025, 55, 37–50. [Google Scholar] [CrossRef]
- Marquardt, S.G.; Joyce, P.J.; Rigarlsford, G.; Dötsch-Klerk, M.; van Elk, K.; Doelman, J.; Daioglou, V.; Huijbregts, M.A.J.; Sim, S. Prospective life cycle assessment of climate and biodiversity impacts of meat-based and plant-forward meals: A case study of Indonesian and German meal options. J. Ind. Ecol. 2024, 28, 1598–1611. [Google Scholar] [CrossRef]
- Han, Y.; Peng, J.; Du, Y.; Fan, X. Industrialization mitigates greenhouse gas intensity in China’s dairy sector yet may prove insufficient to offset emissions from future production expansion. Environ. Sci. Technol. 2024, 58, 11386–11399. [Google Scholar] [CrossRef]
- Hendrie, G.A.; Rebuli, M.A.; James-Martin, G.; Baird, D.L.; Bogard, J.R.; Lawrence, A.S.; Ridoutt, B. Towards healthier and more sustainable diets in the Australian context: Comparison of current diets with the Australian Dietary Guidelines and the EAT-Lancet Planetary Health Diet. BMC Public Health 2022, 22, 1939. [Google Scholar] [CrossRef]
- Mertens, E.; Biesbroek, S.; Dofková, M.; Mistura, L.; D’Addezio, L.; Turrini, A.; Dubuisson, C.; Havard, S.; Trolle, E.; Geleijnse, J.M.; et al. Potential impact of meat replacers on nutrient quality and greenhouse gas emissions of diets in four European countries. Sustainability 2020, 12, 6838. [Google Scholar] [CrossRef]
- Adhikari, B.; Prapaspongsa, T. Environmental sustainability of food consumption in Asia. Sustainability 2019, 11, 5749. [Google Scholar] [CrossRef]
- Saarinen, M.; Pellinen, T.; Kostensalo, J.; Nousiainen, J.; Joensuu, K.; Itkonen, S.T.; Pajari, A.M. Dietary climate impact correlates ambiguously with health biomarkers: A randomised controlled trial in healthy Finnish adults. Eur. J. Nutr. 2025, 64, 95. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Bai, Z.H.; Chadwick, D.; Hou, Y.; Qin, W.; Zhao, Z.Q.; Jiang, R.F.; Ma, L. Greenhouse gas and ammonia emissions and mitigation options from livestock production in peri-urban agriculture: Beijing—A case study. J. Clean. Prod. 2018, 178, 515–525. [Google Scholar] [CrossRef]
- Akamati, K.; Laliotis, G.P.; Bizelis, I. Comparative assessment of greenhouse gas emissions in pig farming using tier inventories. Environments 2022, 9, 59. [Google Scholar] [CrossRef]
- Allenden, N.; Hine, D.W.; Craig, B.M.; Cowie, A.L.; McGreevy, P.D.; Lykins, A.D. What should we eat? Realistic solutions for reducing our food footprint. Sustain. Prod. Consum. 2022, 32, 541–549. [Google Scholar] [CrossRef]
- Errickson, F.; Kuruc, K.; McFadden, J. Animal-based foods have high social and climate costs. Nat. Food 2021, 2, 274–281. [Google Scholar] [CrossRef]
- Huan, E.; Huan-Niemi, E.; Kaljonen, M.; Knuuttila, M.; Niemi, J.; Saarinen, M. The impacts of dietary change in Finland: Food system approach. Agric. Food Sci. 2020, 29, 372–382. [Google Scholar] [CrossRef]
- Blanco-Murcia, L.; Ramos-Mejía, M. Sustainable diets and meat consumption reduction in emerging economies: Evidence from Colombia. Sustainability 2019, 11, 6595. [Google Scholar] [CrossRef]
- Wedderburn-Bisshop, G. Increased transparency in accounting conventions could benefit climate policy. Environ. Res. Lett. 2025, 20, 044008. [Google Scholar] [CrossRef]
