A Feasibility Study to Determine Whether Neuromuscular Adaptations to Equine Water Treadmill Exercise Can Be Detected Using Synchronous Surface Electromyography and Kinematic Data
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Horse Preparation
2.2. Data Acquisition Protocol
2.3. Data Analysis
2.3.1. Kinematic Data
2.3.2. sEMG Data
2.4. Statistical Analysis
3. Results and Discussion
3.1. Hindlimb Muscle Activity
3.1.1. Biceps Femoris and Gluteus Medius
3.1.2. Tensor Fascia Latae
3.2. Longissimus Dorsi and Axial Kinematics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 3D | Three-Dimensional |
| BF | Biceps Femoris |
| GM | Gluteus Medius |
| IMU | Inertial Measurement Unit |
| LD | Longissimus Dorsi |
| OG | Overground |
| OMC | Optical Motion Capture System |
| PA | Peak Amplitude |
| RVC | Reference Voluntary Contraction |
| sEMG | Surface Electromyography |
| TFL | Tensor Fascia Latae |
| TM | Treadmill |
| TS | Tubera Sacrale |
| WT | Water Treadmill |
References
- Tabor, G.; Williams, J. Equine rehabilitation: A review of trunk and hind limb muscle activity and exercise selection. J. Equine Vet. Sci. 2018, 60, 97–103.e3. [Google Scholar] [CrossRef]
- Voss, B.; Mohr, E.; Krzywanek, H. Effects of aqua-treadmill exercise on selected blood parameters and on heart-rate variability of horses. J. Vet. Med. Ser. A 2002, 49, 137–143. [Google Scholar] [CrossRef]
- Clayton, H.M. Conditioning Sport Horses; Sport Horse Publications Mason: Mason, MI, USA, 1991. [Google Scholar]
- Haussler, K.; King, M.; Peck, K.; Adair, H. The development of safe and effective rehabilitation protocols for horses. Equine Vet. Educ. 2021, 33, 143–151. [Google Scholar] [CrossRef]
- Nankervis, K.J.; Launder, E.J.; Murray, R.C. The use of treadmills within the rehabilitation of horses. J. Equine Vet. Sci. 2017, 53, 108–115. [Google Scholar] [CrossRef]
- Goff, L.; Stubbs, N. Equine treatment and rehabilitation. Anim. Physiother. 2007, 594, 240. [Google Scholar]
- Buchner, H.; Savelberg, H.; Schamhardt, H.; Merkens, H.; Barneveld, A. Kinematics of treadmill versus overground locomotion in horses. Vet. Q. 1994, 16, 87–90. [Google Scholar] [CrossRef]
- Mendez-Angulo, J.L.; Firshman, A.M.; Groschen, D.M.; Kieffer, P.J.; Trumble, T.N. Effect of water depth on amount of flexion and extension of joints of the distal aspects of the limbs in healthy horses walking on an underwater treadmill. Am. J. Vet. Res. 2013, 74, 557–566. [Google Scholar] [CrossRef]
- McCrae, P.; Bradley, M.; Rolian, C.; Léguillette, R. Water height modifies forelimb kinematics of horses during water treadmill exercise. Comp. Exerc. Physiol. 2021, 17, 91–98. [Google Scholar] [CrossRef]
- Tranquille, C.; Tacey, J.; Walker, V.; Mackechnie-Guire, R.; Ellis, J.; Nankervis, K.; Newton, R.; Murray, R. Effect of Water Depth on Limb and Back Kinematics in Horses Walking on a Water Treadmill. J. Equine Vet. Sci. 2022, 115, 104025. [Google Scholar] [CrossRef] [PubMed]
- Nankervis, K.J.; Lefrancois, K. A comparison of protraction-retraction of the distal limb during treadmill and water treadmill walking in horses. J. Equine Vet. Sci. 2018, 70, 57–62. [Google Scholar] [CrossRef]
