You are currently viewing a new version of our website. To view the old version click .
Animals
  • Systematic Review
  • Open Access

1 September 2025

Hemoparasites in Wild Birds: A Systematic Review of Their Ecology and Clinical Implications

,
and
1
Group of Rehabilitation of the Wild Fauna and Its Habitat, Wildlife Hospital of GREFA, 28220 Majadahonda, Spain
2
Department of Animal Health, Faculty of Veterinary Sciences, University Complutense of Madrid, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
3
Department of Veterinary Medicine, School of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Exploring Wildlife Parasitology: Impacts on Health, Biodiversity, and Ecosystems

Simple Summary

Blood parasites transmitted by insects can affect wild birds across the globe, but their impact on bird health is not well understood. This study reviewed existing scientific research to better understand these parasites and how they affect birds in nature. Although more research has been performed in recent years, it is mostly limited to certain regions and types of birds. There are still many challenges in identifying these parasites, especially when studying birds in the wild or at rescue centers. However, modern laboratory tools have helped scientists to learn more about the variety of parasites and how they interact with their bird hosts. This review points out the gaps in current knowledge and calls for more research to understand how these parasites affect bird populations, especially as environmental changes and new diseases continue to emerge. A deeper understanding of these parasites will help to protect bird health and biodiversity in a changing world.

Abstract

Hemoparasites are blood-borne parasites transmitted by vectors and are commonly found in wild birds worldwide. The most frequently reported genera include Plasmodium, Haemoproteus, Leucocytozoon, and Trypanosoma, while filarial worms and other hemoparasites are less frequently reported. Despite their importance, knowledge of their effects on the health of wild birds remains limited. This systematic review summarizes all scientific findings on hemoparasites in wild birds, emphasizing their implications for host health. The literature reveals a high number of articles in this area in recent decades, reflecting a growing concern about hemoparasites in wildlife and their ecological impact. However, studies remain unevenly distributed across regions and bird taxa. Diagnostic limitations, particularly in fieldwork and wildlife rehabilitation, continue to present challenges for the accurate detection and monitoring of these parasites. Nevertheless, molecular tools have advanced our understanding of parasite diversity and host–parasite dynamics. Our work highlights key knowledge gaps and stresses the need for further research to improve the understanding of the role of hemoparasites in avian ecology, particularly concerning environmental change and emerging infectious diseases.

1. Introduction

Parasitism can be defined as an interspecific association between two organisms, the parasite and the host. The parasite is metabolically reliant on the host and engages in a mutual exchange of substances [,,]. Hemoparasites are obligatory parasitic organisms that infect the blood cells of vertebrate animals. Vectors transmit them and are currently distributed across all continents []. The impact on human and animal health is substantial, with numerous species of hemoparasites recognized for causing diseases ranging from debilitating to fatal. Vector-borne diseases are subject to constant changes due to global warming, species migration, globalization, and vector transportation, among others []. Their significance in veterinary medicine is well recognized. However, compared to domestic species, knowledge regarding their biology, transmission, and particularly pathogenesis in wildlife remains limited [,].
The most common hemoparasites among wild birds are unicellular protists, such as Haemoproteus spp., Leucocytozoon spp., Plasmodium spp., and Trypanosoma spp. [,,,]. The genera Haemoproteus, Leucocytozoon, and Plasmodium belong to the order Haemospororida within the phylum Apicomplexa. By contrast, the genus Trypanosoma is classified under the order Trypanosomatida within the phylum Euglenozoa [].
One of the main challenges in the study of hemoparasites arises from the vast diversity of species, including hosts, hemoparasites, and even vectors. Furthermore, the high dispersal ability of these avian species facilitates contact between diverse hemoparasites and vectors. This increases the likelihood of interactions with naive hosts, making the study more complex, as these host–parasite relationships constantly evolve []. Also, the increased vectorial spread observed in some geographic regions over the past few decades may promote the geographic distribution of vector-borne diseases [,].
Wild birds are key agents in the non-anthropogenic spread of pathogens due to their high dispersal capacity [,,]. Although certain well-known hemoparasites, such as Plasmodium falciparum and Trypanosoma brucei, have been well studied, many others, particularly those affecting wildlife, remain poorly understood []. Furthermore, the persistent threat of climate change as a major driver in the emergence and re-emergence of infectious diseases has underscored the growing need to understand the ecological and evolutionary factors that drive the spread of hemoparasites [,].
Notably, most countries lack formal wildlife surveillance systems, and the detection of hemoparasites often relies on wildlife rehabilitation centers, which report cases within the constraints of their diagnostic and operational capacities. This fragmented and limited data collection hinders a comprehensive understanding of hemoparasite–host interactions and highlights the urgent need for more systematic and targeted research in this area.
In this context, this systematic review aimed to summarize the scientific information about hemosporidian hemoparasites (Plasmodium, Haemoproteus, and Leucocytozoon) in wild birds and their consequences for host health and to identify gaps in the field of study. Other blood parasites, such as filarial worms or Trypanosoma spp., were considered only when reported in the same studies addressing hemosporidians but were not the primary focus of the search strategy.

2. Materials and Methods

To achieve this, a systematic review was conducted using the PubMed and Google Scholar platforms, focusing on two items: “Hemoparasites” (item 1) and “Wild birds” (item 2). Different search terms for each item were combined by the Boolean operators “OR” and “AND.” For item 1, the search terms were “Hemoparasite”, “Hemosporidia”, “Apicomplexa”, “Plasmodium”, “Trypanosoma”, “Haemoproteus”, and “Leucocytozoon.” For item 2, only “wild bird” was employed. The search strategy was designed to target hemosporidian hemoparasites in wild birds; therefore, search terms referring exclusively to non-hemosporidian parasites (e.g., microfilariae) were not included. The search was performed in May 2024, and 876 publications were obtained from the first search. Then, following the PRISMA 2020 statement [], titles and abstracts were reviewed, and only manuscripts that agreed on both items were included. Studies focused only on hemoparasite vectors, without original data from wild birds, were excluded. Only those that included both vector studies and analyses of hemoparasites in wild birds within the same article were included in this analysis. Other exclusion criteria were full text not available online, non-original studies (reviews, book chapters, and similar), other than peer-reviewed studies, published in non-indexed journals, and language other than English, French, or Spanish (Figure 1). Finally, 231 studies were included in the present review.
Figure 1. Flow diagram of articles reviewed for the study, following PRISMA 2020 statement [].

3. Bibliometric Analysis

The first study about hemoparasites in wild birds was published in 1959. Since then, the number of publications per year was low until the new millennium. Interest in wildlife research has been increasing, along with the overall number of scientific studies, especially in the last decade, with a mean of 16.8 published original studies on hemoparasites per year (Figure 2). The increase in number of publications after the early 2000s coincides with advances in molecular diagnostics, which have facilitated more sensitive and large-scale parasite detection.
Figure 2. Comparative line chart of annual publications on hemoparasites in wild birds and worldwide scientific publications.
Considering only original studies, 188 were descriptive, 35 were experimental, and 8 were case reports (Figure 3A). From the descriptive and case reports publications, 162 were focused on multiple hemoparasite genera (82.7%), while 34 were focused only on one genus (17.3%) (Figure 3B). Overall, 82.4% of the descriptive studies provided data about Plasmodium, 84.6% about Haemoproteus, 63.8% about Leucocytozoon, 19.6% about Trypanosoma, and 12.7% about filariae. Other protozoan hemoparasite genera (7.8%) described in wild birds were Lankesterella, Hepatozoon, Babesia, Atoxoplasma, Crithidia, Blastocrithidia, Herpetomonas, Leptomonas, and Wallaceina, and hemoparasite bacteria such as Borrelia, Ehrlichia, and Aegyptianella. It is important to note that many of the studies, particularly older ones, did not report parasite identifications beyond the genus level or did not provide quantitative data for each host species. This limitation prevents the construction of a comprehensive cross-distribution table linking each bird taxon to specific hemoparasite taxa without introducing bias.
Figure 3. (A) Distribution of types of original articles on hemoparasites in wild birds. (B) Number of descriptive articles providing data on the main genera of avian hemoparasites. Most of the studies address more than one hemoparasite genus.
According to study location, most of the studies were carried out in Europe (37.7%) [,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,], followed by North America (21.2%) [,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,], Asia (12.8%) [,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,], South America (12%) [,,,,,,,,,,,,,,,,,,,,,,,,,,,,], Africa (9.7%) [,,,,,,,,,,,,,,,,,,,,], Oceania (4.6%) [,,,,,,,,,,,], Central America (1.7%) [,,], and Antarctica (0.3%) []. The United States (18.6%), Spain (9.5%), Brazil (6.9%), Russia (6.5%), the United Kingdom (5.1%), and Japan (4.3%) were the countries with the highest numbers of hemoparasite studies in wild birds in decreasing order (Figure 4). Countries leading in publication output, such as the USA, Spain, and Brazil, often benefit from established ornithological research networks, long-term ecological monitoring programs, and targeted funding for emerging infectious disease research. Conversely, regions with rich avian biodiversity but low research output, such as parts of Africa and Southeast Asia, likely face limitations in research infrastructure, funding allocation, and international collaboration opportunities.
Figure 4. Worldwide distribution of original studies published from 1959 to 2024 about hemoparasites in wild birds.
Only 14 of the 231 individual studies included in this systematic review were conducted in more than one country, highlighting the scarcity of multi-country research efforts [,,,,,,,,,,,,,]. The predominance of single-country studies also indicates that cross-border collaborations remain underdeveloped, despite the transboundary nature of avian migrations and parasite transmission. Strengthening these collaborations could enhance data comparability, fill geographic gaps, and better integrate parasite ecology into conservation and public health strategies.
More than 1800 avian species have been investigated, representing 176 different families and 33 orders. Among them, the species most assessed was the house sparrow (Passer domesticus) (26/188 descriptive studies included this species, 13.8%). The taxonomic focus on certain avian orders, especially Passeriformes (1138/1802 species, 63.2%), likely reflects both sampling convenience and the existence of well-funded monitoring schemes in temperate regions. The proportion of avian orders in which hemoparasites have been assessed is represented in Figure 5, and more details can be found in Supplementary Table S1.
Figure 5. (A) Representation of the avian taxonomic orders most assessed over the 188 descriptive studies included in the systematic review. The number of species analyzed within each order is detailed in the graphic’s margin. The asterisk (*) represents the compilation of the least representative orders (with less than 10 species each). (B) Details of the proportions of the least representative orders.
Among the published original studies, 194 were identified as “captured in the field”, 28 were classified as “admitted to recovery centers”, and 9 included both categories.

5. Lesions and Mortality

Eighteen studies included in this review analyzed mortality directly associated with the presence of hemoparasites. In captured free-living birds where individuals were assumed to return to the same nest box, survival rates were inferred based on the absence of recapture on the following performances [,,]. Other investigations were conducted on deceased individuals, primarily during mortality outbreaks in penguins [,,,,]. The number of specimens analyzed in each study was generally small, limiting the potential for statistical associations. In these cases, the matrix analyzed often consisted of tissue samples with abundant histological descriptions, mainly of the liver, spleen, and lungs. These five articles examined the presence of Plasmodium spp., among other hemoparasites, and four reported hepatic alterations. These findings were observed through histopathological analysis or postmortem examination, such as hepatomegaly [,] or pinpoint flat white to off-white spots disseminated over the hepatic capsule []. The latter revealed a high number of protozoan schizonts and macrophages within hepatic vessels and parenchyma [,,], as well as lipid accumulation in hepatocytes []. Additionally, these five studies reported alterations in the spleen, such as splenomegaly [,], multifocal necrotic areas within the splenic parenchyma [], and increased phagocytic activity [,,,]. Furthermore, some studies also noted pulmonary lesions, including pulmonary edema [,], interstitial hypercellularity [], and pulmonary congestion [].
As stated above, the number of studies directly linking hemoparasitic infection to mortality rate was limited, primarily due to small sample sizes and the inherent challenges of field-based data collection. Nevertheless, the consistent pathological findings across these investigations highlight a clear association between Plasmodium spp. infection and damage to vital organs. The recurring hepatic, splenic, and pulmonary alterations observed underscore the potential severity of hemoparasitic infections, particularly during mortality outbreaks [,,,,]. These findings reinforce the importance of incorporating histopathological analysis into postmortem studies to deepen our understanding of the pathological mechanisms and broader health impacts of hemoparasites in avian species.

