An Ecological and Neural Argument for Developing Pursuit-Based Cognitive Enrichment for Sea Lions in Human Care
Abstract
Simple Summary
Abstract
1. Introduction
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costa, D.P.; Kuhn, C.; Weise, M. Foraging Ecology of the California Sea Lion: Diet, Diving Behavior, Foraging Locations, and Predation Impacts on Fisheries Resources; UC San Diego: La Jolla, CA, USA, 2007. [Google Scholar]
- George-Nascimento, M.; Bustamante, R.; Oyarzun, C. Feeding ecology of the South American sea lion Otaria flavescens: Food contents and food selectivity. Mar. Ecol. Prog. Ser. 1985, 21, 135–143. [Google Scholar] [CrossRef]
- Melin, S.R. The Foraging Ecology and Reproduction of the California Sea Lion (Zalophus californianus californianus). Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2002. [Google Scholar]
- Clegg, I.L.; Butterworth, A. Assessing the welfare of pinnipeds. In Marine Mammal Welfare: Human Induced Change in the Marine Environment and Its Impacts on Marine Mammal Welfare; Springer: Cham, Switzerland, 2017; pp. 273–295. [Google Scholar]
- Cook, P.; Reichmuth, C.; Hanke, F.D. The mind of a sea lion. In Ethology and Behavioral Ecology of Otariids and the Odobenid; Springer International Publishing: Cham, Switzerland, 2021; pp. 323–345. [Google Scholar]
- Clark, F. Cognitive enrichment and welfare: Current approaches and future directions. Anim. Behav. Cogn. 2017, 4, 52–71. [Google Scholar] [CrossRef]
- Broom, D.M. Animal welfare: Concepts and measurement. J. Anim. Sci. 1991, 69, 4167–4175. [Google Scholar] [CrossRef]
- Browning, H.; Veit, W. Freedom and animal welfare. Animals 2021, 11, 1148. [Google Scholar] [CrossRef]
- Hemsworth, P.H.; Mellor, D.J.; Cronin, G.M.; Tilbrook, A.J. Scientific assessment of animal welfare. N. Z. Veter. J. 2015, 63, 24–30. [Google Scholar] [CrossRef]
- Špinka, M. Animal agency, animal awareness and animal welfare. Anim. Welf. 2019, 28, 11–20. [Google Scholar] [CrossRef]
- Bacon, H. Behaviour-based husbandry—A holistic approach to the management of abnormal repetitive behaviors. Animals 2018, 8, 103. [Google Scholar] [CrossRef]
- Newberry, R.C. Environmental enrichment: Increasing the biological relevance of captive environments. Appl. Anim. Behav. Sci. 1995, 44, 229–243. [Google Scholar] [CrossRef]
- Mellen, J.; Macphee, M.S. Philosophy of environmental enrichment: Past, present, and future. Zoo Biol. 2001, 20, 211–226. [Google Scholar] [CrossRef]
- Learmonth, M.J. Dilemmas for natural living concepts of zoo animal welfare. Animals 2019, 9, 318. [Google Scholar] [CrossRef]
- Simon, H.A. Information processing models of cognition. Annu. Rev. Psychol. 1979, 30, 363–396. [Google Scholar] [CrossRef]
- Lachman, R.; Lachman, J.L.; Butterfield, E.C. Cognitive Psychology and Information Processing: An Introduction; Psychology Press: London, UK, 2015. [Google Scholar]
- Shettleworth, S.J. Animal cognition and animal behaviour. Anim. Behav. 2001, 61, 277–286. [Google Scholar] [CrossRef]
- Meagher, R. Is boredom an animal welfare concern? Anim. Welf. 2019, 28, 21–32. [Google Scholar] [CrossRef]
- Dellu, F.; Piazza, P.V.; Mayo, W.; Le Moal, M.; Simon, H. Novelty seeking in rats-biobehavioral characteristics and possible relationship with the sensation-seeking trait in man. Neuropsychobiology 1996, 34, 136–145. [Google Scholar] [CrossRef]