- Carew, R. Ammonia emissions from livestock industries in Canada: Feasibility of abatement strategies. Environ. Pollut. 2010, 158, 2618–2626. [Google Scholar] [CrossRef]
- Ruett, J.; Hennes, L.; Teubler, J.; Braun, B. How compatible are western European dietary patterns to climate targets? Accounting for uncertainty of life cycle assessments by applying a probabilistic approach. Sustainability 2022, 14, 14449. [Google Scholar] [CrossRef]
- Sintori, A.; Tzouramani, I.; Liontakis, A. Greenhouse gas emissions in dairy goat farming systems: Abatement potential and cost. Animals 2019, 9, 945. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, H.; Lehtonen, H.; Irz, X. Impacts of reducing red meat consumption on agricultural production in Finland. Agric. Food Sci. 2013, 22, 356–370. [Google Scholar] [CrossRef]
- Westhoek, H.; Lesschen, J.P.; Rood, T.; Wagner, S.; De Marco, A.; Murphy-Bokern, D.; Leip, A.; van Grinsven, H.; Sutton, M.A.; Oenema, O. Food choices, health and environment: Effects of cutting Europe’s meat and dairy intake. Glob. Environ. Change 2014, 26, 196–205. [Google Scholar] [CrossRef]
- Arrieta, E.M.; González, A.D. Impact of current, National Dietary Guidelines and alternative diets on greenhouse gas emissions in Argentina. Food Policy 2018, 79, 58–66. [Google Scholar] [CrossRef]
- Head, M.; Sevenster, M.; Odegard, I.; Krutwagen, B.; Croezen, H.; Bergsma, G. Life cycle impacts of protein-rich foods: Creating robust yet extensive life cycle models for use in a consumer app. J. Clean. Prod. 2014, 73, 165–174. [Google Scholar] [CrossRef]
- Kok, A.; de Olde, E.M.; de Boer, I.J.M.; Ripoll-Bosch, R. European biodiversity assessments in livestock science: A review of research characteristics and indicators. Ecol. Indic. 2020, 112, 105902. [Google Scholar] [CrossRef]
- Mendoza, T.C. Transforming meat based to plant based diet is addressing food security and climate crisis in this millennium: A review. Int. J. Agric. Technol. 2023, 19, 517–540. [Google Scholar]
- De Carvalho, A.M.; César, C.L.G.; Fisberg, R.M.; Marchioni, D.M.L. Excessive meat consumption in Brazil: Diet quality and environmental impacts. Public Health Nutr. 2013, 16, 1893–1899. [Google Scholar] [CrossRef]
- Liu, S.; Proudman, J.; Mitloehner, F.M. Rethinking methane from animal agriculture. Agric. Biosci. 2021, 2, 22. [Google Scholar] [CrossRef]
- Marrero, A.; Anderson, E.; De La Vega, C.; Beltran, V.; Haneuse, S.; Golden, C.; Mattei, J. An integrated assessment of environmental sustainability and nutrient availability of food consumption patterns in Latin America and the Caribbean. Am. J. Clin. Nutr. 2022, 116, 1265–1277. [Google Scholar] [CrossRef] [PubMed]
- Góralska-Walczak, R.; Kopczyńska, K.; Kazimierczak, R.; Stefanovic, L.; Bieńko, M.; Oczkowski, M.; Średnicka-Tober, D. Environmental indicators of vegan and vegetarian diets: A pilot study in a group of young adult female consumers in Poland. Sustainability 2024, 16, 249. [Google Scholar] [CrossRef]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Bava, L.; Zucali, M.; Sandrucci, A.; Tamburini, A. Environmental impact of the typical heavy pig production in Italy. J. Clean. Prod. 2017, 140, 685–691. [Google Scholar] [CrossRef]
- Berardy, A.; Fresán, U.; Matos, R.A.; Clarke, A.; Mejia, A.; Jaceldo-Siegl, K.; Sabaté, J. Environmental impacts of foods in the Adventist health study-2 dietary questionnaire. Sustainability 2020, 12, 10267. [Google Scholar] [CrossRef]