6. Diagnostic Methods

It is often challenging to obtain enough subjects or representative samples to conduct a meaningful study with wild birds, which impedes progress in advancing knowledge in this field. Furthermore, diagnostic techniques are often limited to optical microscopy due to the limited resources available in rehabilitation centers. Optical microscopy may lack high sensitivity, and its specificity can vary depending on the observer’s experience []. The development of new diagnostic techniques to detect hemoparasites in recent decades has enabled, among other things, a better understanding of these parasitic infections [], which is crucial for establishing greater control over them, particularly in tropical and subtropical regions where favorable ecological conditions require sustained surveillance and control measures. Despite these challenges, the growing field of hemoparasitology has begun to address some of these gaps in knowledge. Advances in molecular techniques, such as next-generation sequencing, have allowed for a more detailed understanding of hemoparasite genomes, enabling researchers to explore new aspects of parasite biology and host-parasite interactions. However, much work remains to completely clarify the immune response to hemoparasitic infections, their transmission dynamics, and the broader ecological factors that influence their prevalence and health impact.
To analyze the detection of different hemoparasites, the type of sample collected for analysis in each article was compiled. It was reasonable to assume that blood would be the most significant sample collected, as venipuncture is a safe and accessible method in avian species of nearly all sizes when performed by a trained veterinarian. It causes minimal harm to the animal [], although some samples were taken directly from heart puncture []. Out of the 231 articles analyzed, 194 collected only blood, 13 collected only organs, and 22 collected both blood and organs. Feathers were collected in two of the articles; in one, blood was also collected [], and in the other, organs were collected []. The organ samples included the intestine, muscle, spleen, liver, lungs, and brain, among others. Although using blood as a matrix for hemoparasite analysis demonstrates the ease of sample collection and the opportunity to detect hemoparasites circulating in peripheral blood, hemoparasitic infections may go undetected. Moreover, prevalence may be underestimated in host individuals with chronic infections not undergoing a relapse phase characterized by elevated blood parasitemia [,]. Ideally, hemoparasite detection should include the analysis of additional matrices beyond blood, such as internal organs [].
The techniques employed with these samples were compiled and divided into the following categories: optical microscopy, nested PCR (nPCR), conventional PCR (PCR), real-time PCR (qPCR), histology or histopathology, enzyme-linked immunosorbent assay (ELISA), chromogenic in situ hybridization (CISH), electron microscopy, and others. The numbers of studies that employed each recorded technique are detailed in Figure 6. Although some studies addressed the variability in hemoparasite detection results across different diagnostic techniques [,,], optical microscopy was the most employed method. The low cost and short processing time of microscopy and the development of various microscopic quantification approaches have contributed to its continued use. Moreover, microscopy has shown comparable effectiveness to molecular techniques such as nPCR in detecting hemoparasites [].
Figure 6. Frequency of use of diagnostic techniques in the reviewed studies. ‘Others’ category includes serology, including ELISA, in situ hybridization (ISH), immunohistochemistry, the buffy coat method, electron microscopy, and genomic sequencing, among others.
A temporal evolution analysis of the different techniques was designed to better understand the various techniques used for analyzing hemoparasitosis, as shown in Figure 7. Scientific advances in the development of molecular techniques are reflected in their increasing use over time, progressively displacing other diagnostic methods.
Figure 7. Temporal trends in the use of the four most common diagnostic techniques (1959–2023).
In this way, to determine the type of technique used for analyzing each hemoparasitosis, data on each of the hemoparasites analyzed with the four most common methods in hemoparasite analysis were gathered: optical microscopy, nPCR, qPCR, and PCR. Figure 8 shows that filarial worm and Trypanosoma diagnoses were based mainly on microscopic detection. It should be noted that molecular diagnostic techniques were not employed in the compiled articles until 2002. The nested PCR protocol developed by Hellgren et al. [] was also widely used, as it allows simultaneous detection of the genera Leucocytozoon, Plasmodium, and Haemoproteus. It is worth noting that the first study to use qPCR to diagnose hemoparasites was published in 2008. Since then, 21 studies have employed this technique, establishing qPCR alongside nested PCR as an increasingly adopted method, gradually replacing conventional PCR for hemoparasite analysis.
Figure 8. Distribution of the five most frequent hemoparasites detected by the four most employed diagnostic techniques in the reviewed studies.
Finally, articles in which the parasitic load of hemoparasites was quantified, either by optical microscopy or qPCR, were compiled. Of the 231 articles analyzed, 113 quantified the hemoparasitic load. Notably, there was inequity between the articles that conducted quantification and those that did not. When examining each hemoparasite individually, almost no variation in quantification could be observed between hemoparasites. According to these data, and given that most quantification relied on optical microscopy, this lack of variation could be explained by the fact that quantifying an additional hemoparasite beyond those targeted initially in the study does not represent a significant increase in economic cost for the researcher.
A major limitation identified during this review was the inconsistent reporting of parasite taxonomy and infection metrics across studies, especially in the earlier literature. In many cases, results were presented only at the genus level or aggregated across host species, precluding the generation of a complete matrix of bird species by hemoparasite taxa. Addressing this gap will require standardization of reporting practices to allow future reviews to identify and quantify these associations more precisely.

7. Conclusions

This systematic review was focused on hemoparasites and their health impacts on wild birds. Studies remained unevenly distributed across regions, bird groups, and parasite types. Most were descriptive, with few experimental analyses, highlighting the need for such approaches. The health effects of hemoparasites were inconsistent, varying with host species, age, infection intensity, and environment. However, some studies, as is common in wild species research, lacked data about some of these variables, limiting the conclusions of many of them. Nevertheless, authors described a greater pathogenic potential in Plasmodium spp. infections compared to Leucocytozoon spp. or Haemoproteus spp., suggesting species-specific differences in virulence. While some studies linked infections to reduced body condition, immune changes, oxidative stress, or reproduction, many showed no clear impact, reflecting complex host–parasite dynamics. Notably, infection probability appears to increase with host age, likely due to the chronic nature of many hemoparasites, and co-morbidities may influence outcomes, though they were rarely assessed. Moreover, the hemoparasite forms typically detected in blood were gamonts, which appear after the parasite has completed earlier developmental stages in internal organs, where any potential pathogenic effects are more likely to take place, biasing the possible pathogenic effects of hemoparasites. While variability is inherent in wildlife health studies, synthesizing the available evidence revealed certain patterns with practical relevance. For instance, the more pathogenic potential of Plasmodium spp. compared to Leucocytozoon spp. or Haemoproteus spp. was supported across different geographic contexts, particularly when infection intensity was high or when co-infections occurred. These patterns highlight the importance of integrating hemoparasite monitoring into conservation and disease surveillance programs, especially in regions undergoing rapid environmental change where shifts in vector distributions may alter host–parasite dynamics. Finally, diagnostic challenges were detected, especially reliance on microscopy in low-resource settings and limited detection. To advance understanding, there is a need for better diagnostic techniques, standardized methods, and expanded research in understudied areas and taxa. Future work should focus on longitudinal and interdisciplinary studies to clarify hemoparasitic effects on wild bird populations.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ani15172570/s1, Supplementary Table S1: Number of published articles assessing the presence of haemosporidian parasites in different bird species, classified by order and family. Supplementary Table S2: Overview of reported effects of avian hemoparasitism across previous studies, including impacts on the three most studied categories. References [,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,] are cited in the Supplementary Materials. References numbers cited in the Supplementary Table S2 correspond to the the Main Text Reference Section.

Author Contributions

Conceptualization, B.M.-M. and M.T.G.-M.; methodology, B.M.-M. and A.A.-P.; formal analysis, B.M.-M. and A.A.-P.; investigation, B.M.-M. and A.A.-P.; data curation, B.M.-M. and A.A.-P.; writing—original draft preparation, A.A.-P. and B.M.-M.; writing—review and editing, M.T.G.-M., A.A.-P. and B.M.-M.; supervision, M.T.G.-M. and B.M.-M.; project administration, M.T.G.-M. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the “Ministerio para la Transición Ecológica y el Reto Demográfico (MITECO)” of Spain, but the study does not express the opinion of the Ministry.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

The data supporting this systematic review are available upon request from the corresponding author.