- Molas, S.; Zhao-Shea, R.; Liu, L.; DeGroot, S.R.; Gardner, P.D.; Tapper, A.R. A circuit-based mechanism underlying familiarity signaling and the preference for novelty. Nat. Neurosci. 2017, 20, 1260–1268. [Google Scholar] [CrossRef]
- Pennartz, C.M.A.; Berke, J.D.; Graybiel, A.M.; Ito, R.; Lansink, C.S.; van der Meer, M.; Redish, A.D.; Smith, K.S.; Voorn, P. Corticostriatal interactions during learning, memory processing, and decision making. J. Neurosci. 2009, 29, 12831–12838. [Google Scholar] [CrossRef]
- De Azevedo, C.S.; Cipreste, C.F.; Young, R.J. Environmental enrichment: A GAP analysis. Appl. Anim. Behav. Sci. 2007, 102, 329–343. [Google Scholar] [CrossRef]
- Fernandez, E. Training as enrichment: A critical review. Anim. Welf. 2022, 31, 1–12. [Google Scholar] [CrossRef]
- Clark, F.E. Great ape cognition and captive care: Can cognitive challenges enhance well-being? Appl. Anim. Behav. Sci. 2011, 135, 1–12. [Google Scholar] [CrossRef]
- Van Gelder, T. What might cognition be, if not computation? J. Philos. 1995, 92, 345–381. [Google Scholar] [CrossRef]
- Macphail, E.M. Vertebrate intelligence: The null hypothesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1985, 308, 37–51. [Google Scholar]
- Fountain, S.B.; Dyer, K.H.; Jackman, C.C. Simplicity from Complexity in Vertebrate Behavior: Macphail Revisited. Front. Psychol. 2020, 11, 581899. [Google Scholar] [CrossRef]
- Bauer, G.B.; Cook, P.F.; Harley, H.E. The relevance of ecological transitions to intelligence in marine mammals. Front. Psychol. 2020, 11, 2053. [Google Scholar] [CrossRef]
- Bastos, A.P.M.; Taylor, A.H. Macphail’s null hypothesis of vertebrate intelligence: Insights from avian cognition. Front. Psychol. 2020, 11, 1692. [Google Scholar] [CrossRef]
- Striedter, G.F. Principles of Brain Evolution; Sinauer Associates: Sunderland, MA, USA, 2005. [Google Scholar]
- Krubitzer, L. The magnificent compromise: Cortical field evolution in mammals. Neuron 2007, 56, 201–208. [Google Scholar] [CrossRef]
- Grabowski, M.; Kopperud, B.T.; Tsuboi, M.; Hansen, T.F. Both diet and sociality affect primate brain-size evolution. Syst. Biol. 2023, 72, 404–418. [Google Scholar] [CrossRef]
- Smith, B.P.; Litchfield, C.A. An empirical case study examining effectiveness of environmental enrichment in two captive australian sea lions (Neophoca cinerea). J. Appl. Anim. Welf. Sci. 2010, 13, 103–122. [Google Scholar] [CrossRef]
- Samuelson, M.M.; Lauderdale, L.K.; Pulis, K.; Solangi, M.; Hoffland, T.; Lyn, H. Olfactory enrichment in California sea lions (Zalophus californianus): An effective tool for captive welfare? J. Appl. Anim. Welf. Sci. 2017, 20, 75–85. [Google Scholar] [CrossRef]
- Clark, F.E. Marine mammal cognition and captive care: A proposal for cognitive enrichment in zoos and aquariums. J. Zoo Aquar. Res. 2013, 1, 1–6. [Google Scholar]
- Donald, K.; Benedetti, A.; Goulart, V.D.L.R.; Deming, A.; Nollens, H.; Stafford, G.; Brando, S. Environmental enrichment eevices are safe and effective at reducing undesirable behaviors in California sea lions and northern elephant seals during rehabilitation. Animals 2023, 13, 1222. [Google Scholar] [CrossRef]
- Kuczaj, S.; Lacinak, T.; Fad, O.; Trone, M.; Solangi, M.; Ramos, J. Keeping environmental enrichment enriching. Int. J. Comp. Psychol. 2002, 15, 127–137. [Google Scholar] [CrossRef]
- Brando, S.; Broom, D.M.; Acasuso-Rivero, C.; Clark, F. Optimal marine mammal welfare under human care: Current efforts and future directions. Behav. Process. 2018, 156, 16–36. [Google Scholar] [CrossRef]
