Nest Predators and Reproductive Success in the Chinese Francolin (Francolinus pintadeanus) Across Two Nature Reserves of Tropical Hainan Island, China
Simple Summary
Abstract
1. Introduction
2. Study Areas and Methods
2.1. Study Areas Profile
2.2. Monitoring of Natural Nests
2.3. Artificial Nest Experiments
2.4. Data Analysis
3. Results
3.1. Natural Nest Monitoring and Nest Predators
3.2. Artificial Nest Experiments and Potential Nest Predators
4. Discussion
4.1. The Overview of Chinese Francolin’s Breeding
4.2. The Nest Predation and Nest Predators of Chinese Francolin
4.3. The Breeding Strategy and Anti-Prey Strategy of Chinese Francolin
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, T.E. Food as a limit on breeding birds—A life-history perspective. Annu. Rev. Ecol. Evol. Syst. 1987, 18, 453–487. [Google Scholar] [CrossRef]
- Zheng, G. Ornithology, 2nd ed.; Beijing Normal University Press: Beijing, China, 2012; ISBN 978-7-303-13947-7. [Google Scholar]
- Martin, T.E. Avian life history evolution in relation to nest sites, nest predation, and food. Ecol. Monogr. 1995, 65, 101–127. [Google Scholar] [CrossRef]
- Chalfoun, A.D.; Schmidt, K.A. Adaptive breeding-habitat selection: Is it for the birds? Auk 2012, 129, 589–599. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Zhang, L.; Yin, D.; Zhang, K.; E, M.; Wang, H. Nest site selection during the second breeding attempt in Japanese tits (Parus minor): Effects of nest site characteristics. Sci. Rep. 2025, 15, 3997. [Google Scholar] [CrossRef] [PubMed]
- Lindell, C.A.; O’Connor, R.S.; Cohen, E.B. Nesting success of neotropical thrushes in coffee and pasture. Wilson J. Ornithol. 2011, 123, 502–507. [Google Scholar] [CrossRef]
- Martin, T.E.; Riordan, M.M.; Repin, R.; Mouton, J.C.; Blake, W.M. Apparent annual survival estimates of tropical songbirds better reflect life history variation when based on intensive field methods. Glob. Ecol. Biogeogr. 2017, 26, 1386–1397. [Google Scholar] [CrossRef]
- Maag, N.; Korner-Nievergelt, F.; Szymkowiak, J.; Hałas, N.; Maziarz, M.; Neubauer, G.; Luepold, S.B.; Carlotti, S.; Schaub, M.; Scherrer, D.; et al. Wood warbler population dynamics in response to mast seeding regimes in Europe. Ecology 2024, 105, e4227. [Google Scholar] [CrossRef]
- Martin, T.E. Interaction of nest predation and food limitation in reproductive strategies. Curr. Ornithol. 1992, 9, 163–197. [Google Scholar]
- Lima, S.L. Predators and the breeding bird: Behavioral and reproductive flexibility under the risk of predation. Biol. Rev. 2009, 84, 485–513. [Google Scholar] [CrossRef]
- Ibáñez-Álamo, J.D.; Magrath, R.D.; Oteyza, J.C.; Chalfoun, A.D.; Haff, T.M.; Schmidt, K.A.; Thomson, R.L.; Martin, T.E. Nest predation research: Recent findings and future perspectives. J. Ornithol. 2015, 156, 247–262. [Google Scholar] [CrossRef]
- Gautschi, D.; Čulina, A.; Heinsohn, R.; Stojanovic, D.; Crates, R. Protecting wild bird nests against predators: A systematic review and meta-analysis of non-lethal methods. J. Appl. Ecol. 2024, 61, 1187–1198. [Google Scholar] [CrossRef]
- Roos, S.; Smart, J.; Gibbons, D.W.; Wilson, J.D. A review of predation as a limiting factor for bird populations in mesopredator–rich landscapes: A case study of the UK. Biol. Rev. 2018, 93, 1915–1937. [Google Scholar] [CrossRef]
- Minias, P.; Janiszewski, T. Ground nesting in passerine birds: Evolution, biogeography and life history correlates. Oikos 2023, 2023, e09870. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, C.; Ding, P.; Zheng, G. The current status and a conservation strategy for species of Galliformes in China. Biodiv. Sci. 2003, 11, 414–421. [Google Scholar]
- McGowan, P.J.K.; Zhang, Y.; Zhang, Z. Galliformes-barometers of the state of applied ecology and wildlife conservation in China. J. Appl. Ecol. 2009, 46, 524–526. [Google Scholar] [CrossRef]