Acknowledgments

The authors want to thank all GREFA volunteers and staff for their invaluable support. We also want to thank Marina Müeller and Inés Téllez for their help creating the figures.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Cheng, T.C.; Hernández Saint-Aubin, L.M.; Madrigal Sesma, M.J. Parasitología General, 2nd ed.; Traducción de: General Parasitology; Editorial Limusa: Mexico City, Mexico, 1978. [Google Scholar]
  2. Clayton, D.; Moore, J. Host-Parasite Evolution: General Principles and Avian Models; Oxford University Press (OUP): Oxford, UK, 1997. [Google Scholar]
  3. Poulin, R. Evolutionary Ecology of Parasites: From Individuals to Communities; Chapman and Hall: New York, NY, USA, 1998. [Google Scholar]
  4. Omeragic, J.; Seric-Haracic, S.; Kapo, N. Zoonotic Parasites and Vector-Borne Parasitoses. In Zoonosis of Public Health Interest; IntechOpen: London, UK, 2022; Available online: https://ideas.repec.org//h/ito/pchaps/263127.html (accessed on 16 October 2024).
  5. de La Rocque, S.; Balenghien, T.; Halos, L.; Dietze, K.; Claes, F.; Ferrari, G.; Guberti, V.; Slingenbergh, J. A review of trends in the distribution of vector-borne diseases: Is international trade contributing to their spread? Rev. Sci. Et Tech. (Int. Off. Epizoot.) 2011, 30, 119–130. [Google Scholar] [CrossRef]
  6. Ryser-Degiorgis, M.-P. Wildlife health investigations: Needs, challenges and recommendations. BMC Vet. Res. 2013, 9, 223. [Google Scholar] [CrossRef]
  7. Tompkins, D.M.; Dunn, A.M.; Smith, M.J.; Telfer, S. Wildlife diseases: From individuals to ecosystems. J. Anim. Ecol. 2011, 80, 19–38. [Google Scholar] [CrossRef]
  8. Swangneat, K.; Srikacha, N.; Soulinthone, N.; Paudel, S.; Srisanyong, W.; Stott, C.J.; Mahawan, T.; Pornpanom, P. Molecular Prevalence of Avian Haemosporidian Parasites in Southeast Asia: Systematic Review and Meta-Analysis. Animals 2025, 15, 636. [Google Scholar] [CrossRef]
  9. Yan, W.-L.; Sun, H.-T.; Zhao, Y.-C.; Hou, X.-W.; Zhang, M.; Zhao, Q.; Elsheikha, H.M.; Ni, H.-B. Global prevalence of Plasmodium infection in wild birds: A systematic review and meta-analysis. Res. Vet. Sci. 2024, 168, 105136. [Google Scholar] [CrossRef] [PubMed]
  10. Villalva-Pasillas, D.; Medina, J.P.; Soriano-Vargas, E.; Martínez-Hernández, D.A.; García-Conejo, M.; Galindo-Sánchez, K.P.; Sánchez-Jasso, J.M.; Talavera-Rojas, M.; Salgado-Miranda, C. Haemoparasites in endemic and non-endemic passerine birds from central Mexico highlands. Int. J. Parasitol. Parasites Wildl. 2020, 11, 88–92. [Google Scholar] [CrossRef]
  11. Greiner, E.C.; Bennett, G.F.; White, E.M.; Coombs, R.F. Distribution of the avian hematozoa of North America. Can. J. Zool. 1975, 53, 1762–1787. [Google Scholar] [CrossRef]
  12. Adl, S.M.; Leander, B.S.; Simpson, A.G.B.; Archibald, J.M.; Anderson, O.R.; Bass, D.; Bowser, S.S.; Brugerolle, G.; Farmer, M.A.; Karpov, S.; et al. Diversity, nomenclature, and taxonomy of protists. Syst. Biol. 2007, 56, 684–689. [Google Scholar] [CrossRef]
  13. Jourdain, E.; Gauthier-Clerc, M.; Bicout, D.J.; Sabatier, P. Bird migration routes and risk for pathogen dispersion into western Mediterranean wetlands. Emerg. Infect. Dis. 2007, 13, 365–372. [Google Scholar] [CrossRef] [PubMed]
  14. Semenza, J.C.; Suk, J.E. Vector-borne diseases and climate change: A European perspective. FEMS Microbiol. Lett. 2018, 365, fnx244. [Google Scholar] [CrossRef]
  15. Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci. 2019, 1436, 157–173. [Google Scholar] [CrossRef]
  16. Qiu, Y.; Lv, C.; Chen, J.; Sun, Y.; Tang, T.; Zhang, Y.; Yang, Y.; Wang, G.; Xu, Q.; Zhang, X.; et al. The global distribution and diversity of wild-bird-associated pathogens: An integrated data analysis and modeling study. Med 2025, 6, 100553. [Google Scholar] [CrossRef]
  17. Jindal, M.; Stone, H.; Lim, S.; MacIntyre, C.R. A Geospatial Perspective Toward the Role of Wild Bird Migrations and Global Poultry Trade in the Spread of Highly Pathogenic Avian Influenza H5N1. GeoHealth 2025, 9, e2024GH001296. [Google Scholar] [CrossRef]
  18. Kasozi, K.I.; Zirintunda, G.; Ssempijja, F.; Buyinza, B.; Alzahrani, K.J.; Matama, K.; Nakimbugwe, H.N.; Alkazmi, L.; Onanyang, D.; Bogere, P.; et al. Epidemiology of Trypanosomiasis in Wildlife—Implications for Humans at the Wildlife Interface in Africa. Front. Vet. Sci. 2021, 8, 621699. [Google Scholar] [CrossRef]
  19. Leal Filho, W.; Nagy, G.J.; Gbaguidi, G.J.; Paz, S.; Dinis, M.A.P.; Luetz, J.M.; Sharifi, A. The role of climatic changes in the emergence and re-emergence of infectious diseases: Bibliometric analysis and literature-supported studies on zoonoses. One Health Outlook 2025, 7, 12. [Google Scholar] [CrossRef]
  20. Pérez-Rodríguez, A.; de la Hera, I.; Fernández-González, S.; Pérez-Tris, J. Global warming will reshuffle the areas of high prevalence and richness of three genera of avian blood parasites. Glob. Change Biol. 2014, 20, 2406–2416. [Google Scholar] [CrossRef]
  21. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
  22. Muñoz, E.; Ferrer, D.; Molina, R.; Adlard, R.D. Prevalence of haematozoa in birds of prey in Catalonia, north-east Spain. Vet. Rec. 1999, 144, 632–636. [Google Scholar] [CrossRef]
  23. Merino, S.; Moreno, J.; José Sanz, J.; Arriero, E. Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc. R. Soc. London. Ser. B Biol. Sci. 2000, 267, 2507–2510. [Google Scholar] [CrossRef]
  24. Valkiūnas, G.; Liutkevicius, G.; Iezhova, T.A. Complete development of three species of Haemoproteus (Haemosporida, Haemoproteidae) in the biting midge Culicoides impunctatus (Diptera, Ceratopogonidae). J. Parasitol. 2002, 88, 864–868. [Google Scholar] [CrossRef]
  25. Votýpka, J.; Oborník, M.; Volf, P.; Svobodová, M.; Lukes, J. Trypanosoma avium of raptors (Falconiformes): Phylogeny and identification of vectors. Parasitology 2002, 125 Pt 3, 253–263. [Google Scholar] [CrossRef]
  26. Pérez-Tris, J.; Bensch, S. Diagnosing genetically diverse avian malarial infections using mixed-sequence analysis and TA-cloning. Parasitology 2005, 131, 15–23. [Google Scholar] [CrossRef] [PubMed]
  27. Westerdahl, H.; Waldenström, J.; Hansson, B.; Hasselquist, D.; von Schantz, T.; Bensch, S. Associations between malaria and MHC genes in a migratory songbird. Proc. R. Soc. B Biol. Sci. 2005, 272, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
  28. Cosgrove, C.L.; Knowles, S.C.L.; Day, K.P.; Sheldon, B.C. No evidence for avian malaria infection during the nestling phase in a passerine bird. J. Parasitol. 2006, 92, 1302–1304. [Google Scholar] [CrossRef]
  29. Martínez de la Puente, J.; Merino, S.; Tomás, G.; Moreno Klemming, J.; Morales, J.; Lobato, E.; García-Fraile, S. Can the host immune system promote multiple invasions of erythrocytes in vivo? Differential effects of medication and host sex in a wild malaria-like model. Parasitology 2007, 134, 651–655. [Google Scholar] [CrossRef]
  30. Ortego, J.; Cordero, P.J.; Aparicio, J.M.; Calabuig, G. No relationship between individual genetic diversity and prevalence of avian malaria in a migratory kestrel. Mol. Ecol. 2007, 16, 4858–4866. [Google Scholar] [CrossRef]
  31. Marzal, A.; Bensch, S.; Reviriego, M.; Balbontin, J.; De Lope, F. Effects of malaria double infection in birds: One plus one is not two. J. Evol. Biol. 2008, 21, 979–987. [Google Scholar] [CrossRef]
  32. Stjernman, M.; Råberg, L.; Nilsson, J.-Å. Maximum Host Survival at Intermediate Parasite Infection Intensities. PLoS ONE 2008, 3, e2463. [Google Scholar] [CrossRef]
  33. Knowles, S.C.L.; Palinauskas, V.; Sheldon, B.C. Chronic malaria infections increase family inequalities and reduce parental fitness: Experimental evidence from a wild bird population. J. Evol. Biol. 2010, 23, 557–569. [Google Scholar] [CrossRef] [PubMed]
  34. Knowles, S.C.L.; Wood, M.J.; Sheldon, B.C. Context-dependent effects of parental effort on malaria infection in a wild bird population, and their role in reproductive trade-offs. Oecologia 2010, 164, 87–97. [Google Scholar] [CrossRef]
  35. La Puente, J.M.; Merino, S.; Tomás, G.; Moreno, J.; Morales, J.; Lobato, E.; García-Fraile, S.; Belda, E.J. The blood parasite Haemoproteus reduces survival in a wild bird: A medication experiment. Biol. Lett. 2010, 6, 663–665. [Google Scholar] [CrossRef]
  36. Wojczulanis-Jakubas, K.; Svoboda, A.; Kruszewicz, A.; Johnsen, A. No Evidence of Blood Parasites in Little Auks (Alle alle) Breeding on Svalbard. J. Wildl. Dis. 2010, 46, 574–578. [Google Scholar] [CrossRef]
  37. Karell, P.; Ahola, K.; Karstinen, T.; Kolunen, H.; Siitari, H.; Brommer, J.E. Blood parasites mediate morph-specific maintenance costs in a colour polymorphic wild bird. J. Evol. Biol. 2011, 24, 1783–1792. [Google Scholar] [CrossRef] [PubMed]
  38. Knowles, S.C.L.; Wood, M.J.; Alves, R.; Wilkin, T.A.; Bensch, S.; Sheldon, B.C. Molecular epidemiology of malaria prevalence and parasitaemia in a wild bird population. Mol. Ecol. 2011, 20, 1062–1076. [Google Scholar] [CrossRef]
  39. Lachish, S.; Knowles, S.C.L.; Alves, R.; Wood, M.J.; Sheldon, B.C. Fitness effects of endemic malaria infections in a wild bird population: The importance of ecological structure. J. Anim. Ecol. 2011, 80, 1196–1206. [Google Scholar] [CrossRef]
  40. Martínez-de la Puente, J.; Martínez, J.; Rivero-de Aguilar, J.; Herrero, J.; Merino, S. On the specificity of avian blood parasites: Revealing specific and generalist relationships between haemosporidians and biting midges. Mol. Ecol. 2011, 20, 3275–3287. [Google Scholar] [CrossRef]
  41. Yohannes, E.; Palinauskas, V.; Valkiūnas, G.; Lee, R.W.; Bolshakov, C.V.; Bensch, S. Does avian malaria infection affect feather stable isotope signatures? Oecologia 2011, 167, 937–942. [Google Scholar] [CrossRef] [PubMed]
  42. Glaizot, O.; Fumagalli, L.; Iritano, K.; Lalubin, F.; Rooyen, J.V.; Christe, P. High Prevalence and Lineage Diversity of Avian Malaria in Wild Populations of Great Tits (Parus major) and Mosquitoes (Culex pipiens). PLoS ONE 2012, 7, e34964. [Google Scholar] [CrossRef]
  43. Garroway, C.J.; Radersma, R.; Sepil, I.; Santure, A.W.; De Cauwer, I.; Slate, J.; Sheldon, B.C. Fine-scale genetic structure in a wild bird population: The role of limited dipersal and environmentally based selection as casual factors. Evolution 2013, 67, 3488–3500. [Google Scholar] [CrossRef]
  44. Isaksson, C.; Sepil, I.; Baramidze, V.; Sheldon, B.C. Explaining variance of avian malaria infection in the wild: The importance of host density, habitat, individual life-history and oxidative stress. BMC Ecol. 2013, 13, 15. [Google Scholar] [CrossRef]
  45. Marzal, A.; Reviriego, M.; Hermosell, I.G.; Balbontín, J.; Bensch, S.; Relinque, C.; Rodríguez, L.; Garcia-Longoria, L.; de Lope, F. Malaria infection and feather growth rate predict reproductive success in house martins. Oecologia 2013, 171, 853–861. [Google Scholar] [CrossRef]
  46. Mendes, L.; Pardal, S.; Morais, J.; Antunes, S.; Ramos, J.A.; Perez-Tris, J.; Piersma, T. Hidden haemosporidian infections in Ruffs (Philomachus pugnax) staging in Northwest Europe en route from Africa to Arctic Europe. Parasitol. Res. 2013, 112, 2037–2043. [Google Scholar] [CrossRef]
  47. Palinauskas, V.; Iezhova, T.A.; Križanauskienė, A.; Markovets, M.Y.; Bensch, S.; Valkiūnas, G. Molecular characterization and distribution of Haemoproteus minutus (Haemosporida, Haemoproteidae): A pathogenic avian parasite. Parasitol. Int. 2013, 62, 358–363. [Google Scholar] [CrossRef]