- Mooij, M.; Jans, W.; Den Heijer, G.; De Pater, M.; Back, W. Biomechanical responses of the back of riding horses to water treadmill exercise. Vet. J. 2013, 198, e120–e123. [Google Scholar] [CrossRef]
- Nankervis, K.; Tranquille, C.; Chojnacka, K.; Tacey, J.; Deckers, I.; Newton, J.; Murray, R. Effect of speed and water depth on limb and back kinematics in Thoroughbred horses walking on a water treadmill. Vet. J. 2023, 300, 106033. [Google Scholar] [CrossRef]
- Nankervis, K.; Finney, P.; Launder, L. Water depth modifies back kinematics of horses during water treadmill exercise. Equine Vet. J. 2016, 48, 732–736. [Google Scholar] [CrossRef]
- Scott, R.; Nankervis, K.; Stringer, C.; Westcott, K.; Marlin, D. The effect of water height on stride frequency, stride length and heart rate during water treadmill exercise. Equine Vet. J. 2010, 42, 662–664. [Google Scholar] [CrossRef]
- Goff, L. Equine sports medicine and performance management. In Animal Physiotherapy: Assessment, Treatment and Rehabilitation of Animals; Wiley: Hoboken, NJ, USA, 2016; Volume 338, p. 329. [Google Scholar]
- Alvarez, C.G.; Rhodin, M.; Byström, A.; Back, W.; Van Weeren, P. Back kinematics of healthy trotting horses during treadmill versus over ground locomotion. Equine Vet. J. 2009, 41, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Angulo, J.L.; Firshman, A.M.; Groschen, D.M.; Kieffer, P.J.; Trumble, T.N. Impact of walking surface on the range of motion of equine distal limb joints for rehabilitation purposes. Vet. J. 2014, 199, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Valette, J.P.; Pourcelot, P.; AudigiÉ, F.; Denoix, J.M. Effects of trotting speed on muscle activity and kinematics in saddlehorses. Equine Vet. J. 2002, 34, 295–301. [Google Scholar] [CrossRef]
- Robert, C.; Valette, J.P.; Denoix, J.M. The effects of treadmill inclination and speed on the activity of two hindlimb muscles in the trotting horse. Equine Vet. J. 2000, 32, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Crook, T.C.; Wilson, A.; Hodson-Tole, E. The effect of treadmill speed and gradient on equine hindlimb muscle activity. Equine Vet. J. 2010, 42, 412–416. [Google Scholar] [CrossRef]
- Tokuriki, M.; Ohtsuki, R.; KAl, M.; Hiraga, A.; Oki, H.; Miyahara, Y.; Aoki, O. EMG activity of the muscles of the neck and forelimbs during different forms of locomotion. Equine Vet. J. 1999, 31, 231–234. [Google Scholar] [CrossRef]
- Greco-Otto, P.; Bond, S.; Sides, R.; Kwong, G.P.; Bayly, W.; Léguillette, R. Workload of horses on a water treadmill: Effect of speed and water height on oxygen consumption and cardiorespiratory parameters. BMC Vet. Res. 2017, 13, 360. [Google Scholar] [CrossRef]
- Tranquille, C.A.; Tacey, J.B.; Walker, V.A.; Nankervis, K.J.; Murray, R.C. International survey of equine water treadmills—Why, when, and how? J. Equine Vet. Sci. 2018, 69, 34–42. [Google Scholar] [CrossRef]
- Wilson, J.M.; McKenzie, E.; Duesterdieck-Zellmer, K. International survey regarding the use of rehabilitation modalities in horses. Front. Vet. Sci. 2018, 5, 120. [Google Scholar] [CrossRef] [PubMed]
- Potenza, K.N.; Huggons, N.A.; Jones, A.R.; Rosanowski, S.M.; McIlwraith, C.W. Comparing racing performance following arthroscopic surgery of metacarpophalangeal/metatarsophalangeal and carpal joints in Thoroughbred racehorses rehabilitated using conventional and underwater treadmill therapies. Vet. Rec. 2020, 187, 355. [Google Scholar] [CrossRef]