- Cao, L.; Diana, J.S.; Keoleian, G.A.; Lai, Q. Life cycle assessment of Chinese shrimp farming systems targeted for export and domestic sales. Environ. Sci. Technol. 2011, 45, 6531–6538. [Google Scholar] [CrossRef]
- Temme, E.H.M.; Toxopeus, I.B.; Kramer, G.F.H.; Brosens, M.C.C.; Drijvers, J.M.M.; Tyszler, M.; Ocké, M.C. Greenhouse gas emission of diets in the Netherlands and associations with food, energy and macronutrient intakes. Public Health Nutr. 2015, 18, 2433–2445. [Google Scholar] [CrossRef]
- Yau, Y.Y.; Thibodeau, B.; Not, C. Impact of cutting meat intake on hidden greenhouse gas emissions in an import-reliant city. Environ. Res. Lett. 2018, 13, 064005. [Google Scholar] [CrossRef]
- Pressman, E.M.; Liu, S.; Mitloehner, F.M. Methane emissions from California dairies estimated using novel climate metric Global Warming Potential Star show improved agreement with modeled warming dynamics. Front. Sustain. Food Syst. 2023, 6, 1072805. [Google Scholar] [CrossRef]
- Kuempel, C.D.; Frazier, M.; Verstaen, J.; Rayner, P.E.; Blanchard, J.L.; Cottrell, R.S.; Froehlich, H.E.; Gephart, J.A.; Jacobsen, N.S.; McIntyre, P.B.; et al. Environmental footprints of farmed chicken and salmon bridge the land and sea. Curr. Biol. 2023, 33, 990–997. [Google Scholar] [CrossRef]
- Wedderburn-Bisshop, G. (World Preservation Foundation, Brighton, East Sussex, UK). Personal communication, 2025.
- Poore, J. (University of Oxford, Oxford, Oxfordhsire, UK). Private correspondence, 2018.
- Tamariska, A.Y.; Priyono, S.B.; Suadi; Triyatmo, B. Towards Sustainable Shrimp Farming: Life Cycle Assessment of Farming Practices at the Less Favorable Areas of Yogyakarta’s southern coast. Turk. J. Fish. Aquat. Sci. 2024, 24, TRJFAS23908. [Google Scholar] [CrossRef]
- Ekvall, T. Attributional and consequential life cycle assessment. In Sustainability Assessment at the 21st Century; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/chapters/69212 (accessed on 23 September 2025).
- Leip, A.; Billen, G.; Garnier, J.; Grizzetti, B.; Lassaletta, L.; Reis, S.; Simpson, D.; Sutton, M.A.; de Vries, W.; Weiss, F.; et al. Impacts of European livestock production: Nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 2015, 10, 115004. [Google Scholar] [CrossRef]
- Escribano, M.; Elghannam, A.; Mesias, F.J. Dairy sheep farms in semi-arid rangelands: A carbon footprint dilemma between intensification and land-based grazing. Land Use Policy 2020, 95, 104600. [Google Scholar] [CrossRef]
- Bhatt, A.; Abbassi, B. Life cycle impacts of sheep sector in Ontario, Canada. Int. J. Life Cycle Assess. 2022, 27, 1283–1298. [Google Scholar] [CrossRef]
- Mace, J.L.; Knight, A. Influenza risks arising from mixed intensive pig and poultry farms, with a spotlight on the United Kingdom. Front. Vet. Sci. 2023, 10, 1310303. [Google Scholar] [CrossRef]
- White, R.R.; Hall, M.B. Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, E10301–E10308. [Google Scholar] [CrossRef]
- Kerwin, N. Meatly to Sell ‘First-Ever’ Cultivated Pet Food. Pet Food Processing. 2023. Available online: https://www.petfoodprocessing.net/articles/17607-meatly-to-sell-first-ever-cultivated-pet-food (accessed on 23 September 2025).