  48. Pérez-Rodríguez, A.; de la Puente, J.; Onrubia, A.; Pérez-Tris, J. Molecular characterization of haemosporidian parasites from kites of the genus Milvus (Aves: Accipitridae). Int. J. Parasitol. 2013, 43, 381–387. [Google Scholar] [CrossRef]
  49. Sepil, I.; Lachish, S.; Hinks, A.E.; Sheldon, B.C. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population. Proc. R. Soc. B Biol. Sci. 2013, 280, 20130134. [Google Scholar] [CrossRef]
  50. González, A.D.; Matta, N.E.; Ellis, V.A.; Miller, E.T.; Ricklefs, R.E.; Gutiérrez, H.R. Mixed Species Flock, Nest Height, and Elevation Partially Explain Avian Haemoparasite Prevalence in Colombia. PLoS ONE 2014, 9, e100695. [Google Scholar] [CrossRef]
  51. Knowles, S.C.L.; Wood, M.J.; Alves, R.; Sheldon, B.C. Dispersal in a patchy landscape reveals contrasting determinants of infection in a wild avian malaria system. J. Anim. Ecol. 2014, 83, 429–439. [Google Scholar] [CrossRef]
  52. Asghar, M.; Hasselquist, D.; Hansson, B.; Zehtindjiev, P.; Westerdahl, H.; Bensch, S. Hidden costs of infection: Chronic malaria accelerates telomere degradation and senescence in wild birds. Science 2015, 347, 436–438. [Google Scholar] [CrossRef]
  53. Bukauskaitė, D.; Žiegytė, R.; Palinauskas, V.; Iezhova, T.A.; Dimitrov, D.; Ilgūnas, M.; Bernotienė, R.; Markovets, M.Y.; Valkiūnas, G. Biting midges (Culicoides, Diptera) transmit Haemoproteus parasites of owls: Evidence from sporogony and molecular phylogeny. Parasites Vectors 2015, 8, 303. [Google Scholar] [CrossRef]
  54. Chakarov, N.; Linke, B.; Boerner, M.; Goesmann, A.; Krüger, O.; Hoffman, J.I. Apparent vector-mediated parent-to-offspring transmission in an avian malaria-like parasite. Mol. Ecol. 2015, 24, 1355–1363. [Google Scholar] [CrossRef]
  55. Dinhopl, N.; Nedorost, N.; Mostegl, M.M.; Weissenbacher-Lang, C.; Weissenböck, H. In situ hybridization and sequence analysis reveal an association of Plasmodium spp. with mortalities in wild passerine birds in Austria. Parasitol. Res. 2015, 114, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
  56. Jenkins, T.; Delhaye, J.; Christe, P. Testing Local Adaptation in a Natural Great Tit-Malaria System: An Experimental Approach. PLoS ONE 2015, 10, e0141391. [Google Scholar] [CrossRef] [PubMed]
  57. Valkiūnas, G.; Iezhova, T.A.; Palinauskas, V.; Ilgūnas, M.; Bernotienė, R. The evidence for rapid gametocyte viability changes in the course of parasitemia in Haemoproteus parasites. Parasitol. Res. 2015, 114, 2903–2909. [Google Scholar] [CrossRef]
  58. Bernotienė, R.; Palinauskas, V.; Iezhova, T.; Murauskaitė, D.; Valkiūnas, G. Avian haemosporidian parasites (Haemosporida): A comparative analysis of different polymerase chain reaction assays in detection of mixed infections. Exp. Parasitol. 2016, 163, 31–37. [Google Scholar] [CrossRef]
  59. Clark, N.J.; Wells, K.; Dimitrov, D.; Clegg, S.M. Co-infections and environmental conditions drive the distributions of blood parasites in wild birds. J. Anim. Ecol. 2016, 85, 1461–1470. [Google Scholar] [CrossRef]
  60. Delhaye, J.; Jenkins, T.; Christe, P. Plasmodium infection and oxidative status in breeding great tits, Parus major. Malar. J. 2016, 15, 531. [Google Scholar] [CrossRef]
  61. Ilgūnas, M.; Bukauskaitė, D.; Palinauskas, V.; Iezhova, T.A.; Dinhopl, N.; Nedorost, N.; Weissenbacher-Lang, C.; Weissenböck, H.; Valkiūnas, G. Mortality and pathology in birds due to Plasmodium (Giovannolaia) homocircumflexum infection, with emphasis on the exoerythrocytic development of avian malaria parasites. Malar. J. 2016, 15, 256. [Google Scholar] [CrossRef]
  62. Mukhin, A.; Palinauskas, V.; Platonova, E.; Kobylkov, D.; Vakoliuk, I.; Valkiūnas, G. The Strategy to Survive Primary Malaria Infection: An Experimental Study on Behavioural Changes in Parasitized Birds. PLoS ONE 2016, 11, e0159216. [Google Scholar] [CrossRef]
  63. Valkiūnas, G.; Ilgūnas, M.; Bukauskaitė, D.; Iezhova, T.A. Description of Haemoproteus ciconiae sp. Nov. (Haemoproteidae, Haemosporida) from the white stork Ciconia ciconia, with remarks on insensitivity of established polymerase chain reaction assays to detect this infection. Parasitol. Res. 2016, 115, 2609–2616. [Google Scholar] [CrossRef]
  64. Žiegytė, R.; Bernotienė, R.; Palinauskas, V.; Valkiūnas, G. Haemoproteus tartakovskyi (Haemoproteidae): Complete sporogony in Culicoides nubeculosus (Ceratopogonidae), with implications for avian haemoproteid experimental research. Exp. Parasitol. 2016, 160, 17–22. [Google Scholar] [CrossRef] [PubMed]
  65. Ishtiaq, F.; Rao, M.; Huang, X.; Bensch, S. Estimating prevalence of avian haemosporidians in natural populations: A comparative study on screening protocols. Parasites Vectors 2017, 10, 127. [Google Scholar] [CrossRef]
  66. Padilla, D.P.; Illera, J.C.; Gonzalez-Quevedo, C.; Villalba, M.; Richardson, D.S. Factors affecting the distribution of haemosporidian parasites within an oceanic island. Int. J. Parasitol. 2017, 47, 225–235. [Google Scholar] [CrossRef]
  67. Videvall, E.; Cornwallis, C.K.; Ahrén, D.; Palinauskas, V.; Valkiūnas, G.; Hellgren, O. The transcriptome of the avian malaria parasite Plasmodium ashfordi displays host-specific gene expression. Mol. Ecol. 2017, 26, 2939–2958. [Google Scholar] [CrossRef]
  68. Arriero, E.; Pérez-Tris, J.; Ramírez, A.; Remacha, C. Trade-off between tolerance and resistance to infections: An experimental approach with malaria parasites in a passerine bird. Oecologia 2018, 188, 1001–1010. [Google Scholar] [CrossRef]
  69. Chagas, C.R.F.; Bukauskaitė, D.; Ilgūnas, M.; Iezhova, T.; Valkiūnas, G. A new blood parasite of leaf warblers: Molecular characterization, phylogenetic relationships, description and identification of vectors. Parasites Vectors 2018, 11, 538. [Google Scholar] [CrossRef]
  70. Ferraguti, M.; Martínez-de la Puente, J.; Bensch, S.; Roiz, D.; Ruiz, S.; Viana, D.S.; Soriguer, R.C.; Figuerola, J. Ecological determinants of avian malaria infections: An integrative analysis at landscape, mosquito and vertebrate community levels. J. Anim. Ecol. 2018, 87, 727–740. [Google Scholar] [CrossRef] [PubMed]
  71. Masello, J.F.; Martínez, J.; Calderón, L.; Wink, M.; Quillfeldt, P.; Sanz, V.; Theuerkauf, J.; Ortiz-Catedral, L.; Berkunsky, I.; Brunton, D.; et al. Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes? Parasites Vectors 2018, 11, 357. [Google Scholar] [CrossRef]
  72. Pigeault, R.; Cozzarolo, C.-S.; Choquet, R.; Strehler, M.; Jenkins, T.; Delhaye, J.; Bovet, L.; Wassef, J.; Glaizot, O.; Christe, P. Haemosporidian infection and co-infection affect host survival and reproduction in wild populations of great tits. Int. J. Parasitol. 2018, 48, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
  73. Dadam, D.; Robinson, R.A.; Clements, A.; Peach, W.J.; Bennett, M.; Rowcliffe, J.M.; Cunningham, A.A. Avian malaria-mediated population decline of a widespread iconic bird species. R. Soc. Open Sci. 2019, 6, 182197. [Google Scholar] [CrossRef]
  74. Ferraguti, M.; Martínez-de la Puente, J.; García-Longoria, L.; Soriguer, R.; Figuerola, J.; Marzal, A. From Africa to Europe: Evidence of transmission of a tropical Plasmodium lineage in Spanish populations of house sparrows. Parasites Vectors 2019, 12, 548. [Google Scholar] [CrossRef] [PubMed]
  75. Ilgūnas, M.; Bukauskaitė, D.; Palinauskas, V.; Iezhova, T.; Fragner, K.; Platonova, E.; Weissenböck, H.; Valkiūnas, G. Patterns of Plasmodium homocircumflexum virulence in experimentally infected passerine birds. Malar. J. 2019, 18, 174. [Google Scholar] [CrossRef]
  76. Ilgūnas, M.; Palinauskas, V.; Platonova, E.; Iezhova, T.; Valkiūnas, G. The experimental study on susceptibility of common European songbirds to Plasmodium elongatum (lineage pGRW6), a widespread avian malaria parasite. Malar. J. 2019, 18, 290. [Google Scholar] [CrossRef]
  77. Jiménez-Peñuela, J.; Ferraguti, M.; Martínez-de la Puente, J.; Soriguer, R.; Figuerola, J. Urbanization and blood parasite infections affect the body condition of wild birds. Sci. Total Environ. 2019, 651, 3015–3022. [Google Scholar] [CrossRef]
  78. Schumm, Y.R.; Wecker, C.; Marek, C.; Wassmuth, M.; Bentele, A.; Willems, H.; Reiner, G.; Quillfeldt, P. Blood parasites in Passeriformes in central Germany: Prevalence and lineage diversity of Haemosporida (Haemoproteus, Plasmodium and Leucocytozoon) in six common songbirds. PeerJ 2019, 6, e6259. [Google Scholar] [CrossRef] [PubMed]
  79. Bichet, C.; Brischoux, F.; Ribout, C.; Parenteau, C.; Meillère, A.; Angelier, F. Physiological and morphological correlates of blood parasite infection in urban and non-urban house sparrow populations. PLoS ONE 2020, 15, e0237170. [Google Scholar] [CrossRef]
  80. Chagas, C.R.F.; Binkienė, R.; Ilgūnas, M.; Iezhova, T.; Valkiūnas, G. The buffy coat method: A tool for detection of blood parasites without staining procedures. Parasites Vectors 2020, 13, 104. [Google Scholar] [CrossRef]
  81. Díez-Fernández, A.; Martínez-de la Puente, J.; Gangoso, L.; López, P.; Soriguer, R.; Martín, J.; Figuerola, J. Mosquitoes are attracted by the odour of Plasmodium-infected birds. Int. J. Parasitol. 2020, 50, 569–575. [Google Scholar] [CrossRef]
  82. Duc, M.; Ilgūnas, M.; Valkiūnas, G. Patterns of Haemoproteus majoris (Haemosporida, Haemoproteidae) megalomeront development. Acta Trop. 2020, 212, 105706. [Google Scholar] [CrossRef] [PubMed]
  83. Emmenegger, T.; Alves, J.A.; Rocha, A.D.; Costa, J.S.; Schmid, R.; Schulze, M.; Hahn, S. Population- and age-specific patterns of haemosporidian assemblages and infection levels in European bee-eaters (Merops apiaster). Int. J. Parasitol. 2020, 50, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
  84. Himmel, T.; Harl, J.; Pfanner, S.; Nedorost, N.; Nowotny, N.; Weissenböck, H. Haemosporidioses in wild Eurasian blackbirds (Turdus merula) and song thrushes (T. philomelos): An in situ hybridization study with emphasis on exo-erythrocytic parasite burden. Malar. J. 2020, 19, 69. [Google Scholar] [CrossRef]
  85. Huang, X.; Jönsson, J.; Bensch, S. Persistence of avian haemosporidians in the wild: A case study to illustrate seasonal infection patterns in relation to host life stages. Int. J. Parasitol. 2020, 50, 611–619. [Google Scholar] [CrossRef] [PubMed]
  86. Himmel, T.; Harl, J.; Matt, J.; Weissenböck, H. A citizen science-based survey of avian mortality focusing on haemosporidian infections in wild passerine birds. Malar. J. 2021, 20, 417. [Google Scholar] [CrossRef] [PubMed]
  87. Platonova, E.; Aželytė, J.; Iezhova, T.; Ilgūnas, M.; Mukhin, A.; Palinauskas, V. Experimental study of newly described avian malaria parasite Plasmodium (Novyella) collidatum n. sp., genetic lineage pFANTAIL01 obtained from South Asian migrant bird. Malar. J. 2021, 20, 82. [Google Scholar] [CrossRef] [PubMed]
  88. Schumm, Y.R.; Bakaloudis, D.; Barboutis, C.; Cecere, J.G.; Eraud, C.; Fischer, D.; Hering, J.; Hillerich, K.; Lormée, H.; Mader, V.; et al. Prevalence and genetic diversity of avian haemosporidian parasites in wild bird species of the order Columbiformes. Parasitol. Res. 2021, 120, 1405–1420. [Google Scholar] [CrossRef]
  89. Wiegmann, A.; Springer, A.; Rinaud, T.; Ottensmann, M.; Legler, M.; Krüger, O.; Fehr, M.; Chakarov, N.; Strube, C. The prevalence of Leucocytozoon spp. In nestlings of three wild raptor species including implications on haematological and blood chemistry values. Int. J. Parasitol. Parasites Wildl. 2021, 16, 236–243. [Google Scholar] [CrossRef]