- Ahmad, K. Conservation of Pheasants in Jammu and Kashmir: A Review. In Case Studies of Wildlife Ecology and Conservation in India; Ilyas, O., Khan, A., Eds.; Taylor & Francis: New York, NY, USA, 2022; pp. 199–207. ISBN 978-1-003-32142-2. [Google Scholar]
- Wang, Y.; Si, X.; Bennett, P.M.; Chen, C.; Zeng, D.; Zhao, Y.; Wu, Y.; Ding, P. Ecological correlates of extinction risk in Chinese birds. Ecography 2017, 41, 782–794. [Google Scholar] [CrossRef]
- Zheng, G. Pheasants in China; Higher Education Press: Beijing, China, 2015; ISBN 978-7-04-041413-4. [Google Scholar]
- Ding, P.; Zhang, Z.; Liang, W.; Li, X. The Forest Birds of China; Science and Technology Press: Changsha, China, 2019; ISBN 978-7-5710-0329-6. [Google Scholar]
- Liang, W.; Cai, Y.; Yang, C. Extreme levels of hunting of birds in a remote village of Hainan Island, China. Bird Conserv. Int. 2013, 23, 45–52. [Google Scholar] [CrossRef]
- Si, X.; Kays, R.; Ding, P. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ 2014, 2, e374. [Google Scholar] [CrossRef]
- Frey, S.; Fisher, J.T.; Burton, A.C.; Volpe, J.P. Investigating animal activity patterns and temporal niche partitioning using camera-trap data: Challenges and opportunities. Remote Sens. Ecol. Conserv. 2017, 3, 123–132. [Google Scholar] [CrossRef]
- Bruce, T.; Amir, Z.; Allen, B.L.; Alting, B.F.; Amos, M.; Augusteyn, J.; Ballard, G.; Behrendorff, L.M.; Bell, K.; Bengsen, A.J.; et al. Large-scale and long-term wildlife research and monitoring using camera traps: A continental synthesis. Biol. Rev. 2025, 2, 530–555. [Google Scholar] [CrossRef]
- Bao, Q.; Lin, L.; Chen, L.; Weng, G.; Zhao, K. A Study on the Incubation Period and Incubation Behavior of Wild Tragopan caboti Population. Sichuan. J. Zool. 2022, 41, 537–540. [Google Scholar]
- Bibi, N.; Gao, G.; Liang, D.; Luo, X. High Incubation Attendance and Nesting Site Constraints of the Sclater’s Monal in an Alpine Environment in Southwestern China. Ecol. Evol. 2024, 14, e70665. [Google Scholar] [CrossRef]
- Rao, X.; Yang, C.; Liang, W. Breeding biology and novel reproductive behaviour in the Hainan partridge (Arborophila ardens). Avian Res. 2017, 8, 34. [Google Scholar] [CrossRef]
- Martin, T.E. Artificial Nest experiments: Effects of nest appearance and type of predator. Condor 1987, 89, 925–928. [Google Scholar] [CrossRef]
- Zanette, L.; Jenkins, B. Nesting success and nest predators in forest fragments: A study using real and artificial nests. Auk 2000, 117, 445–454. [Google Scholar] [CrossRef]
- Luo, X.; Zhao, Y.; Ma, J.; Li, J.; Xu, J. Nest survival rate of Reeves’s pheasant (Syrmaticus reevesii) based on artificial nest experiments. Zool. Res. 2017, 38, 49–54. [Google Scholar]
- Palencia, P.; Barroso, P. Disentangling ground-nest predation rates through an artificial nests experiment in an area with western capercaillie (Tetrao urogallus) presence: Martens are the key. Eur. J. Wildl. Res. 2024, 70, 87. [Google Scholar] [CrossRef]
- Rao, X.; Li, J.; He, B.; Wang, H.; Wu, G.; Teng, T.; Ling, Q. Nesting Success and Potential Nest Predators of the Red Junglefowl (Gallus gallus jabouillei) Based on Camera Traps and Artificial Nest Experiments. Front. Ecol. Evol. 2023, 11, 1127139. [Google Scholar] [CrossRef]
- Zheng, G. A Checklist on the Classification and Distribution of the Birds of the World, 2nd ed.; Science Press: Beijing, China, 2002; ISBN 978-7-03-069159-0. [Google Scholar]
- Zheng, G. A Checklist on the Classification and Distribution of the Birds of China, 4th ed.; Science Press: Beijing, China, 2023; ISBN 978-7-03-075416-5. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species. Version 2024-2, 2024. Available online: http://www.iucnredlist.org (accessed on 21 January 2025).