- Chance, P. Thorndike’s puzzle boxes and the origins of the experimental analysis of behavior. J. Exp. Anal. Behav. 1999, 72, 433–440. [Google Scholar] [CrossRef]
- Krebs, B.; Watters, J. Simple but temporally unpredictable puzzles are cognitive enrichment. Anim. Behav. Cogn. 2017, 4, 119–134. [Google Scholar] [CrossRef]
- Borrego, N.; Gaines, M. Social carnivores outperform asocial carnivores on an innovative problem. Anim. Behav. 2016, 114, 21–26. [Google Scholar] [CrossRef]
- Benson-Amram, S.; Dantzer, B.; Stricker, G.; Swanson, E.M.; Holekamp, K.E. Brain size predicts problem-solving ability in mammalian carnivores. Proc. Natl. Acad. Sci. USA 2016, 113, 2532–2537. [Google Scholar] [CrossRef]
- Kim-McCormack, N.N.; Smith, C.L.; Behie, A.M. Is interactive technology a relevant and effective enrichment for captive great apes? Appl. Anim. Behav. Sci. 2016, 185, 1–8. [Google Scholar] [CrossRef]
- Roberts, D.L.; Eskelinen, H.C.; Winship, K.A.; Ramos, A.M.; Xitco, M.J. Effects of failure on California sea lion (Zalophus californianus) gameplay strategies and interest in a cognitive task: Implications for cognitive enrichment in pinnipeds. J. Zool. Bot. Gard. 2023, 4, 240–255. [Google Scholar] [CrossRef]
- Gentry, R.L. Eared Seals: Otariidae. In Encyclopedia of Marine Mammals; Academic Press: Cambridge, MA, USA, 2009; pp. 339–342. [Google Scholar]
- De Roy, T.; Espinoza, E.R.; Trillmich, F. Cooperation and opportunism in Galapagos sea lion hunting for shoaling fish. Ecol. Evol. 2021, 11, 9206–9216. [Google Scholar] [CrossRef]
- Swanson, E.M.; Holekamp, K.E.; Lundrigan, B.L.; Arsznov, B.M.; Sakai, S.T. Multiple determinants of whole and regional brain volume among terrestrial carnivorans. PLoS ONE 2012, 7, e38447. [Google Scholar] [CrossRef]
- Johnson-Ulrich, L.; Johnson-Ulrich, Z.; E Holekamp, K. Natural conditions and adaptive functions of problem-solving in the Carnivora. Curr. Opin. Behav. Sci. 2022, 44, 101111. [Google Scholar] [CrossRef]
- Bailey, I.; Myatt, J.P.; Wilson, A.M. Group hunting within the Carnivora: Physiological, cognitive and environmental influences on strategy and cooperation. Behav. Ecol. Sociobiol. 2013, 67, 1–17. [Google Scholar] [CrossRef]
- Cook, P.F.; Berns, G.S.; Colegrove, K.; Johnson, S.; Gulland, F. Postmortem DTI reveals altered hippocampal connectivity in wild sea lions diagnosed with chronic toxicosis from algal exposure. J. Comp. Neurol. 2018, 526, 216–228. [Google Scholar] [CrossRef]
- Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl. Acad. Sci. USA 2012, 109 (Suppl. S1), 10661–10668. [Google Scholar] [CrossRef]
- Yin, D.; Valles, F.E.; Fiandaca, M.S.; Forsayeth, J.; Larson, P.; Starr, P.; Bankiewicz, K.S. Striatal volume differences between non-human and human primates. J. Neurosci. Methods 2009, 176, 200–205. [Google Scholar] [CrossRef]
- Kimura, M. Behaviorally contingent property of movement-related activity of the primate putamen. J. Neurophysiol. 1990, 63, 1277–1296. [Google Scholar] [CrossRef]
- Jürgens, U. Neural pathways underlying vocal control. Neurosci. Biobehav. Rev. 2002, 26, 235–258. [Google Scholar] [CrossRef]
- Grahn, J.A.; Parkinson, J.A.; Owen, A.M. The cognitive functions of the caudate nucleus. Prog. Neurobiol. 2008, 86, 141–155. [Google Scholar] [CrossRef]
- Cook, P.F.; Berns, G. Volumetric and connectivity assessment of the caudate nucleus in California sea lions and coyotes. Anim. Cogn. 2022, 25, 1231–1240. [Google Scholar] [CrossRef]