- King, M.R.; Haussler, K.K.; Kawcak, C.E.; McIlwraith, C.W.; Reiser, R.F.; Frisbie, D.D.; Werpy, N.M. Biomechanical and histologic evaluation of the effects of underwater treadmill exercise on horses with experimentally induced osteoarthritis of the middle carpal joint. Am. J. Vet. Res. 2017, 78, 558–569. [Google Scholar] [CrossRef]
- King, M.R.; Haussler, K.K.; Kawcak, C.E.; McIlwraith, C.W.; Reiser II, R.F. Effect of underwater treadmill exercise on postural sway in horses with experimentally induced carpal joint osteoarthritis. Am. J. Vet. Res. 2013, 74, 971–982. [Google Scholar] [CrossRef]
- King, M.; Haussler, K.; Kawcak, C.; McIlwraith, C.; Reiser, R. Mechanisms of aquatic therapy and its potential use in managing equine osteoarthritis. Equine Vet. Educ. 2013, 25, 204–209. [Google Scholar] [CrossRef]
- Greco-Otto, P.; Bond, S.; Sides, R.; Bayly, W.; Leguillette, R. Conditioning equine athletes on water treadmills significantly improves peak oxygen consumption. Vet. Rec. 2020, 186, 250. [Google Scholar] [CrossRef]
- de Meeûs d’Argenteuil, C.; Boshuizen, B.; Oosterlinck, M.; van de Winkel, D.; De Spiegelaere, W.; de Bruijn, C.M.; Goethals, K.; Vanderperren, K.; Delesalle, C.J.G. Flexibility of equine bioenergetics and muscle plasticity in response to different types of training: An integrative approach, questioning existing paradigms. PLoS ONE 2021, 16, e0249922. [Google Scholar] [CrossRef] [PubMed]
- Van de Winkel, D.; de Bruijn, M.; Touwen, N.; Duchateau, L.; Goethals, K.; Oosterlinck, M.; Pille, F.; Vanderperren, K.; Delesalle, C. Morphological changes in 15 skeletal muscles of horses after 8 weeks of aquatraining. In Proceedings of the 8th International conference on Canine and Equine Locomotion (ICEL 8), London, UK, 17–19 August 2016; p. 30. [Google Scholar]
- Murray, R.C.; Hopkins, E.; Tracey, J.B.; Nankervis, K.; Deckers, I.; Mackechnie-Guire, R.; Tranquille, C.A. Change in muscle development of horses undergoing 20 weeks of water treadmill exercise compared with control horses. In Proceedings of the British Equine Veterinary Association Congress 2020: BEVA 2020, Birmingham, UK, 16–19 January 2020. [Google Scholar]
- Nankervis, K.; Williams, R. Heart rate responses during acclimation of horses to water treadmill exercise. Equine Vet. J. 2006, 38, 110–112. [Google Scholar] [CrossRef]
- Wakeling, J.M.; Ritruechai, P.; Dalton, S.; Nankervis, K. Segmental variation in the activity and function of the equine longissimus dorsi muscle during walk and trot. Equine Comp. Exerc. Physiol. 2007, 4, 95–103. [Google Scholar] [CrossRef]
- Spoormakers, T.J.; St. George, L.; Smit, I.H.; Hobbs, S.J.; Brommer, H.; Clayton, H.M.; Roy, S.H.; Richards, J.; Serra Bragança, F.M. Adaptations in equine axial movement and muscle activity occur during induced fore-and hindlimb lameness: A kinematic and electromyographic evaluation during in-hand trot. Equine Vet. J. 2023, 55, 1112–1127. [Google Scholar] [CrossRef]
- St. George, L.B.; Spoormakers, T.J.; Smit, I.H.; Hobbs, S.J.; Clayton, H.M.; Roy, S.H.; Van Weeren, P.R.; Richards, J.; Serra Bragança, F.M. Adaptations in equine appendicular muscle activity and movement occur during induced fore-and hindlimb lameness: An electromyographic and kinematic evaluation. Front. Vet. Sci. 2022, 9, 989522. [Google Scholar] [CrossRef]