- Zhao, Z. The Avifauna of China; Jilin Science and Technology Press: Changchun, China, 2001; ISBN 978-7-5384-2407-2. [Google Scholar]
- Teng, T. Habitat Selection and Ecological Restoration of Two Sympatric Pheasants. Master’s Thesis, Hainan University, Haikou, China, 2022. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Tobias, J.A.; Şekercioğlu, Ç.H.; Vargas, F.H. Bird conservation in tropical ecosystems: Challenges and opportunities. Key Top. Conserv. Biol. 2013, 2, 258–276. [Google Scholar]
- Tonetti, V.; Bocalini, F.; Schunck, F.; Vancine, M.H.; Butti, M.; Ribeiro, M.; Pizo, M. The Protected Areas network may be insufficient to protect bird diversity in a fragmented tropical hotspot under different climate scenarios. Perspect. Ecol. Conserv. 2024, 22, 63–71. [Google Scholar] [CrossRef]
- van der Hoek, Y.; Gaona, G.V.; Martin, K. The diversity, distribution and conservation status of the tree-cavity-nesting birds of the world. Divers. Distrib. 2017, 23, 1120–1131. [Google Scholar] [CrossRef]
- Xiao, H.; Hu, Y.; Lang, Z.; Fang, B.; Guo, W.; Zhang, Q.; Pan, X.; Lu, X. How much dowe know about the breeding biology of bird species in the world? J. Avian Biol. 2016, 48, 513–518. [Google Scholar] [CrossRef]
- Qin, X.; Liu, Y. Biodiversity of Hainan Island and Its Protection Countermeasures. Chin. J. Trop. Agric. 2007, 27, 50–53, 63. [Google Scholar]
- Wang, L. A comparative analysis of protected area expansion strategies for biodiversity and ecosystem services: A case study of Hainan Island. Front. Ecol. Evol. 2025, 12, 1483133. [Google Scholar] [CrossRef]
- Visco, D.M.; Sherry, T.W. Increased abundance, but reduced nest predation in the chestnut-backed antbird in costa rican rainforest fragments: Surprising impacts of a pervasive snake species. Biol. Conserv. 2015, 188, 22–31. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, X.; Jiang, G. Applications of camera trapping to wildlife surveys in China. Biodiv. Sci. 2014, 22, 683–684. [Google Scholar]
- Smith, A.T.; Xie, Y. A Guide to the Mammals of China; Princeton University Press: Princeton, NJ, USA, 2008; ISBN 978-0-691-09984-2. [Google Scholar]
- Rovero, F.; Martin, E.; Rosa, M.; Ahumada, J.A.; Spitale, D. Estimating species richness and modeling habitat preferences of tropical forest mammals from camera trap data. PLoS ONE 2014, 9, e103300. [Google Scholar] [CrossRef] [PubMed]
- Klug, P.E.; Jackrel, S.L.; With, K.A. Linking snake habitat use to nest predation risk in grassland birds: The dangers of shrub cover. Oecologia 2010, 162, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.B.; Roe, A.J.; Silber, K.M.; Williams, E.J.; Winnicki, S.K.; Boyle, W.A. Consequences of drought for grassland songbird reproduction. Ecosphere 2024, 15, e4746. [Google Scholar] [CrossRef]
- Moen, G.K.; Ordiz, A.; Kindberg, J.; Swenson, J.E.; Sundell, J.; Støen, O.G. Behavioral reactions of brown bears to approaching humans in Fennoscandia. Écoscience 2019, 26, 23–33. [Google Scholar] [CrossRef]
- Suraci, J.P.; Frank, L.G.; Oriol-Cotterill, A.; Ekwanga, S.; Williams, T.M.; Wilmers, C.C. Behavior-specific habitat selection by African lions may promote their persistence in a human-dominated landscape. Ecology 2019, 100, e02644. [Google Scholar] [CrossRef]