  90. Aželytė, J.; Platonova, E.; Bensch, S.; Hellgren, O.; Palinauskas, V. A comparative analysis of the dynamics of Plasmodium relictum (GRW4) development in the blood during single and co-infections. Acta Trop. 2022, 226, 106247. [Google Scholar] [CrossRef]
  91. Ellis, V.A.; Kalbskopf, V.; Ciloglu, A.; Duc, M.; Huang, X.; Inci, A.; Bensch, S.; Hellgren, O.; Palinauskas, V. Genomic sequence capture of Plasmodium relictum in experimentally infected birds. Parasites Vectors 2022, 15, 267. [Google Scholar] [CrossRef] [PubMed]
  92. Ilgūnas, M.; Himmel, T.; Harl, J.; Dagys, M.; Valkiūnas, G.; Weissenböck, H. Exo-Erythrocytic Development of Avian Haemosporidian Parasites in European Owls. Anim. Open Access J. MDPI 2022, 12, 2212. [Google Scholar] [CrossRef]
  93. Chagas, C.R.F.; Duc, M.; Himmel, T.; Eigirdas, V.; Weissenböck, H.; Valkiūnas, G. Exo-erythrocytic development of Leucocytozoon parasites (Haemosporida, Leucocytozoidae) in song thrushes Turdus philomelos. Int. J. Parasitol. Parasites Wildl. 2023, 22, 60–68. [Google Scholar] [CrossRef]
  94. de Francisco, O.N.; Sacristán, I.; Ewbank, A.C.; Velarde, R.; Afonso, I.; Garcia-Ferré, D.; Martín-Maldonado, B.; Esperón, F.; Iglesias, I.; de la Torre, A.; et al. First detection of herpesvirus and hemosporidians in the endangered Pyrenean Capercaillie (Tetrao urogallus aquitanicus). Sci. Rep. 2023, 13, 21936. [Google Scholar] [CrossRef]
  95. Gomes, J.; Leitão, M.; Louro, M.C.; Brandão, R.; Mateus, T.L. Avian Malaria in wild birds from a wildlife rehabilitation center in Central Portugal. Vet. Parasitol. Reg. Stud. Rep. 2023, 43, 100904. [Google Scholar] [CrossRef]
  96. González-Olvera, M.; Hernandez-Colina, A.; Chantrey, J.; Allen, S.; Lopez, J.; Baylis, M. A non-invasive feather-based methodology for the detection of blood parasites (Haemosporida). Sci. Rep. 2023, 13, 16712. [Google Scholar] [CrossRef]
  97. Jiménez-Peñuela, J.; Ferraguti, M.; Martínez-De La Puente, J.; Soriguer, R.C.; Figuerola, J. Oxidative status in relation to blood parasite infections in house sparrows living along an urbanization gradient. Environ. Pollut. 2023, 316, 120712. [Google Scholar] [CrossRef] [PubMed]
  98. Lynton-Jenkins, J.G.; Chaine, A.S.; Russell, A.F.; Bonneaud, C. Parasite detection and quantification in avian blood is dependent on storage medium and duration. Ecol. Evol. 2023, 13, e9819. [Google Scholar] [CrossRef]
  99. Martín-Maldonado, B.; Mencía-Gutiérrez, A.; Andreu-Vázquez, C.; Fernández, R.; Pastor-Tiburón, N.; Alvarado, A.; Carrero, A.; Fernández-Novo, A.; Esperón, F.; González, F. A Four-Year Survey of Hemoparasites from Nocturnal Raptors (Strigiformes) Confirms a Relation between Leucocytozoon and Low Hematocrit and Body Condition Scores of Parasitized Birds. Vet. Sci. 2023, 10, 54. [Google Scholar] [CrossRef]
  100. Himmel, T.; Harl, J.; Matt, J.; Nedorost, N.; Lunardi, M.; Ilgūnas, M.; Iezhova, T.; Valkiūnas, G.; Weissenböck, H. Co-infecting Haemoproteus species (Haemosporida, Apicomplexa) show different host tissue tropism during exo-erythrocytic development in Fringilla coelebs (Fringillidae). Int. J. Parasitol. 2024, 54, 1–22. [Google Scholar] [CrossRef] [PubMed]
  101. Sheppard, E.C.; Martin, C.A.; Armstrong, C.; González-Quevedo, C.; Illera, J.C.; Suh, A.; Spurgin, L.G.; Richardson, D.S. Genotype–environment associations reveal genes potentially linked to avian malaria infection in populations of an endemic island bird. Mol. Ecol. 2024, 33, e17329. [Google Scholar] [CrossRef]
  102. Zehtindjiev, P.; Ilieva, M.; Westerdahl, H.; Hansson, B.; Valkiūnas, G.; Bensch, S. Dynamics of parasitemia of malaria parasites in a naturally and experimentally infected migratory songbird, the great reed warbler Acrocephalus arundinaceus. Exp. Parasitol. 2008, 119, 99–110. [Google Scholar] [CrossRef] [PubMed]
  103. Shurulinkov, P.; Spasov, L.; Stoyanov, G.; Chakarov, N. Blood parasite infections in a wild population of ravens (Corvus corax) in Bulgaria. Malar. J. 2018, 17, 33. [Google Scholar] [CrossRef]
  104. Hahn, S.; Bauer, S.; Dimitrov, D.; Emmenegger, T.; Ivanova, K.; Zehtindjiev, P.; Buttemer, W.A. Low intensity blood parasite infections do not reduce the aerobic performance of migratory birds. Proc. R. Soc. B Biol. Sci. 2018, 285, 20172307. [Google Scholar] [CrossRef]
  105. Iezhova, T.A.; Valkiūnas, G.; Bairlein, F. Vertebrate Host Specificity of Two Avian Malaria Parasites of the Subgenus Novyella Plasmodium nucleophilum and Plasmodium vaughani. J. Parasitol. 2005, 91, 472–474. [Google Scholar] [CrossRef]
  106. Jovani, R.; Sol, D. How predictable is the abundance of double gametocyte infections? Parasitol. Res. 2005, 97, 84–86. [Google Scholar] [CrossRef] [PubMed]
  107. Saunders, D.C. Microfilariae and Other Blood Parasites in Mexican Wild Doves and Pigeons. J. Parasitol. 1959, 45, 69–75. [Google Scholar] [CrossRef]
  108. Forrester, D.J.; Hon, L.T.; Williams, L.E.; Austin, D.H. Blood protozoa of wild turkeys in Florida. J. Protozool. 1974, 21, 494–497. [Google Scholar] [CrossRef]
  109. Noblet, R.; Moore, H.S. Prevalence and distribution of Leucocytozoon smithi and Haemoproteus meleagridis in wild turkeys in South Carolina. J. Wildl. Dis. 1975, 11, 516–518. [Google Scholar] [CrossRef]
  110. Clark, G.W. Hematozoa of mallard ducks (Anas platyrhynchos) of the Pacific Flyway, Washington. J. Wildl. Dis. 1980, 16, 529–531. [Google Scholar] [CrossRef]
  111. Forrester, D.J.; Humphrey, P.P.; Telford, S.R.; Williams, L.E. Effects of blood-induced infections of Plasmodium hermani on domestic and wild turkey poults. J. Wildl. Dis. 1980, 16, 237–244. [Google Scholar] [CrossRef] [PubMed]
  112. Greiner, E.C.; Forrester, D.J. Haemoproteus meleagridis Levine 1961: Redescription and developmental morphology of the gametocytes in turkeys. J. Parasitol. 1980, 66, 652–658. [Google Scholar] [CrossRef] [PubMed]
  113. Bennett, G.F.; Turner, B.; Holton, G. Blood parasites of trumpeter swans, Olor buccinator (Richardson), from Alberta. J. Wildl. Dis. 1981, 17, 213–215. [Google Scholar] [CrossRef]
  114. Bennett, G.F.; Nieman, D.J.; Turner, B.; Kuyt, E.; Whiteway, M.; Greiner, E.C. Blood parasites of prairie anatids and their implication in waterfowl management in Alberta and Saskatchewan. J. Wildl. Dis. 1982, 18, 287–296. [Google Scholar] [CrossRef]
  115. Christensen, B.M.; Barnes, H.J.; Rowley, W.A. Vertebrate host specificity and experimental vectors of Plasmodium (Novyella) kempi sp. N. From the eastern wild turkey in Iowa. J. Wildl. Dis. 1983, 19, 204–213. [Google Scholar] [CrossRef]
  116. Castle, M.D.; Christensen, B.M. Blood and gastrointestinal parasites of eastern wild turkeys from Kentucky and Tennessee. J. Wildl. Dis. 1984, 20, 190–196. [Google Scholar] [CrossRef]
  117. Barnard, W.H.; Bair, R.D. Prevalence of avian hematozoa in central Vermont. J. Wildl. Dis. 1986, 22, 365–374. [Google Scholar] [CrossRef]
  118. Allan, R.A.; Mahrt, J.L. Populations of Leucocytozoon gametocytes in blue grouse (Dendragapus obscurus) from Hardwicke Island, British Columbia. J. Protozool. 1987, 34, 363–366. [Google Scholar] [CrossRef] [PubMed]
  119. Atkinson, C.T.; Forrester, D.J. Myopathy associated with megaloschizonts of Haemoproteus meleagridis in a wild turkey from Florida. J. Wildl. Dis. 1987, 23, 495–498. [Google Scholar] [CrossRef]
  120. Fix, A.S.; Waterhouse, C.; Greiner, E.C.; Stoskopf, M.K. Plasmodium relictum as a cause of avian malaria in wild-caught magellanic penguins (Spheniscus magellanicus). J. Wildl. Dis. 1988, 24, 610–619. [Google Scholar] [CrossRef]
  121. Hopkins, B.A.; Skeeles, J.K.; Houghten, G.E.; Slagle, D.; Gardner, K. A survey of infectious diseases in wild turkeys (Meleagridis gallopavo silvestris) from Arkansas. J. Wildl. Dis. 1990, 26, 468–472. [Google Scholar] [CrossRef] [PubMed]
  122. Fedynich, A.M.; Rhodes, O.E., Jr. Hemosporid (Apicomplexa, Hematozoea, Hemosporida) Community Structure and Pattern in Wintering Wild Turkeys. J. Wildl. Dis. 1995, 31, 404–409. [Google Scholar] [CrossRef] [PubMed][Green Version]
  123. Michot, T.C.; Garvin, M.C.; Weidner, E.H. Survey for blood parasites in redheads (Aythya americana) wintering at the Chandeleur Islands, Louisiana. J. Wildl. Dis. 1995, 31, 90–92. [Google Scholar] [CrossRef][Green Version]
  124. Durden, L.A.; McLean, R.G.; Oliver, J.H.; Ubico, S.R.; James, A.M. Ticks, Lyme disease spirochetes, trypanosomes, and antibody to encephalitis viruses in wild birds from coastal Georgia and South Carolina. J. Parasitol. 1997, 83, 1178–1182. [Google Scholar] [CrossRef]
  125. Morishita, T.Y.; Aye, P.P.; Ley, E.C.; Harr, B.S. Survey of pathogens and blood parasites in free-living passerines. Avian Dis. 1999, 43, 549–552. [Google Scholar] [CrossRef]
  126. DeJong, R.J.; Muzzall, P.M. Hematozoa of Waterfowl from Michigan. J. Wildl. Dis. 2000, 36, 767–773. [Google Scholar] [CrossRef][Green Version]
  127. Ricklefs, R.E.; Fallon, S.M. Diversification and host switching in avian malaria parasites. Proc. Biol. Sci. 2002, 269, 885–892. [Google Scholar] [CrossRef] [PubMed]
  128. Garvin, M.C.; Basbaum, J.P.; Ducore, R.M.; Bell, K.E. Patterns of Haemoproteus beckeri parasitism in the gray catbird (Dumatella carolinensis) during the breeding season. J. Wildl. Dis. 2003, 39, 582–587. [Google Scholar] [CrossRef]
  129. Garvin, M.C.; Greiner, E.C. Epizootiology of Haemoproteus danilewskyi (Haemosporina: Haemoproteidae) in blue jays (Cyanocitta cristata) in southcentral Florida. J. Wildl. Dis. 2003, 39, 1–9. [Google Scholar] [CrossRef][Green Version]
  130. Dusek, R.J.; Spalding, M.G.; Forrester, D.J.; Greiner, E.C. Haemoproteus balearicae and other blood parasites of free-ranging Florida sandhill crane chicks. J. Wildl. Dis. 2004, 40, 682–687. [Google Scholar] [CrossRef]
  131. Szymanski, M.M.; Lovette, I.J. High lineage diversity and host sharing of malarial parasites in a local avian assemblage. J. Parasitol. 2005, 91, 768–774. [Google Scholar] [CrossRef] [PubMed]
  132. Heard, D.J.; Mulcahy, D.M.; Iverson, S.A.; Rizzolo, D.J.; Greiner, E.C.; Hall, J.; Ip, H.; Esler, D. A Blood Survey of Elements, Viral Antibodies, and Hemoparasites in Wintering Harlequin Ducks (Histrionicus histrionicus) and Barrow’s Goldeneyes (Bucephala islandica). J. Wildl. Dis. 2008, 44, 486–493. [Google Scholar] [CrossRef] [PubMed][Green Version]
  133. Leppert, L.L.; Dufty, A.M., Jr.; Stock, S.; Oleyar, M.D.; Kaltenecker, G.S. Survey of Blood Parasites in Two Forest Owls, Northern Saw-whet Owls and Flammulated Owls, of Western North America. J. Wildl. Dis. 2008, 44, 475–479. [Google Scholar] [CrossRef]
  134. Shutler, D.; Lowe, A.G.; Robinson, S.R. Relationships between circulating leucocytes and Leucocytozoon simondi in mallard, Anas platyrhynchos, ducklings. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 156, 46–49. [Google Scholar] [CrossRef]
  135. Grillo, E.L.; Fithian, R.C.; Cross, H.; Wallace, C.; Viverette, C.; Reilly, R.; Mayer, D.C.G. Presence of Plasmodium and Haemoproteus in Breeding Prothonotary Warblers (Protonotaria citrea: Parulidae): Temporal and Spatial Trends in Infection Prevalence. J. Parasitol. 2012, 98, 93–102. [Google Scholar] [CrossRef]
  136. Astudillo, V.G.; Hernández, S.M.; Kistler, W.M.; Boone, S.L.; Lipp, E.K.; Shrestha, S.; Yabsley, M.J. Spatial, temporal, molecular, and intraspecific differences of haemoparasite infection and relevant selected physiological parameters of wild birds in Georgia, USA. Int. J. Parasitol. Parasites Wildl. 2013, 2, 178–189. [Google Scholar] [CrossRef][Green Version]