- St. George, L.; Clayton, H.M.; Sinclair, J.; Richards, J.; Roy, S.H.; Hobbs, S.J. Muscle Function and Kinematics during Submaximal Equine Jumping: What Can Objective Outcomes Tell Us about Athletic Performance Indicators? Animals 2021, 11, 414. [Google Scholar] [CrossRef]
- Schuurman, S.O.; Kersten, W.; Weijs, W.A. The Equine Hind Limb Is Actively Stabilized during Standing. J. Anat. 2003, 202, 355–362. [Google Scholar] [CrossRef]
- Robert, C.; Valette, J.P.; Degueurce, C.; Denoix, J.M. Correlation between Surface Electromyography and Kinematics of the Hindlimb of Horses at Trot on a Treadmill. Cells Tissues Organs 1999, 165, 113–122. [Google Scholar] [CrossRef] [PubMed]
- da Silva, N.V.; Bernardino Júnior, R.; Nomelini, Q.S.S.; Pereira, G.F.; Delfiol, D.J.Z.; Nogueira, G.M. Electromyographic and behavioral analysis of horses submitted to medial patellar desmotomy. Vet. Res. Commun. 2024, 48, 4153–4158. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- De Luca, C.J. The use of surface electromyography in biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef]
- Nankervis, K.; Tranquille, C.; McCrae, P.; York, J.; Lashley, M.; Baumann, M.; King, M.; Sykes, E.; Lambourn, J.; Miskimmin, K.-A. Consensus for the general use of equine water treadmills for healthy horses. Animals 2021, 11, 305. [Google Scholar] [CrossRef]
- Roepstorff, C.; Dittmann, M.T.; Arpagaus, S.; Braganca, F.M.S.; Hardeman, A.; Persson-Sjödin, E.; Roepstorff, L.; Gmel, A.I.; Weishaupt, M.A. Reliable and clinically applicable gait event classification using upper body motion in walking and trotting horses. J. Biomech. 2021, 114, 110146. [Google Scholar] [CrossRef]
- Pfau, T.; Witte, T.H.; Wilson, A.M. A method for deriving displacement data during cyclical movement using an inertial sensor. J. Exp. Biol. 2005, 208, 2503–2514. [Google Scholar] [CrossRef]
- Bragança, F.S.; Roepstorff, C.; Rhodin, M.; Pfau, T.; Van Weeren, P.; Roepstorff, L. Quantitative lameness assessment in the horse based on upper body movement symmetry: The effect of different filtering techniques on the quantification of motion symmetry. Biomed. Signal Process. Control 2020, 57, 101674. [Google Scholar] [CrossRef]
- Bosch, S.; Serra Bragança, F.; Marin-Perianu, M.; Marin-Perianu, R.; Van der Zwaag, B.J.; Voskamp, J.; Back, W.; Van Weeren, R.; Havinga, P. EquiMoves: A wireless networked inertial measurement system for objective examination of horse gait. Sensors 2018, 18, 850. [Google Scholar] [CrossRef]
- Hobbs, S.J.; Richards, J.; Clayton, H.M. The Effect of Centre of Mass Location on Sagittal Plane Moments around the Centre of Mass in Trotting Horses. J. Biomech. 2014, 47, 1278–1286. [Google Scholar] [CrossRef]
- Hardeman, A.; Byström, A.; Roepstorff, L.; Swagemakers, J.; van Weeren, P.; Serra Bragança, F. Range of motion and between-measurement variation of spinal kinematics in sound horses at trot on the straight line and on the lunge. PLoS ONE 2020, 15, e0222822. [Google Scholar] [CrossRef]