- Lee, S.X.T.; Amir, Z.; Moore, J.H.; Gaynor, K.M.; Luskin, M.S. Effects of human disturbances on wildlife behaviour and consequences for predator-prey overlap in Southeast Asia. Nat. Commun. 2024, 15, 1521. [Google Scholar] [CrossRef]
- Kidd-Weaver, A.D.; Rainwater, T.R.; Hoog, M.E.; Jachowski, C.M.B. Investigating the impact of human disturbance on predator behaviour in human-dominated landscapes. Anim. Behav. 2024, 211, 13–24. [Google Scholar] [CrossRef]
- Sun, J.; Wang, S.; Wang, Y.; Shao, D.; Ding, P. Effects of habitat fragmentation on avian nest predation risk in Thousand Island Lake, Zhejiang Province. Biodiv. Sci. 2011, 19, 528–534. [Google Scholar]
- Ferrante, M.; Schulze, M.; Westphal, C. Hedgerows can increase predation rates in wheat fields in homogeneous agricultural landscapes. J. Environ. Manag. 2024, 349, 119498. [Google Scholar] [CrossRef]
- Maag, N.; Mallord, J.W.; Burgess, M.D.; Lüpold, S.; Cristinacce, A.; Arlettaz, R.; Carlotti, S.; Davis, T.M.; Grendelmeier, A.; Orsman, C.J.; et al. Accounting for predator species identity reveals variable relationships between nest predation rate and habitat in a temperate forest songbird. Ecol. Evol. 2022, 12, e7411. [Google Scholar] [CrossRef]
- Angoh, S.Y.J.; Brainerd, S.; Devineau, O.; Odden, M.; Jahren, T. The influence of landscape factors on capercaillie nest predation rates by two competing mesopredators: Pine marten versus red fox. Wildl. Biol. 2024. [Google Scholar] [CrossRef]
- Yuan, L. Field Studies on Red Junglefowl (Gallus gallus jabouillei) in Hainan, China; University of the Chinese Academy of Sciences: Beijing, China, 2009. [Google Scholar]
- Hua, J.; Lu, S.; Song, K.; Wang, J.; Wang, J.; Xu, J. Effects of Livestock Grazing on Spatio-Temporal Patterns and Behaviour of Reeves’s Pheasant Syrmaticus reevesii. Animals 2022, 12, 2968. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, Y.; Cai, Y.; Ji, L.; Pang, D.; Zhou, M.; Cheng, Y.; Pu, F.; Zhang, B. The Spatial Relationship Between Two Sympatric Pheasant Species and Various Human Disturbance Activities. Animals 2025, 15, 95. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Yang, C.; Liang, W. Nest-site fidelity and breeding dispersal by Common Tailorbirds in a tropical forest. Avian Res. 2019, 10, 45. [Google Scholar] [CrossRef]
- Leitão, A.V.; Hall, M.L.; Venables, B.; Mulder, A.R. Ecology and breeding biology of a tropical bird, the Lovely Fairy-Wren (Malurus amabilis). Emu—Austral Ornithol. 2019, 119, 1–13. [Google Scholar] [CrossRef]
- Stutchbury, B.J.; Morton, E.S. Behavioral Ecology of Tropical Birds, 2nd ed.; Academic Press: London, UK, 2022; ISBN 978-0-12-823814-1. [Google Scholar]
- Li, X.; Yu, J.; Yin, D.; Jin, L.; Zhang, K.; Shen, L.; Han, Z.; Wang, H. Does social information affect the settlement decisions of resident birds in their second breeding attempt? A case study of the Japanese Tit (Parus minor). Avian Res. 2024, 15, 100198. [Google Scholar] [CrossRef]
- Smart, Z.F.; Downingb, P.A.; Austinc, S.H.; Greeney, H.F.; Londoñoe, G.A.; Nahidf, M.I.; Robinsonc, W.D.; Riehl, C. Ecology and life history predict avian nest success in the global tropics. Proc. Natl. Acad. Sci. USA 2024, 121, e2402652121. [Google Scholar] [CrossRef]
- Phringphroh, M.; Khamcha, D.; Sankamethawee, W.; Powell, L.A.; Angkaew, R.; Pierce, A.J.; Gale, G.A. Nest site vegetation structure influences nest predators and nesting success of understory birds in a dry evergreen forest in northeastern Thailand. Ornithology 2024, 141, ukae031. [Google Scholar] [CrossRef]