- Fish, F.E.; Hurley, J.; Costa, D.P. Maneuverability by the sea lion Zalophus californianus: Turning performance of an unstable body design. J. Exp. Biol. 2003, 206, 667–674. [Google Scholar] [CrossRef]
- Postle, B.R.; D’Esposito, M. Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: An event-related fMRI study. Cogn. Brain Res. 1999, 8, 107–115. [Google Scholar] [CrossRef]
- Postle, B.R.; D’Esposito, M. Spatial working memory activity of the caudate nucleus is sensitive to frame of reference. Cogn. Affect. Behav. Neurosci. 2003, 3, 133–144. [Google Scholar] [CrossRef]
- Hocking, D.P.; Salverson, M.; Evans, A.R. Foraging-based enrichment promotes more varied behaviour in captive australian fur seals (Arctocephalus pusillus doriferus). PLoS ONE 2015, 10, e0124615. [Google Scholar] [CrossRef]
- Bashaw, M.J.; Bloomsmith, M.A.; Marr, M.J.; Maple, T.L. To hunt or not to hunt? A feeding enrichment experiment with captive large felids. Zoo Biol. Publ. Affil. Am. Zoo. Aquar. Assoc. 2003, 22, 189–198. [Google Scholar] [CrossRef]
- Fernandez, E.J.; Myers, M.; Hawkes, N.C. The Effects of Live Feeding on Swimming Activity and Exhibit Use in Zoo Humboldt Penguins (Spheniscus humboldti). J. Zoo. Bot. Gard. 2021, 2, 88–100. [Google Scholar] [CrossRef]
- Schusterman, R.J. Perception and determinants of underwater vocalization in the California sea lion. In Les Systemes Sonars Animaux, Biologie et Bionique; Busnel, R.G., Ed.; Laboratoire de Physiologie Acoustique: Jouy-en-Josas, France, 1967; pp. 535–617. [Google Scholar]
- Gläser, N.; Wieskotten, S.; Otter, C.; Dehnhardt, G.; Hanke, W. Hydrodynamic trail following in a California sea lion (Zalophus californianus). J. Comp. Physiol. A 2011, 197, 141–151. [Google Scholar] [CrossRef]
- Marshall, L.; McCormick, W.D.; Cooke, G.M. Perception of the ethical acceptability of live prey feeding to aquatic species kept in captivity. PLoS ONE 2019, 14, e0216777. [Google Scholar] [CrossRef]
- Williams, B.G.; Waran, N.K.; Carruthers, J.; Young, R.J. The Effect of a moving bait on the behaviour of captive cheetahs (Acinonyx jubatus). Anim. Welf. 1996, 5, 271–281. [Google Scholar] [CrossRef]
- Dehnhardt, G.; Mauck, B.; Hanke, W.; Bleckmann, H. Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 2001, 293, 102–104. [Google Scholar] [CrossRef]
- Murphy, C.T.; Reichmuth, C.; Mann, D. Vibrissal sensitivity in a harbor seal (Phoca vitulina). J. Exp. Biol. 2015, 218, 2463–2471. [Google Scholar] [CrossRef]
- Wang, H.; Yue, Q.; Liu, J. Research on pursuit-evasion games with multiple heterogeneous pursuers and a high speed evader. In Proceedings of the 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 23–25 May 2015; pp. 4366–4370. [Google Scholar]
- Wan, K.; Wu, D.; Zhai, Y.; Li, B.; Gao, X.; Hu, Z. An improved approach towards multi-agent pursuit–evasion game decision-making using deep reinforcement learning. Entropy 2021, 23, 1433. [Google Scholar] [CrossRef]
- Hastie, G.; Rosen, D.; Trites, A. Studying diving energetics of trained Steller sea lions in the open ocean. In Sea Lions of the World; Alaska Sea Grant College Program; University of Alaska Fairbanks: Fairbanks, AK, USA, 2006; pp. 193–204. [Google Scholar]
- Skinner, B.F. How to teach animals. Sci. Am. 1951, 185, 26–29. [Google Scholar] [CrossRef]