  137. Carlson, J.S.; Martínez-Gómez, J.E.; Valkiūnas, G.; Loiseau, C.; Bell, D.A.; Sehgal, R.N.M. Diversity and Phylogenetic Relationships of Hemosporidian Parasites in Birds of Socorro Island, México, and Their Role in the Re-Introduction of the Socorro Dove (Zenaida graysoni). J. Parasitol. 2013, 99, 270–276. [Google Scholar] [CrossRef]
  138. Davis, A.K.; Hood, W.R.; Hill, G.E. Prevalence of Blood Parasites in Eastern Versus Western House Finches: Are Eastern Birds Resistant to Infection? EcoHealth 2013, 10, 290–297. [Google Scholar] [CrossRef]
  139. Kistler, W.M.; Hernandez, S.M.; Gibbs, S.E.J.; Ballard, J.R.; Arnold, S.L.; Johnson, T.; Yabsley, M.J. Evaluation of a Restriction Fragment Length Enzyme Assay for Differentiation of Haemoproteus and Plasmodium Across a Standard Region of the Mitochondrial Genome. J. Parasitol. 2013, 99, 1133–1136. [Google Scholar] [CrossRef]
  140. Charles-Smith, L.E.; Rutledge, M.E.; Meek, C.J.; Baine, K.; Massey, E.; Ellsaesser, L.N.; DePerno, C.S.; Moorman, C.E.; Degernes, L.A. Hematologic Parameters and Hemoparasites of Nonmigratory Canada Geese (Branta canadensis) From Greensboro, North Carolina, USA. J. Avian Med. Surg. 2014, 28, 16–23. [Google Scholar] [CrossRef]
  141. Ellis, V.A.; Kunkel, M.R.; Ricklefs, R.E. The ecology of host immune responses to chronic avian haemosporidian infection. Oecologia 2014, 176, 729–737. [Google Scholar] [CrossRef]
  142. Ferguson, L.M.; Norton, T.M.; Cray, C.; Oliva, M.; Jodice, P.G.R. Health assessments of brown pelican (Pelecanus occidentalis) nestlings from colonies in South Carolina and Georgia, U.S.A. J. Zoo Wildl. Med. 2014, 45, 802–812. [Google Scholar] [CrossRef]
  143. Ramey, A.M.; Schmutz, J.A.; Reed, J.A.; Fujita, G.; Scotton, B.D.; Casler, B.; Fleskes, J.P.; Konishi, K.; Uchida, K.; Yabsley, M.J. Evidence for intercontinental parasite exchange through molecular detection and characterization of haematozoa in northern pintails (Anas acuta) sampled throughout the North Pacific Basin. Int. J. Parasitol. Parasites Wildl. 2014, 4, 11–21. [Google Scholar] [CrossRef]
  144. Thurber, M.I.; Gamble, K.C.; Krebs, B.; Goldberg, T.L. Molecular detection of Plasmodium in free-ranging birds and captive flamingos (Phoenicopterus Chilensis) in Chicago. J. Zoo Wildl. Med. 2014, 45, 749–754. [Google Scholar] [CrossRef]
  145. Smith, M.M.; Schmutz, J.; Apelgren, C.; Ramey, A.M. A real-time, quantitative PCR protocol for assessing the relative parasitemia of Leucocytozoon in waterfowl. J. Microbiol. Methods 2015, 111, 72–77. [Google Scholar] [CrossRef]
  146. Zylberberg, M.; Derryberry, E.P.; Breuner, C.W.; Macdougall-Shackleton, E.A.; Cornelius, J.M.; Hahn, T.P. Haemoproteus infected birds have increased lifetime reproductive success. Parasitology 2015, 142, 1033–1043. [Google Scholar] [CrossRef]
  147. Meixell, B.W.; Arnold, T.W.; Lindberg, M.S.; Smith, M.M.; Runstadler, J.A.; Ramey, A.M. Detection, prevalence, and transmission of avian hematozoa in waterfowl at the Arctic/sub-Arctic interface: Co-infections, viral interactions, and sources of variation. Parasites Vectors 2016, 9, 390. [Google Scholar] [CrossRef]
  148. Reinoso-Pérez, M.T.; Canales-Delgadillo, J.C.; Chapa-Vargas, L.; Riego-Ruiz, L. Haemosporidian parasite prevalence, parasitemia, and diversity in three resident bird species at a shrubland dominated landscape of the Mexican highland plateau. Parasites Vectors 2016, 9, 307. [Google Scholar] [CrossRef]
  149. Bertram, M.R.; Hamer, S.A.; Hartup, B.K.; Snowden, K.F.; Medeiros, M.C.; Outlaw, D.C.; Hamer, G.L. A novel Haemosporida clade at the rank of genus in North American cranes (Aves: Gruiformes). Mol. Phylogenetics Evol. 2017, 109, 73–79. [Google Scholar] [CrossRef]
  150. Bertram, M.R.; Hamer, G.L.; Hartup, B.K.; Snowden, K.F.; Medeiros, M.C.; Hamer, S.A. Haemosporida prevalence and diversity are similar in endangered wild whooping cranes (Grus americana) and sympatric sandhill cranes (Grus canadensis). Parasitology 2017, 144, 629–640. [Google Scholar] [CrossRef]
  151. Slowinski, S.P.; Fudickar, A.M.; Hughes, A.M.; Mettler, R.D.; Gorbatenko, O.V.; Spellman, G.M.; Ketterson, E.D.; Atwell, J.W. Sedentary songbirds maintain higher prevalence of haemosporidian parasite infections than migratory conspecifics during seasonal sympatry. PLoS ONE 2018, 13, e0201563. [Google Scholar] [CrossRef]
  152. Townsend, A.K.; Wheeler, S.S.; Freund, D.; Sehgal, R.N.M.; Boyce, W.M. Links between blood parasites, blood chemistry, and the survival of nestling American crows. Ecol. Evol. 2018, 8, 8779–8790. [Google Scholar] [CrossRef]
  153. Barrow, L.N.; Allen, J.M.; Huang, X.; Bensch, S.; Witt, C.C. Genomic sequence capture of haemosporidian parasites: Methods and prospects for enhanced study of host–parasite evolution. Mol. Ecol. Resour. 2019, 19, 400–410. [Google Scholar] [CrossRef]
  154. Pacheco, M.A.; Parish, C.N.; Hauck, T.J.; Aguilar, R.F.; Escalante, A.A. The endangered California Condor (Gymnogyps californianus) population is exposed to local haemosporidian parasites. Sci. Rep. 2020, 10, 17947. [Google Scholar] [CrossRef]
  155. Reinoso-Pérez, M.T.; Dhondt, K.V.; Sydenstricker, A.V.; Heylen, D.; Dhondt, A.A. Complex interactions between bacteria and haemosporidia in coinfected hosts: An experiment. Ecol. Evol. 2020, 10, 5801–5814. [Google Scholar] [CrossRef]
  156. Adams, D.R.; Golnar, A.J.; Hamer, S.A.; Slotman, M.A.; Hamer, G.L. Culex quinquefasciatus (Diptera: Culicidae) survivorship following the ingestion of bird blood infected with Haemoproteus sp. parasites. Parasitol. Res. 2021, 120, 2343–2350. [Google Scholar] [CrossRef]
  157. Theodosopoulos, A.N.; Grabenstein, K.C.; Bensch, S.; Taylor, S.A. A highly invasive malaria parasite has expanded its range to non-migratory birds in North America. Biol. Lett. 2021, 17, 20210271. [Google Scholar] [CrossRef]
  158. Martínez-Hernández, F.; Oria-Martínez, B.; Rendón-Franco, E.; Villalobos, G.; Muñoz-García, C.I. Trypanosoma cruzi, beyond the dogma of non-infection in birds. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2022, 99, 105239. [Google Scholar] [CrossRef] [PubMed]
  159. Pacheco, M.A.; Ferreira, F.C.; Logan, C.J.; McCune, K.B.; MacPherson, M.P.; Miranda, S.A.; Santiago-Alarcon, D.; Escalante, A.A. Great-tailed Grackles (Quiscalus mexicanus) as a tolerant host of avian malaria parasites. PLoS ONE 2022, 17, e0268161. [Google Scholar] [CrossRef]
  160. Talbott, K.M.; Ketterson, E.D. Physiological impacts of chronic and experimental Plasmodium infection on breeding-condition male songbirds. Sci. Rep. 2023, 13, 13091. [Google Scholar] [CrossRef]
  161. Kelly, T.R.; Cannon, A.L.; Stansberry, K.R.; Kimball, M.G.; Lattin, C.R. Changes in hypothalamic–pituitary–adrenal axis function, immunity, and glucose during acute Plasmodium relictum infection in house sparrows (Passer domesticus). Gen. Comp. Endocrinol. 2024, 345, 114388. [Google Scholar] [CrossRef]
  162. Atkinson, C.T.; Saili, K.S.; Utzurrum, R.B.; Jarvi, S.I. Experimental Evidence for Evolved Tolerance to Avian Malaria in a Wild Population of Low Elevation Hawai‘i ‘Amakihi (Hemignathus virens). EcoHealth 2013, 10, 366–375. [Google Scholar] [CrossRef]
  163. Seidl, C.M.; Ferreira, F.C.; Parise, K.L.; Paxton, K.L.; Paxton, E.H.; Atkinson, C.T.; Fleischer, R.C.; Foster, J.T.; Marm Kilpatrick, A. Linking avian malaria parasitemia estimates from quantitative PCR and microscopy reveals new infection patterns in Hawai’i. Int. J. Parasitol. 2024, 54, 123–130. [Google Scholar] [CrossRef]
  164. Murata, K. Prevalence of blood parasites in Japanese wild birds. J. Vet. Med. Sci. 2002, 64, 785–790. [Google Scholar] [CrossRef]
  165. Hagihara, M.; Yamaguchi, T.; Kitahara, M.; Hirai, K.; Murata, K. Leucocytozoon lovati Infections in Wild Rock Ptarmigan (Lagopus mutus) in Japan. J. Wildl. Dis. 2004, 40, 804–807. [Google Scholar] [CrossRef]
  166. Ishtiaq, F.; Gering, E.; Rappole, J.H.; Rahmani, A.R.; Jhala, Y.V.; Dove, C.J.; Milensky, C.; Olson, S.L.; Peirce, M.A.; Fleischer, R.C. Prevalence and diversity of avian hematozoan parasites in Asia: A regional survey. J. Wildl. Dis. 2007, 43, 382–398. [Google Scholar] [CrossRef]
  167. Sato, Y.; Hagihara, M.; Yamaguchi, T.; Yukawa, M.; Murata, K. Phylogenetic Comparison of Leucocytozoon spp. from Wild Birds of Japan. J. Vet. Med. Sci. 2007, 69, 55–59. [Google Scholar] [CrossRef][Green Version]
  168. Murata, K.; Nii, R.; Yui, S.; Sasaki, E.; Ishikawa, S.; Sato, Y.; Matsui, S.; Horie, S.; Akatani, K.; Takagi, M.; et al. Avian Haemosporidian Parasites Infection in Wild Birds Inhabiting Minami-Daito Island of the Northwest Pacific, Japan. J. Vet. Med. Sci. 2008, 70, 501–503. [Google Scholar] [CrossRef][Green Version]
  169. Imura, T.; Suzuki, Y.; Ejiri, H.; Sato, Y.; Ishida, K.; Sumiyama, D.; Murata, K.; Yukawa, M. Prevalence of avian haematozoa in wild birds in a high-altitude forest in Japan. Vet. Parasitol. 2012, 183, 244–248. [Google Scholar] [CrossRef] [PubMed]
  170. Salakij, J.; Lertwatcharasarakul, P.; Kasorndorkbua, C.; Salakij, C. Plasmodium circumflexum in a Shikra (Accipiter badius): Phylogeny and ultra-structure of the haematozoa. Jpn. J. Vet. Res. 2012, 60, 105–109. [Google Scholar] [PubMed]
  171. Tanigawa, M.; Sato, Y.; Ejiri, H.; Imura, T.; Chiba, R.; Yamamoto, H.; Kawaguchi, M.; Tsuda, Y.; Murata, K.; Yukawa, M. Molecular identification of avian haemosporidia in wild birds and mosquitoes on Tsushima Island, Japan. J. Vet. Med. Sci. 2013, 75, 319–326. [Google Scholar] [CrossRef]
  172. Elahi, R.; Islam, A.; Hossain, M.S.; Mohiuddin, K.; Mikolon, A.; Paul, S.K.; Hosseini, P.R.; Daszak, P.; Alam, M.S. Prevalence and Diversity of Avian Haematozoan Parasites in Wetlands of Bangladesh. J. Parasitol. Res. 2014, 2014, 493754. [Google Scholar] [CrossRef] [PubMed]
  173. Zhang, Y.; Wu, Y.; Zhang, Q.; Su, D.; Zou, F. Prevalence Patterns of Avian Plasmodium and Haemoproteus Parasites and the Influence of Host Relative Abundance in Southern China. PLoS ONE 2014, 9, e99501. [Google Scholar] [CrossRef]
  174. Borkataki, S.; Katoch, R.; Goswami, P.; Godara, R.; Khajuria, J.K.; Yadav, A.; Kour, R.; Mir, I. Incidence of Haemoproteus columbae in pigeons of Jammu district. J. Parasit. Dis. 2015, 39, 426–428. [Google Scholar] [CrossRef][Green Version]
  175. Nourani, L.; Aliabadian, M.; Dinparast-Djadid, N.; Mirshamsi, O. New Host Records for Haemoproteus spp. (Apicomplexa: Haemosporidiasina) in Passeriformes from North-West of Iran. J. Arthropod-Borne Dis. 2017, 11, 236–241. [Google Scholar][Green Version]
  176. Ishtiaq, F.; Barve, S. Do avian blood parasites influence hypoxia physiology in a high elevation environment? BMC Ecol. 2018, 18, 15. [Google Scholar] [CrossRef] [PubMed]
  177. Nourani, L.; Aliabadian, M.; Mirshamsi, O.; Djadid, N.D. Correction: Molecular detection and genetic diversity of avian haemosporidian parasites in Iran. PLoS ONE 2018, 14, e0212453. [Google Scholar] [CrossRef]
  178. Rhim, H.; Bae, J.; Kim, H.; Han, J.-I. Prevalence and phylogenetic analysis of avian haemosporidia in wild birds in the republic of Korea. J. Wildl. Dis. 2018, 54, 772–781. [Google Scholar] [CrossRef]
  179. Gupta, P.; Vishnudas, C.K.; Ramakrishnan, U.; Robin, V.V.; Dharmarajan, G. Geographical and host species barriers differentially affect generalist and specialist parasite community structure in a tropical sky-island archipelago. Proc. R. Soc. B Biol. Sci. 2019, 286, 20190439. [Google Scholar] [CrossRef]