- St. George, L.; Hobbs, S.J.; Richards, J.; Sinclair, J.; Holt, D.; Roy, S.H. The effect of cut-off frequency when high-pass filtering equine sEMG signals during locomotion. J. Electromyogr. Kinesiol. 2018, 43, 28–40. [Google Scholar] [CrossRef]
- Licka, T.; Frey, A.; Peham, C. Electromyographic activity of the longissimus dorsi muscles in horses when walking on a treadmill. Vet. J. 2009, 180, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Zsoldos, R.; Kotschwar, A.; Kotschwar, A.; Rodriguez, C.; Peham, C.; Licka, T. Activity of the equine rectus abdominis and oblique external abdominal muscles measured by surface EMG during walk and trot on the treadmill. Equine Vet. J. 2010, 42, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Zsoldos, R.; Kotschwar, A.; Kotschwar, A.; Groesel, M.; Licka, T.; Peham, C. Electromyography activity of the equine splenius muscle and neck kinematics during walk and trot on the treadmill. Equine Vet. J. 2010, 42, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Smit, I.H.; Hernlund, E.; Brommer, H.; van Weeren, P.R.; Rhodin, M.; Serra Braganca, F.M. Continuous versus discrete data analysis for gait evaluation of horses with induced bilateral hindlimb lameness. Equine Vet. J. 2022, 54, 626–633. [Google Scholar] [CrossRef]
- Hobbs, S.J.; Robinson, M.A.; Clayton, H.M. A simple method of equine limb force vector analysis and its potential applications. PeerJ 2018, 6, e4399. [Google Scholar] [CrossRef]
- Wentink, G.H. Biokinetical Analysis of the Movements of the Pelvic Limb of the Horse and the Role of the Muscles in the Walk and the Trot. Anat. Embryol. 1978, 152, 261–272. [Google Scholar] [CrossRef]
- Eldridge, F.; St George, L.B.; Chapman, M.; Harrison, L.; Tabor, G.; Uttley, C.; Clayton, H.M. A comparison of equine hind limb muscle activation and joint motion between forward and backward walking. J. Equine Rehabil. 2025, 3, 100036. [Google Scholar] [CrossRef]
- Tokuriki, M.; Aoki, O. Electromyographic Activity of the Hindlimb Muscles during the walk, Trot and Canter. Equine Vet. J. 1995, 27, 152–155. [Google Scholar] [CrossRef]
- Zsoldos, R.R.; Voegele, A.; Krueger, B.; Schroeder, U.; Weber, A.; Licka, T. Long term Consistency and Location Specificity of Equine Gluteus Medius Muscle Activity During Locomotion on the Treadmill. BMC Vet. Res. 2018, 14, 126. [Google Scholar] [CrossRef]
- Prosser, L.A.; Stanley, C.J.; Norman, T.L.; Park, H.S.; Damiano, D.L. Comparison of elliptical training, stationary cycling, treadmill walking and overground walking. Electromyographic patterns. Gait Posture 2011, 33, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Hidler, J. Biomechanics of overground vs. treadmill walking in healthy individuals. J. Appl. Physiol. 2008, 104, 747–755. [Google Scholar] [CrossRef]
- Murray, M.; Spurr, G.; Sepic, S.; Gardner, G.; Mollinger, L. Treadmill vs. floor walking: Kinematics, electromyogram, and heart rate. J. Appl. Physiol. 1985, 59, 87–91. [Google Scholar] [CrossRef]
- Masumoto, K.; Shono, T.; Hotta, N.; Fujishima, K. Muscle activation, cardiorespiratory response, and rating of perceived exertion in older subjects while walking in water and on dry land. J. Electromyogr. Kinesiol. 2008, 18, 581–590. [Google Scholar] [CrossRef]