- Cook, P.F.; Reichmuth, C.; Rouse, A.A.; Libby, L.A.; Dennison, S.E.; Carmichael, O.T.; Kruse-Elliott, K.T.; Bloom, J.; Singh, B.; Fravel, V.A.; et al. Algal toxin impairs sea lion memory and hippocampal connectivity, with implications for strandings. Science 2015, 350, 1545–1547. [Google Scholar] [CrossRef]
- Wong, P.T. Frustration, exploration, and learning. Can. Psychol. Rev./Psychol. Can. 1979, 20, 133. [Google Scholar] [CrossRef]
- Pryor, K.W.; Haag, R.; O’Reilly, J. The creative porpoise: Training for novel behavior 1. J. Exp. Anal. Behav. 1969, 12, 653–661. [Google Scholar] [CrossRef]
- Schusterman, R.J.; Reichmuth, C. Novel sound production via contingency learning in the Pacific walrus (Odobenus rosmarus divergens). Anim. Cogn. 2007, 11, 319–327. [Google Scholar] [CrossRef]
- McGowan, R.T.S.; Robbins, C.T.; Alldredge, J.R.; Newberry, R.C. Contrafreeloading in grizzly bears: Implications for captive foraging enrichment. Zoo Biol. 2010, 29, 484–502. [Google Scholar] [CrossRef]
- Osborne, S.R. The free food (contrafreeloading) phenomenon: A review and analysis. Anim. Learn. Behav. 1977, 5, 221–235. [Google Scholar] [CrossRef]
- Spinka, M.; Wemelsfelder, F. Environmental challenge and animal agency. In Animal Welfare; CAB International: Wallingford, UK, 2011. [Google Scholar]
- Oliff, H.S.; Berchtold, N.C.; Isackson, P.; Cotman, C.W. Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Mol. Brain Res. 1998, 61, 147–153. [Google Scholar] [CrossRef]
- Ma, C.-L.; Ma, X.-T.; Wang, J.-J.; Liu, H.; Chen, Y.-F.; Yang, Y. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav. Brain Res. 2017, 317, 332–339. [Google Scholar] [CrossRef]
- van Praag, H.; Shubert, T.; Zhao, C.; Gage, F.H. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 2005, 25, 8680–8685. [Google Scholar] [CrossRef]
- Simeone, C.; Fauquier, D.; Skidmore, J.; Cook, P.; Colegrove, K.; Gulland, F.; Dennison, S.; Rowles, T.K. Clinical signs and mortality of non-released stranded California sea lions housed in display facilities: The suspected role of prior exposure to algal toxins. Vet. Rec. 2019, 185, 304. [Google Scholar] [CrossRef]
- Gomes, F.N.; Da Silva, S.G.; Cavalheiro, E.; Arida, R. Beneficial influence of physical exercise following status epilepticus in the immature brain of rats. Neuroscience 2014, 274, 69–81. [Google Scholar] [CrossRef]
- Schmitt, T.L.; Leger, J.S.; Inglis, B.A.; Michal, I.; Stedman, N.; Nollens, H.H.; Dennison-Gibby, S.; Herrick, K.; Clarke, E.O.; Mena, A.; et al. Twenty years of managed epilepsy for a stranded male Guadalupe fur seal (Arctocephalus townsendi) secondary to suspect domoic acid toxicosis. J. Zool. Bot. Gard. 2023, 4, 665–679. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cook, P.F.; Reichmuth, C. An Ecological and Neural Argument for Developing Pursuit-Based Cognitive Enrichment for Sea Lions in Human Care. Animals 2024, 14, 797. https://doi.org/10.3390/ani14050797
Cook PF, Reichmuth C. An Ecological and Neural Argument for Developing Pursuit-Based Cognitive Enrichment for Sea Lions in Human Care. Animals. 2024; 14(5):797. https://doi.org/10.3390/ani14050797
Chicago/Turabian StyleCook, Peter F., and Colleen Reichmuth. 2024. "An Ecological and Neural Argument for Developing Pursuit-Based Cognitive Enrichment for Sea Lions in Human Care" Animals 14, no. 5: 797. https://doi.org/10.3390/ani14050797
APA StyleCook, P. F., & Reichmuth, C. (2024). An Ecological and Neural Argument for Developing Pursuit-Based Cognitive Enrichment for Sea Lions in Human Care. Animals, 14(5), 797. https://doi.org/10.3390/ani14050797