  180. Yuda, P. Detection of avian malaria in wild birds at Trisik Beach of Yogyakarta, Java (Indonesia). Ann. Parasitol. 2019, 65, 171–175. [Google Scholar] [CrossRef]
  181. Gupta, P.; Vishnudas, C.K.; Robin, V.V.; Dharmarajan, G. Host phylogeny matters: Examining sources of variation in infection risk by blood parasites across a tropical montane bird community in India. Parasites Vectors 2020, 13, 536. [Google Scholar] [CrossRef]
  182. Nourani, L.; Djadid, N.D.; Rabiee, K.; Mezerji, M.S.; Shakiba, M.; Bakhshi, H.; Shokrollahi, B.; Farahani, R.K. Detection of haemosporidian parasites in wild and domestic birds in northern and central provinces of Iran: Introduction of new lineages and hosts. Int. J. Parasitol. Parasites Wildl. 2020, 13, 203–212. [Google Scholar] [CrossRef]
  183. Dharmarajan, G.; Gupta, P.; Vishnudas, C.K.; Robin, V.V. Anthropogenic disturbance favours generalist over specialist parasites in bird communities: Implications for risk of disease emergence. Ecol. Lett. 2021, 24, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
  184. Inumaru, M.; Odaya, Y.; Sato, Y.; Marzal, A. First records of prevalence and diversity of avian haemosporidia in snipe species (genus Gallinago) of Japan. Int. J. Parasitol. Parasites Wildl. 2021, 16, 5–17. [Google Scholar] [CrossRef] [PubMed]
  185. Lertwatcharasarakul, P.; Salakij, C.; Prasopsom, P.; Kasorndorkbua, C.; Jakthong, P.; Santavakul, M.; Suwanasaeng, P.; Ploypan, R. Molecular and Morphological Analyses of Leucocytozoon Parasites (Haemosporida: Leucocytozoidae) in Raptors from Thailand. Acta Parasitol. 2021, 66, 1406–1416. [Google Scholar] [CrossRef] [PubMed]
  186. Nourani, L.; Baghkheirati, A.A.; Zargar, M.; Karimi, V.; Djadid, N.D. Haemoproteosis and avian malaria in Columbidae and Corvidae from Iran. Vet. Med. Sci. 2021, 7, 2043–2050. [Google Scholar] [CrossRef] [PubMed]
  187. Shokrani, H.; Norouzian, H.; Dezfoulian, O. Exo-erythrocytic stages of Haemoproteus sp. in common buzzard (Buteo buteo): A histopathological and molecular study. Int. J. Parasitol. Parasites Wildl. 2021, 16, 64–69. [Google Scholar] [CrossRef]
  188. Honjo, Y.; Fukumoto, S.; Sakamoto, H.; Hikosaka, K. New PCR primers targeting the cytochrome b gene reveal diversity of Leucocytozoon lineages in an individual host. Parasitol. Res. 2022, 121, 3313–3320. [Google Scholar] [CrossRef]
  189. Inumaru, M.; Nishiumi, I.; Kawakami, K.; Sato, Y. A widespread survey of avian haemosporidia in deceased wild birds of Japan: The hidden value of personally collected samples. J. Vet. Med. Sci. 2022, 84, 1253–1260. [Google Scholar] [CrossRef]
  190. Han, Y.; Hellgren, O.; Wu, Q.; Liu, J.; Jin, T.; Bensch, S.; Ding, P. Seasonal variations of intensity of avian malaria infection in the Thousand Island Lake System, China. Parasites Vectors 2023, 16, 218. [Google Scholar] [CrossRef]
  191. Kim, M.; Bae, J.; Oh, B.; Rhim, H.; Yang, M.-S.; Yang, S.; Kim, B.; Han, J.-I. Surveillance of wild animals carrying infectious agents based on high-throughput screening platform in the Republic of Korea. BMC Vet. Res. 2023, 19, 158. [Google Scholar] [CrossRef] [PubMed]
  192. Adriano, E.A.; Cordeiro, N.S. Prevalence and intensity of Haemoproteus columbae in three species of wild doves from Brazil. Memórias Do Inst. Oswaldo Cruz 2001, 96, 175–178. [Google Scholar] [CrossRef]
  193. Garvin, M.C.; Marra, P.P.; Crain, S.K. Prevalence of Hematozoa in Overwintering American Redstarts (Setophaga ruticilla): No Evidence for Local Transmission. J. Wildl. Dis. 2004, 40, 115–118. [Google Scholar] [CrossRef]
  194. Allgayer, M.C.; Guedes, N.M.R.; Chiminazzo, C.; Cziulik, M.; Weimer, T.A. Clinical pathology and parasitologic evaluation of free-living nestlings of the hyacinth macaw (Anodorhynchus hyacinthinus). J. Wildl. Dis. 2009, 45, 972–981. [Google Scholar] [CrossRef] [PubMed]
  195. Belo, N.O.; Pinheiro, R.T.; Reis, E.S.; Ricklefs, R.E.; Braga, É.M. Prevalence and Lineage Diversity of Avian Haemosporidians from Three Distinct Cerrado Habitats in Brazil. PLoS ONE 2011, 6, e17654. [Google Scholar] [CrossRef]
  196. Belo, N.O.; Rodríguez-Ferraro, A.; Braga, E.M.; Ricklefs, R.E. Diversity of avian haemosporidians in arid zones of northern Venezuela. Parasitology 2012, 139, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
  197. Mijares, A.; Rosales, R.; Silva-Iturriza, A. Hemosporidian Parasites in Forest Birds from Venezuela: Genetic Lineage Analyses. Avian Dis. 2012, 56, 583–588. [Google Scholar] [CrossRef] [PubMed]
  198. Matta, N.E.; Pacheco, M.A.; Escalante, A.A.; Valkiūnas, G.; Ayerbe-Quiñones, F.; Acevedo-Cendales, L.D. Description and molecular characterization of Haemoproteus macrovacuolatus n. sp. (Haemosporida, Haemoproteidae), a morphologically unique blood parasite of black-bellied whistling duck (Dendrocygna autumnalis) from South America. Parasitol. Res. 2014, 113, 2991–3000. [Google Scholar] [CrossRef]
  199. Sallaberry-Pincheira, N.; Gonzalez-Acuña, D.; Herrera-Tello, Y.; Dantas, G.P.M.; Luna-Jorquera, G.; Frere, E.; Valdés-Velasquez, A.; Simeone, A.; Vianna, J.A. Molecular Epidemiology of Avian Malaria in Wild Breeding Colonies of Humboldt and Magellanic Penguins in South America. EcoHealth 2015, 12, 267–277. [Google Scholar] [CrossRef]
  200. Svensson-Coelho, M.; Silva, G.T.; Santos, S.S.; Miranda, L.S.; Araújo-Silva, L.E.; Ricklefs, R.E.; Miyaki, C.Y.; Maldonado-Coelho, M. Lower Detection Probability of Avian Plasmodium in Blood Compared to Other Tissues. J. Parasitol. 2016, 102, 559–561. [Google Scholar] [CrossRef] [PubMed]
  201. Vanstreels, R.E.T.; Uhart, M.; Rago, V.; Hurtado, R.; Epiphanio, S.; Catão-Dias, J.L. Do blood parasites infect Magellanic penguins (Spheniscus magellanicus) in the wild? Prospective investigation and climatogeographic considerations. Parasitology 2017, 144, 698–705. [Google Scholar] [CrossRef]
  202. Werther, K.; Luzzi, M.d.C.; Gonçalves, L.R.; de Oliveira, J.P.; Alves Junior, J.R.F.; Machado, R.Z.; André, M.R. Arthropod-borne agents in wild Orinoco geese (Neochen jubata) in Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2017, 55, 30–41. [Google Scholar] [CrossRef]
  203. Ferreira-Junior, F.C.; Dutra, D.d.A.; Silveira, P.; Pacheco, R.C.; Witter, R.; Ramos, D.G.d.S.; Pacheco, M.A.; Escalante, A.A.; Braga, É.M. A new pathogen spillover from domestic to wild animals: Plasmodium juxtanucleare infects free-living passerines in Brazil. Parasitology 2018, 145, 1949–1958. [Google Scholar] [CrossRef]
  204. Tostes, R.; Dias, R.J.P.; Oliveira, L.; de Senra, M.V.X.; Massard, C.L.; D’Agosto, M. Molecular and Morphological Characterization of a Brazilian Lineage of Plasmodium (Novyella) Unalis in Turdus spp. (Passeriformes) of the Atlantic Forest, with Remarks on New Hosts and High Genetic Variation. J. Parasitol. 2018, 104, 70–78. [Google Scholar] [CrossRef]
  205. de Oliveira, L.; Cedrola, F.; Senra, M.V.X.; Scopel, K.K.G.; Martinele, I.; Tostes, R.; Dias, R.J.P.; D’Agosto, M. Polymorphism evidence in Plasmodium (Haemamoeba) lutzi Lucena, 1939 (Apicomplexa, Haemosporida) isolated from Brazilian wild birds. Parasitol. Int. 2019, 70, 70–76. [Google Scholar] [CrossRef] [PubMed]
  206. Ewbank, A.C.; Strefezzi, R.d.F.; Sacristán, C.; Kolesnikovas, C.K.M.; Martins, A.; Mayorga, L.F.S.P.; Vanstreels, R.E.T.; Catão-Dias, J.L. Comparative morphometric evaluation of hepatic hemosiderosis in wild Magellanic penguins (Spheniscus magellanicus) infected with different Plasmodium spp. Subgenera. Rev. Bras. De Parasitol. Veterinária 2019, 28, 68–79. [Google Scholar] [CrossRef]
  207. de Oliveira, L.; Barino, G.T.M.; Rossi, M.F.; D’Agosto, M.; Dias, R.J.P.; Santos, H.A. Morphological and molecular characterization of Haemoproteus coatneyi and Haemoproteus erythrogravidus (Haemosporida: Haemoproteidae) in Passeriformes in Brazil’s Atlantic Forest. Rev. Bras. De Parasitol. Vet. Braz. J. Vet. Parasitol. Orgao Do Col. Bras. De Parasitol. Vet. 2020, 29, e011520. [Google Scholar] [CrossRef] [PubMed]
  208. Oliveira, L.; Dias, R.J.P.; Rossi, M.F.; D’Agosto, M.; Santos, H.A. Molecular diversity and coalescent species delimitation of avian haemosporidian parasites in an endemic bird species of South America. Parasitol. Res. 2020, 119, 4033–4047. [Google Scholar] [CrossRef]
  209. Matoso, R.V.; Cedrola, F.; Barino, G.T.M.; Dias, R.J.P.; Rossi, M.F.; D’Agosto, M. New morphological and molecular data for Haemoproteus (H.) paramultipigmentatus in the Atlantic Forest of Brazil. Parasitol. Int. 2021, 84, 102375. [Google Scholar] [CrossRef]
  210. Morel, A.P.; Webster, A.; Prusch, F.; Anicet, M.; Marsicano, G.; Trainini, G.; Stocker, J.; Giani, D.; Bandarra, P.M.; da Rocha, M.I.S.; et al. Molecular detection and phylogenetic relationship of Haemosporida parasites in free-ranging wild raptors from Brazil. Vet. Parasitol. Reg. Stud. Rep. 2021, 23, 100521. [Google Scholar] [CrossRef]
  211. Alvarez-Londoño, J.; Cardona-Romero, M.; Martínez-Sánchez, E.T.; Ossa-López, P.A.; Pérez-Cárdenas, J.E.; Gonzalez, A.D.; Rivera-Páez, F.A.; Castaño-Villa, G.J. Avian haemosporidian (Haemosporida: Plasmodium and Haemoproteus) in the department of Arauca, Colombian Orinoquia region. Parasitol. Res. 2022, 121, 1775–1787. [Google Scholar] [CrossRef] [PubMed]
  212. da Silva, B.R.; Vanstreels, R.E.T.; Serafini, P.P.; Fontana, C.S.; da Silva, T.W.; Chiarani, E.; Carvalho, A.M.; Ferreira Junior, F.C.; Braga, É.M.; Locatelli-Dittrich, R. Blood parasites of passerines in the Brazilian Pampas and their implications for a potential population supplementation program for the endangered Yellow Cardinal (Gubernatrix cristata). Parasitol. Res. 2022, 121, 3203–3215. [Google Scholar] [CrossRef]
  213. Lima, M.B.; Borges, A.; Wolf, M.; Santos, H.A.; Dias, R.J.P.; Rossi, M.F. First record of Trypanosoma (Ornithotrypanum) infecting Neotropical birds. Parasitol. Res. 2024, 123, 156. [Google Scholar] [CrossRef]
  214. Cadena-Ortiz, H.; Mantilla, J.S.; de Aguilar, J.R.; Flores, D.; Bahamonde, D.; Matta, N.E.; Bonaccorso, E. Avian haemosporidian infections in rufous-collared sparrows in an Andean dry forest: Diversity and factors related to prevalence and parasitaemia. Parasitology 2019, 146, 765–773. [Google Scholar] [CrossRef]
  215. Moens, M.A.J.; Pérez-Tris, J. Discovering potential sources of emerging pathogens: South America is a reservoir of generalist avian blood parasites. Int. J. Parasitol. 2016, 46, 41–49. [Google Scholar] [CrossRef]
  216. Travis, E.K.; Vargas, F.H.; Merkel, J.; Gottdenker, N.; Miller, R.E.; Parker, P.G. Hematology, serum chemistry, and serology of galápagos penguins (Spheniscus mendiculus) in the galápagos islands, ecuador. J. Wildl. Dis. 2006, 42, 625–632. [Google Scholar] [CrossRef]
  217. de Freitas, R.V.M.; Barino, G.T.M.; Cedrola, F.; Dias, R.J.P.; D’Agosto, M.; Massard, C.L. Insights on the taxonomy of Haemoproteus parasites infecting cracid birds. Parasitol. Int. 2023, 94, 102730. [Google Scholar] [CrossRef]
  218. Ashford, R.W.; Palmer, T.T.; Ash, J.S.; Bray, R.S. Blood parasites of Ethiopian birds. 1. General survey. J. Wildl. Dis. 1976, 12, 409–426. [Google Scholar] [CrossRef]
  219. Ayeni, J.S.O.; Dipeolu, O.O.; Okaeme, A.N. Parasitic infections of the grey-breasted helmet guinea-fowl (Numida meleagris galeata) in Nigeria. Vet. Parasitol. 1983, 12, 59–63. [Google Scholar] [CrossRef]