- Nankervis, K.; Tranquille, C.; Tacey, J.; Deckers, I.; MacKechnie-Guire, R.; Walker, V.; Hopkins, E.; Newton, R.; Murray, R. Kinematic Responses to Water Treadmill Exercise When Used Regularly within a Sport Horse Training Programme: A Longitudinal, Observational Study. Animals 2024, 14, 2393. [Google Scholar] [CrossRef]
- von Scheven, C. The Anatomy and Function of the Equine Thoracolumbar Longissimus Dorsi Muscle. Ph.D. Thesis, Ludwig Maximilian University of Munich, Munich, Germany, 2010. [Google Scholar]
- Tokuriki, M.; Otsuki, R.; Kai, M.; Hiraga, A.; Aoki, O. Electromyographic activity of trunk muscles during locomotion on a treadmill. J. Equine Vet. Sci. 1997, 17, 488. [Google Scholar]
- Robert, C.; Valette, J.P.; Denoix, J.-M. Surface electromyographic analysis of the normal horse locomotion: A preliminary report. In Proceedings of the Conference on Equine Sports Medicine and Science, Cordoba, Spain, 24–26 April 1998; pp. 80–85. [Google Scholar]
- Robert, C.; Valette, J.; Denoix, J.M. The effects of treadmill inclination and speed on the activity of three trunk muscles in the trotting horse. Equine Vet. J. 2001, 33, 466–472. [Google Scholar] [CrossRef]
- Haussler, K.; Bertram, J.; Gellman, K.; Hermanson, J. Segmental in vivo vertebral kinematics at the walk, trot and canter: A preliminary study. Equine Vet. J. 2001, 33, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Faber, M.; Johnston, C.; Schamhardt, H.; van Weeren, R.; Roepstorff, L.; Barneveld, A. Basic three-dimensional kinematics of the vertebral column of horses trotting on a treadmill. Am. J. Vet. Res. 2001, 62, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Faber, M.; Schamhardt, H.; van Weeren, R.; Johnston, C.; Roepstorff, L.; Barneveld, A. Basic three-dimensional kinematics of the vertebral column of horses walking on a treadmill. Am. J. Vet. Res. 2000, 61, 399–406. [Google Scholar] [CrossRef] [PubMed]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
St. George, L.; Nankervis, K.; Walker, V.; Maddock, C.; Robinson, A.; Sinclair, J.; Hobbs, S.J. A Feasibility Study to Determine Whether Neuromuscular Adaptations to Equine Water Treadmill Exercise Can Be Detected Using Synchronous Surface Electromyography and Kinematic Data. Animals 2025, 15, 3189. https://doi.org/10.3390/ani15213189
St. George L, Nankervis K, Walker V, Maddock C, Robinson A, Sinclair J, Hobbs SJ. A Feasibility Study to Determine Whether Neuromuscular Adaptations to Equine Water Treadmill Exercise Can Be Detected Using Synchronous Surface Electromyography and Kinematic Data. Animals. 2025; 15(21):3189. https://doi.org/10.3390/ani15213189
Chicago/Turabian StyleSt. George, Lindsay, Kathryn Nankervis, Victoria Walker, Christy Maddock, Amy Robinson, Jonathan Sinclair, and Sarah Jane Hobbs. 2025. "A Feasibility Study to Determine Whether Neuromuscular Adaptations to Equine Water Treadmill Exercise Can Be Detected Using Synchronous Surface Electromyography and Kinematic Data" Animals 15, no. 21: 3189. https://doi.org/10.3390/ani15213189
APA StyleSt. George, L., Nankervis, K., Walker, V., Maddock, C., Robinson, A., Sinclair, J., & Hobbs, S. J. (2025). A Feasibility Study to Determine Whether Neuromuscular Adaptations to Equine Water Treadmill Exercise Can Be Detected Using Synchronous Surface Electromyography and Kinematic Data. Animals, 15(21), 3189. https://doi.org/10.3390/ani15213189