- Thompson, F.R., III. Factors affecting nest predation on forest songbirds in North America. Ibis 2007, 149, 98–109. [Google Scholar] [CrossRef]
- Huang, R.K. Direct and Indirect Effects of Nest Predation Risk on Arctic Breeding Shorebirds: Does Availability of Alternative Prey Contribute to Nest Mortality? Master’s Thesis, Trent University (Canada), Peterborough, ON, Canada, 2024. [Google Scholar]
- Martin, T.E. Nest predation and nest sites. BioScience 1993, 43, 523–532. [Google Scholar] [CrossRef]
- Jara, R.F.; Crego, R.D.; Samuel, M.D.; Rozzi, R.; Jiménez, J.E. Nest-site selection and breeding success of passerines in the world’s southernmost forests. PeerJ 2020, 8, e9892. [Google Scholar] [CrossRef] [PubMed]
- van Eerden, A.O.K.; Komdeur, J.; Richardson, D.S.; Dugdale, H.L.; Hammers, M. Nest-site selection and nest predation in a tropical passerine in relation to food, friends, and foes. Ornithology 2025, 142, ukae049. [Google Scholar] [CrossRef]
- Hughes, N.K.; Price, C.J.; Banks, P.B. Predators are attracted to the olfactory signals of prey. PLoS ONE 2010, 5, e13114. [Google Scholar] [CrossRef]
- Smargiassi, M.; Daghfous, G.; Leroy, B.; Legreneur, P.; Toubeau, G.; Bels, V.; Wattiez, R. Chemical basis of prey recognition in thamnophiine snakes: The unexpected new roles of parvalbumins. PLoS ONE 2012, 7, e39560. [Google Scholar] [CrossRef]
- Li, Y.; Swerdloff, M.; She, T.; Rahman, A.; Sharma, N.; Shah, R.; Castellano, M.; Mogel, D.; Wu, J.; Ahmed, A.; et al. Robust odor identification in novel olfactory environments in mice. Nat. Commun. 2023, 14, 673. [Google Scholar] [CrossRef]
- Robinson, W.D.; Robinson, T.R.; Robinson, S.K.; Brawn, J.D. Nesting success of understory forest birds in Central Panama. J. Avian Biol. 2000, 31, 151–164. [Google Scholar] [CrossRef]
- Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef]
- Kearney, M.; Simpson, S.J.; Raubenheimer, D.; Helmuth, B. Modelling the ecological niche from functional traits. Philos. Trans. R. Soc. B 2010, 365, 3469–3483. [Google Scholar] [CrossRef]
- Saavedra, S.; Rohr, R.P.; Bascompte, J.; Godoy, O.; Kraft, N.J.B.; Levine, J.M.A. A structural approach for understanding multispecies coexistence. Ecol. Monogr. 2017, 87, 470–486. [Google Scholar] [CrossRef]
- Ascanio, A.; Bracken, J.T.; Stevens, M.H.H.; Jezkova, T. New theoretical and analytical framework for quantifying and classifying ecological niche differentiation. Ecol. Monogr. 2024, 94, e1622. [Google Scholar] [CrossRef]
- Yu, X.; Yang, G.; Li, D.; Zhou, F. Ecological distribution and spatial niche of pheasants in the Karst mountains of southwest Guangxi Province, China. Zool. Res. 2011, 32, 549–555. [Google Scholar]
- Teng, T.; Wu, G.; Feng, Y.; Rao, X.; Feng, Y. Nest-site selection by red junglefowl (Gallus gallus jabouillei). J. Trop. Biol. 2022, 13, 220–226. [Google Scholar]
- Barrios-Garcia, M.N.; Ballari, S.A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 2012, 14, 2283–2300. [Google Scholar] [CrossRef]
- Rekiel, A.; Wiecek, J.; Sonta, M. Wild boar (Sus scrofa L. 1758), a problematic but also a useful species—A review. J. Elem. 2024, 29, 575–590. [Google Scholar]
Nest | Site | Date Found | Clutch Size | Observation and Nest Fate |