  220. Earlé, R.A.; Horak, I.G.; Huchzermeyer, F.W.; Bennett, G.F.; Braack, L.E.; Penzhorn, B.L. The prevalence of blood parasites in helmeted guineafowls, Numida meleagris, in the Kruger National Park. Onderstepoort J. Vet. Res. 1991, 58, 145–147. [Google Scholar]
  221. Graczyk, T.K.; Brossy, J.J.; Plös, A.; Stoskopf, M.K. Avian malaria seroprevalence in Jackass penguins (Spheniscus demersus) in South Africa. J. Parasitol. 1995, 81, 703–707. [Google Scholar] [CrossRef] [PubMed]
  222. Grim, K.C.; Van der Merwe, E.; Sullivan, M.; Parsons, N.; McCutchan, T.F.; Cranfield, M. Plasmodium juxtanucleare associated with mortality in black-footed penguins (Spheniscus demersus) admitted to a rehabilitation center. J. Zoo Wildl. Med. 2003, 34, 250–255. [Google Scholar] [CrossRef] [PubMed]
  223. Savage, A.F.; Ariey, F.; Greiner, E.C. Hematozoa of the avian family vangidae (the vangas). J. Parasitol. 2004, 90, 1475–1479. [Google Scholar] [CrossRef] [PubMed]
  224. Savage, A.F.; Greiner, E.C. Hematozoa of the avian family brachypteraciidae (the ground-rollers). J. Parasitol. 2004, 90, 1468–1472. [Google Scholar] [CrossRef]
  225. Savage, A.F.; Greiner, E.C. Haemoproteids of the avian family dicruridae (the drongos). J. Parasitol. 2005, 91, 131–134. [Google Scholar] [CrossRef]
  226. Valkiūnas, G.; Sehgal, R.N.M.; Iezhova, T.A.; Smith, T.B. Further Observations on the Blood Parasites of Birds in Uganda. J. Wildl. Dis. 2005, 41, 580–587. [Google Scholar] [CrossRef][Green Version]
  227. Savage, A.F.; Ariey, F.; Greiner, E.C. Leucocytozoon atkinsoni n. sp. (Apicomplexa: Leucocytozoidae) from the avian family Timaliidae. Syst. Parasitol. 2006, 64, 105–109. [Google Scholar] [CrossRef] [PubMed]
  228. Chasar, A.; Loiseau, C.; Valkiūnas, G.; Iezhova, T.; Smith, T.B.; Sehgal, R.N.M. Prevalence and diversity patterns of avian blood parasites in degraded African rainforest habitats. Mol. Ecol. 2009, 18, 4121–4133. [Google Scholar] [CrossRef]
  229. Savage, A.F.; Robert, V.; Goodman, S.M.; Raharimanga, V.; Raherilalao, M.J.; Andrianarimisa, A.; Ariey, F.; Greiner, E.C. Blood Parasites in Birds from Madagascar. J. Wildl. Dis. 2009, 45, 907–920. [Google Scholar] [CrossRef] [PubMed][Green Version]
  230. Parsons, N.J.; Gous, T.A.; Schaefer, A.M.; Vanstreels, R.E.T. Health evaluation of African penguins (Spheniscus demersus) in southern Africa. Onderstepoort J. Vet. Res. 2016, 83, a1147. [Google Scholar] [CrossRef] [PubMed]
  231. Boundenga, L.; Perkins, S.L.; Ollomo, B.; Rougeron, V.; Leroy, E.M.; Renaud, F.; Prugnolle, F. Haemosporidian Parasites of Reptiles and Birds from Gabon, Central Africa. J. Parasitol. 2017, 103, 330–337. [Google Scholar] [CrossRef]
  232. Martínez-de la Puente, J.; Eberhart-Phillips, L.J.; Cristina Carmona-Isunza, M.; Zefania, S.; Navarro, M.J.; Kruger, O.; Hoffman, J.I.; Székely, T.; Figuerola, J. Extremely low Plasmodium prevalence in wild plovers and coursers from Cape Verde and Madagascar. Malar. J. 2017, 16, 243. [Google Scholar] [CrossRef]
  233. Chaisi, M.E.; Osinubi, S.T.; Dalton, D.L.; Suleman, E. Occurrence and diversity of avian haemosporidia in Afrotropical landbirds. Int. J. Parasitol. Parasites Wildl. 2018, 8, 36–44. [Google Scholar] [CrossRef]
  234. Tchoumbou, M.A.; Mayi, M.P.A.; Malange, E.N.F.; Foncha, F.D.; Kowo, C.; Fru-Cho, J.; Tchuinkam, T.; Awah-Ndukum, J.; Dorazio, R.; Nota Anong, D.; et al. Effect of deforestation on prevalence of avian haemosporidian parasites and mosquito abundance in a tropical rainforest of Cameroon. Int. J. Parasitol. 2020, 50, 63–73. [Google Scholar] [CrossRef]
  235. Musa, S.; Mackenstedt, U.; Woog, F.; Dinkel, A. Untangling the actual infection status: Detection of avian haemosporidian parasites of three Malagasy bird species using microscopy, multiplex PCR, and nested PCR methods. Parasitol. Res. 2022, 121, 2817–2829. [Google Scholar] [CrossRef]
  236. Musa, S. Mitochondrial Genome Amplification of Avian Haemosporidian Parasites from Single-Infected Wildlife Samples Using an Innovative Nested PCR Approach. Res. Sq. 2023, 122.12, 2967–2975. [Google Scholar] [CrossRef]
  237. Vanstreels, R.E.T.; Chagas, C.R.F.; Valkiūnas, G.; dos Anjos, C.C.; Parsons, N.J.; Roberts, D.G.; Snyman, A.; Hurtado, R.; Kirchgatter, K.; Ludynia, K.; et al. Haemoproteus jenniae (Haemoproteidae, Haemosporida) infects gulls (Larus spp.) in South Africa, with redescription of Haemoproteus skuae. Parasitology 2023, 150, 1286–1295. [Google Scholar] [CrossRef]
  238. Holz, P. Disseminated granulomas caused by protozoan megaloschizonts in superb lyrebirds (Menura novaehollandiae). Aust. Vet. J. 1997, 75, 672–673. [Google Scholar] [CrossRef] [PubMed]
  239. Peirce, M.A.; Lederer, R.; Adlard, R.D.; O’Donoghue, P.J. Pathology associated with endogenous development of haematozoa in birds from southeast Queensland. Avian Pathol. 2004, 33, 445–450. [Google Scholar] [CrossRef]
  240. Baillie, S.M.; Gudex-Cross, D.; Barraclough, R.K.; Blanchard, W.; Brunton, D.H. Patterns in avian malaria at founder and source populations of an endemic New Zealand passerine. Parasitol. Res. 2012, 111, 2077–2089. [Google Scholar] [CrossRef]
  241. Cannell, B.L.; Krasnec, K.V.; Campbell, K.; Jones, H.I.; Miller, R.D.; Stephens, N. The pathology and pathogenicity of a novel Haemoproteus spp. Infection in wild Little Penguins (Eudyptula minor). Vet. Parasitol. 2013, 197, 74–84. [Google Scholar] [CrossRef]
  242. Niebuhr, C.N.; Poulin, R.; Tompkins, D.M. Is Avian Malaria Playing a Role in Native Bird Declines in New Zealand? Testing Hypotheses along an Elevational Gradient. PLoS ONE 2016, 11, e0165918. [Google Scholar] [CrossRef]
  243. Gartrell, B.; Agnew, D.; Alley, M.; Carpenter, T.; Ha, H.J.; Howe, L.; Hunter, S.; McInnes, K.; Munday, R.; Roe, W.; et al. Investigation of a mortality cluster in wild adult yellow-eyed penguins (Megadyptes antipodes) at Otago Peninsula, New Zealand. Avian Pathol. 2017, 46, 278–288. [Google Scholar] [CrossRef] [PubMed]
  244. Sijbranda, D.C.; Gartrell, B.D.; Grange, Z.L.; Howe, L. Use of a real-time PCR to explore the intensity of Plasmodium spp. Infections in native, endemic and introduced New Zealand birds. Parasitology 2017, 144, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
  245. Jiang, Y.; Brice, B.; Nguyen, M.; Loh, R.; Greay, T.; Adlard, R.; Ryan, U.; Yang, R. Further characterisation of Leucocytozoon podargii in wild tawny frogmouths (Podargus strigoides) in Western Australia. Parasitol. Res. 2019, 118, 1833–1840. [Google Scholar] [CrossRef]
  246. Filion, A.; Deschamps, L.; Niebuhr, C.N.; Poulin, R. Anthropogenic landscape alteration promotes higher disease risk in wild New Zealand avian communities. PLoS ONE 2022, 17, e0265568. [Google Scholar] [CrossRef] [PubMed]
  247. Sousa, O.E.; Herman, C.M. Blood parasites of birds from Chiriqui and Panama Provinces in the Republic of Panama. J. Wildl. Dis. 1982, 18, 205–221. [Google Scholar] [CrossRef]
  248. Mora-Chavarría, E.; Umaña-Castro, R.; Abou-Madi, N.; Solano-González, S.; Retamosa-Izaguirre, M.; Jiménez-Soto, M.; Blanco-Peña, K. Health assessment of captive psittacine species in prerelease programs at costa rican rescue centers. J. Zoo Wildl. Med. 2017, 48, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
  249. Quillfeldt, P.; Martínez, J.; Hennicke, J.; Ludynia, K.; Gladbach, A.; Masello, J.F.; Riou, S.; Merino, S. Hemosporidian blood parasites in seabirds—A comparative genetic study of species from Antarctic to tropical habitats. Naturwissenschaften 2010, 97, 809–817. [Google Scholar] [CrossRef]
  250. Palinauskas, V.; Valkiūnas, G.; Bolshakov, C.V.; Bensch, S. Plasmodium relictum (lineage P-SGS1): Effects on experimentally infected passerine birds. Exp. Parasitol. 2008, 120, 372–380. [Google Scholar] [CrossRef]
  251. Senar, J.C. Keel and Tarsus Length May Provide a Good Predictor of Avian Body Size. ARDEA-WAGENINGEN. 1977. Available online: https://www.academia.edu/2608794/Keel_and_tarsus_length_may_provide_a_good_predictor_of_avian_body_size (accessed on 12 November 2024).
  252. Hicks, O.; Burthe, S.J.; Daunt, F.; Newell, M.; Butler, A.; Ito, M.; Sato, K.; Green, J.A. The energetic cost of parasitism in a wild population. Proc. Biol. Sci. 2018, 285, 20180489. [Google Scholar] [CrossRef]
  253. Schoepf, I.; Olson, S.; Moore, I.T.; Bonier, F. Experimental reduction of haemosporidian infection affects maternal reproductive investment, parental behaviour and offspring condition. Proc. R. Soc. B Biol. Sci. 2022, 289, 20221978. [Google Scholar] [CrossRef] [PubMed]
  254. Tikhomirova, I.A. The effect of dehydration on macro- and microrheological blood properties. Clin. Hemorheol. Microcirc. 2002, 26, 85–90. [Google Scholar]
  255. de Jonge, G.; Dos Santos, T.L.; Cruz, B.R.; Simionatto, M.; Bittencourt, J.I.M.; Krum, E.A.; Moss, M.F.; Borato, D.C.K. Interference of in vitro hemolysis complete blood count. J. Clin. Lab. Anal. 2018, 32, e22396. [Google Scholar] [CrossRef]
  256. Cadenas, E. Mechanisms of Oxygen Activation and Reactive Oxygen Species Detoxification. In Oxidative Stress and Antioxidant Defenses in Biology; Ahmad, S., Ed.; Springer: New York, NY, USA, 1995; pp. 1–61. [Google Scholar] [CrossRef]
  257. Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef]
  258. Lochmiller, R.L.; Deerenberg, C. Trade-offs in evolutionary immunology: Just what is the cost of immunity? Oikos 2000, 88, 87–98. [Google Scholar] [CrossRef]
  259. Sherman, I.W. Biochemistry of Plasmodium (malarial parasites). Microbiol. Rev. 1979, 43, 453–495. [Google Scholar] [CrossRef] [PubMed]
  260. Martin, R.E.; Kirk, K. Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum. Blood 2007, 109, 2217–2224. [Google Scholar] [CrossRef]
  261. Giorgi, M.S.; Arlettaz, R.; Christe, P.; Vogel, P. The energetic grooming costs imposed by a parasitic mite (Spinturnix myoti) upon its bat host (Myotis myotis). Proc. Biol. Sci. 2001, 268, 2071–2075. [Google Scholar] [CrossRef]
  262. Maturana, C.R.; de Oliveira, A.D.; Nadal, S.; Bilalli, B.; Serrat, F.Z.; Soley, M.E.; Igual, E.S.; Bosch, M.; Lluch, A.V.; Abelló, A.; et al. Advances and challenges in automated malaria diagnosis using digital microscopy imaging with artificial intelligence tools: A review. Front. Microbiol. 2022, 13, 1006659. [Google Scholar] [CrossRef]
  263. Kramer, M.H.; Harris, D.J. Avian Blood Collection. J. Exot. Pet Med. 2010, 19, 82–86. [Google Scholar] [CrossRef]
  264. Garnham, P.C.C. Locomotion in the Parasitic Protozoa. Biol. Rev. 1966, 41, 561–586. [Google Scholar] [CrossRef] [PubMed]
  265. Jarvi, S.I.; Schultz, J.J.; Atkinson, C.T. PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. J. Parasitol. 2002, 88, 153–158. [Google Scholar] [CrossRef]
  266. Fallon, S.M.; Ricklefs, R.E.; Swanson, B.L.; Bermingham, E. Detecting avian malaria: An improved polymerase chain reaction diagnostic. J. Parasitol. 2003, 89, 1044–1047. [Google Scholar] [CrossRef]
  267. Valkiūnas, G.; Iezhova, T.A.; Križanauskienė, A.; Palinauskas, V.; Sehgal, R.N.M.; Bensch, S. A Comparative Analysis of Microscopy and PCR-Based Detection Methods for Blood Parasites. J. Parasitol. 2008, 94, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
  268. Hellgren, O.; Waldenström, J.; Bensch, S. A new pcr assay for simultaneous studies of leucocytozoon, plasmodium, and haemoproteus from avian blood. J. Parasitol. 2004, 90, 797–802. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.