- Woern, C.; Grossmann, L. Microbial gas fermentation technology for sustainable food protein production. Biotechnol. Adv. 2023, 69, 108240. [Google Scholar] [CrossRef]
- Ye, H.; Bhatt, S.; Deutsch, J.; Suri, R. Is there a market for upcycled pet food? J. Clean. Prod. 2022, 343, 130960. [Google Scholar] [CrossRef]
- Tribaldos, T.; Kortetmäki, T. Just transition principles and criteria for food systems and beyond. Environ. Innov. Soc. Transit. 2022, 43, 244–256. [Google Scholar] [CrossRef]
- Rowe, A. Insects Raised for Food and Feed—Global Scale, Practices, and Policy. Rethink Priorities. 2020. Available online: https://rethinkpriorities.org/research-area/insects-raised-for-food-and-feed/#:~:text=Key%20Findings%20*%20Currently%2C%201%20trillion%20to,globally%20on%20average%20on%20an%20average%20day (accessed on 23 September 2025).
- Goossens, Y.; Schmidt, T.G. Mind the Method! A Systematic Literature Review of the Methodological Choices Used to Assess the Environmental Impacts of Diets. Clean. Environ. Syst. 2025, 18, 100289. [Google Scholar] [CrossRef]
- Jennings, R.; Henderson, A.D.; Phelps, A.; Janda, K.M.; van den Berg, A.E. Five U.S. Dietary Patterns and Their Relationship to Land Use, Water Use, and Greenhouse Gas Emissions: Implications for Future Food Security. Nutrients 2023, 15, 215. [Google Scholar] [CrossRef]
- Auclair, O.; Burgos, S.A. Carbon footprint of Canadian self-selected diets: Comparing intake of foods, nutrients, and diet quality between low- and high-greenhouse gas emission diets. J. Clean. Prod. 2021, 316, 128245. [Google Scholar] [CrossRef]

| Study | Contribution of Animal Agriculture to Global GHGEs | Alternate Primary Metric | Key Parameters Included |
|---|---|---|---|
| Xu et al. [58] | 20% | N/A |
|
| Poore & Nemecek [27,67] | 16% | N/A |
|
| FAO [23] | 12% | N/A |
|
| Wedderburn-Bisshop [44,66] | N/A | 52% (proportion of present-day warming animal agriculture is responsible for) |
|
| Errickson et al. [41] | N/A | 13% (proportion of business-as-usual 3 °C warming by the end of century) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mace, J.L.; Knight, A.; Vieira, F.; Tatemoto, P.; Gameiro, M. The Missing Target: Why Industrialized Animal Farming Must Be at the Core of the Climate Agenda. Animals 2025, 15, 3256. https://doi.org/10.3390/ani15223256
Mace JL, Knight A, Vieira F, Tatemoto P, Gameiro M. The Missing Target: Why Industrialized Animal Farming Must Be at the Core of the Climate Agenda. Animals. 2025; 15(22):3256. https://doi.org/10.3390/ani15223256
Chicago/Turabian StyleMace, Jenny L., Andrew Knight, Fernanda Vieira, Patricia Tatemoto, and Mariana Gameiro. 2025. "The Missing Target: Why Industrialized Animal Farming Must Be at the Core of the Climate Agenda" Animals 15, no. 22: 3256. https://doi.org/10.3390/ani15223256
APA StyleMace, J. L., Knight, A., Vieira, F., Tatemoto, P., & Gameiro, M. (2025). The Missing Target: Why Industrialized Animal Farming Must Be at the Core of the Climate Agenda. Animals, 15(22), 3256. https://doi.org/10.3390/ani15223256