---|---|---|---|---|
01 * | DT | 31 May 2021 | 5 | No adult, Nest abandoned, Predated |
02 ** | DT | 31 May 2021 | 5 | No adult, Five Nestlings hatched |
03 ** | DT | 23 May 2023 | 3 | No adult, Three Nestlings hatched |
04 ** | DT | 7 May 2023 | 3 | No adult, Three Nestlings hatched |
05 * | DT | 11 August 2023 | 4 | No adult, Nest abandoned, Predated |
06 * | DT | 11 August 2023 | 5 | No adult, Nest abandoned, Predated by small Indian civet |
07 * | DT | 16 August 2023 | 5 | No adult, Nest abandoned, Predated |
08 * | DT | 16 August 2023 | 5 | No adult, Nest abandoned, Predated by small Indian civet |
09 * | DT | 30 August 2023 | 5 | No adult, Nest abandoned, Predated |
10 * | DT | 30 August 2023 | 5 | No adult, Nest abandoned, Predated |
11 * | DT | 13 June 2024 | 5 | No adult, Nest abandoned, Predated |
12 * | DT | 26 June 2024 | 4 | No adult, Nest abandoned, Predated |
13 * | DT | 24 June 2024 | 5 | No adult, Nest abandoned, Predated |
14 | DT | 8 July 2024 | 1 | No adult, Nest abandoned, Predated |
15 * | DT | 8 July 2024 | 5 | No adult, Nest abandoned, Predated |
16 * | DT | 10 June 2025 | 5 | Adult flew away, Nest abandoned, Predated by a snake |
17 * | BX | 14 May 2023 | 5 | No adult, Predated by oriental rat snake |
18 * | BX | 3 June 2023 | 5 | No adult, Nest abandoned, Predated by rodent |
19 ** | BX | 8 May 2023 | 3 | No adult, Three Nestlings hatched |
20 ** | BX | 13 May 2023 | 2 | No adult, Two Nestlings hatched |
21 ** | BX | 11 May 2024 | 2 | No adult, Two Nestlings hatched |
22 * | BX | 19 May 2024 | 3 | No adult, Nest abandoned, Predated |
Parameter Type | Parameter | Value | N |
---|---|---|---|
Egg parameters | Clutch size | 4.09 ± 1.27 | 22 |
Weight (g) | 18.67 ± 5.49 | 10 | |
Long diameter (mm) | 38.32 ± 5.08 | 10 | |
Short diameter (mm) | 30.26 ± 3.12 | 10 | |
Nest parameters | Long diameter (cm) | 15.60 ± 3.58 | 13 |
Short diameter (cm) | 12.09 ± 1.93 | 13 | |
Depth (cm) | 3.65 ± 0.76 | 13 | |
The distance of natural nests from roads (m) | 66.51 ± 47.70 | 22 | |
The distance of natural nests from water source (m) | 212.50 ± 142.85 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Zhang, Y.; Ding, Y.; Yang, H.; Xu, Y.; Wu, G.; Rao, X. Nest Predators and Reproductive Success in the Chinese Francolin (Francolinus pintadeanus) Across Two Nature Reserves of Tropical Hainan Island, China. Animals 2025, 15, 2489. https://doi.org/10.3390/ani15172489
Zeng Q, Zhang Y, Ding Y, Yang H, Xu Y, Wu G, Rao X. Nest Predators and Reproductive Success in the Chinese Francolin (Francolinus pintadeanus) Across Two Nature Reserves of Tropical Hainan Island, China. Animals. 2025; 15(17):2489. https://doi.org/10.3390/ani15172489
Chicago/Turabian StyleZeng, Qingling, Yuhan Zhang, Yishuo Ding, He Yang, Yuxin Xu, Guanmian Wu, and Xiaodong Rao. 2025. "Nest Predators and Reproductive Success in the Chinese Francolin (Francolinus pintadeanus) Across Two Nature Reserves of Tropical Hainan Island, China" Animals 15, no. 17: 2489. https://doi.org/10.3390/ani15172489
APA StyleZeng, Q., Zhang, Y., Ding, Y., Yang, H., Xu, Y., Wu, G., & Rao, X. (2025). Nest Predators and Reproductive Success in the Chinese Francolin (Francolinus pintadeanus) Across Two Nature Reserves of Tropical Hainan Island, China. Animals, 15(17), 2489. https://doi.org/10.3390/ani15172489