Grey Wolf (Canis lupus) Recolonization in Hungary: Does the Predation Risk Affect the Red Deer (Cervus elaphus) Population?
Simple Summary
Abstract
1. Introduction
- The distribution area of wolves in Hungary increased in the last two decades.
- Red deer in wolf areas have higher levels of stress hormones compared to those in wolf-free areas due to their higher vigilance.
- Red deer have decreased body condition in wolf areas compared to wolf-free areas due to the higher vigilance, shorter foraging time, or higher movement activity.
2. Materials and Methods
2.1. Study Area
2.2. Mapping Wolf Distribution
2.3. Measurement of Stress Hormone Level in the Red Deer Individuals
2.4. Measurement of Body Condition in the Red Deer Individuals
3. Results
3.1. Wolf Distribution
3.2. Stress Hormone Level
3.3. Body Condition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morrison, J.C.; Sechrest, W.; Dinerstein, E.; Wilcove, D.S.; Lamoreux, J.F. Persistence of large mammal faunas as indicators of global human impacts. J. Mammal. 2007, 88, 1363–1380. [Google Scholar] [CrossRef]
- Ripple, W.J.; Estes, J.A.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P.; et al. Status and ecological effects of the world’s largest carnivores. Science 2014, 343, 1241484. [Google Scholar] [CrossRef] [PubMed]
- Chapron, G.; Kaczensky, P.; Linnell, J.D.C.; von Arx, M.; Huber, D.; Andrén, H.; López-Bao, J.V.; Adamec, M.; Álvares, F.; Anders, O.; et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 2014, 346, 1517–1519. [Google Scholar] [CrossRef]
- Cimatti, M.; Ranc, N.; Benítez-López, A.; Maiorano, L.; Boitani, L.; Cagnacci, F.; Čengić, M.; Ciucci, P.; Huijbregts, M.A.J.; Krofel, M.; et al. Large carnivore expansion in Europe is associated with human population density and landcover changes. Divers. Distrib. 2021, 27, 602–617. [Google Scholar] [CrossRef]
- Mech, L.D. Where can wolves live and how can we live with them? Biol. Conserv. 2017, 210 Pt A, 310–317. [Google Scholar] [CrossRef]
- Behr, D.M.; Ozgul, A.; Cozzi, G. Combining human acceptance and habitat suitability in a unified socio-ecological suitability model: A case study of the wolf in Switzerland. J. Appl. Ecol. 2017, 54, 1919–1929. [Google Scholar] [CrossRef]
- Boitani, L.; Linnell, J.D.C. Bringing large mammals back: Large carnivores in Europe. In Rewilding European Landscapes; Pereira, H.M., Navarro, L.M., Eds.; Springer: Heidelberg, Germany, 2015; pp. 67–84. [Google Scholar] [CrossRef]
- Burbaitė, L.; Csányi, S. Red deer population and harvest changes in Europe. Acta Zool. Litu. 2010, 20, 179–188. [Google Scholar] [CrossRef]
- Boudreau, M.R.; Gantchoff, M.G.; Ramirez-Reyes, C.; Conlee, L.; Belant, J.L.; Iglay, R.B. Using habitat suitability and landscape connectivity in the spatial prioritization of public outreach and management during carnivore recolonization. J. Appl. Ecol. 2022, 59, 757–767. [Google Scholar] [CrossRef]
- Salvatori, V.; Linnell, J. Report on the Conservation Status and Threats for Wolf (Canis lupus) in Europe; Convention on the Conservation of European Wildlife and Natural Habitats: Strasbourg, France, 2005. [Google Scholar]
- Linnell, J.D.C.; Swenson, J.E.; Andersen, R. Predators and people: Conservation of large carnivores is possible at high human densities if management policy is favourable. Anim. Conserv. 2001, 4, 345–349. [Google Scholar] [CrossRef]
- Grossmann, C.M.; Patkó, L.; Ortseifen, D.; Kimmig, E.; Cattoen, E.-M.; Schraml, U. Human-Large Carnivores Co-existence in Europe—A Comparative Stakeholder Network Analysis. Front. Ecol. Evol. 2020, 8, 266. [Google Scholar] [CrossRef]
- Anthony, B.P.; Tarr, K. The wolves are back! Local attitudes towards the recently re-populated grey wolf and wolf management in Bükk National Park, Hungary. Acta Zool. Acad. Sci. Hung. 2019, 65, 195–214. [Google Scholar] [CrossRef]
- Herzog, S. Return of grey wolf (Canis lupus) to Central Europe: Challenges and recommendations for future management in cultural landscapes. Ann. For. Res. 2018, 61, 203–209. [Google Scholar] [CrossRef]
- Fehér, P.; Frank, K.; Gombkötő, P.; Rigg, R.; Bedő, P.; Újváry, D.; Stéger, V.; Szemethy, L. The origin and population genetics of wolves in the north Hungarian mountains. Mamm. Biol. 2022, 102, 1823–1833. [Google Scholar] [CrossRef]
- Belardi, I.; Borkowski, J.; Lazzeri, L.; Banul, R.; Pacini, G.; Poerling, A.; Ferretti, F. Spatiotemporal plasticity of prey selection in the wolf. J. Zool. 2024, 324, 118–127. [Google Scholar] [CrossRef]
- Guimarães, N.F.; Álvares, F.; Ďurová, J.; Urban, P.; Bučko, J.; Iľko, T.; Brndiar, J.; Štofik, J.; Pataky, T.; Barančeková, M.; et al. What drives wolf preference towards wild ungulates? Insights from a multi-prey system in the Slovak Carpathians. PLoS ONE 2022, 17, e0265386. [Google Scholar] [CrossRef]
- Wagner, C.; Holzapfel, M.; Kluth, G.; Reinhardt, I.; Ansorge, H. Wolf (Canis lupus) feeding habits during the first eight years of its occurence in Germany. Mamm. Biol. 2012, 77, 196–203. [Google Scholar] [CrossRef]
- Zlatanova, D.; Ahmed, A.; Valasseva, A.; Genov, P. Adaptive diet strategy of the wolf (Canis lupus L.) in Europe: A review. Acta Zool. Bulgar. 2014, 66, 439–452. [Google Scholar]
- Lanszki, J.; Márkus, M.; Újváry, D.; Szabó, A.; Szemethy, L. Diet of wolves Canis lupus returning to Hungary. Acta Theriol. 2012, 57, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Katona, K.; Heltai, M. A szürke farkas táplálkozása és gazdálkodási vonatkozásai. (Feeding habits and economic impact of grey wolf). J. Land. Ecol. 2022, 20 (Suppl. S2), 43–56, (In Hungarian with English Summary). [Google Scholar] [CrossRef]
- Boitani, L. Action Plan for the Conservation of the Wolves in Europe (Canis lupus); Council of Europe: Strasbourg, France, 2000; Volume 113, pp. 1–86. [Google Scholar]
- Grossmann, C.M.; Patkó, L. Did we achieve what we aimed for? Assessing the outcomes of a human–carnivore conflict mitigation and coexistence project in Europe. Wildl. Biol. 2024, 2024, e01270. [Google Scholar] [CrossRef]
- Rode, J.; Flinzberger, L.; Karutz, R.; Berghöfer, A.; Schröter-Schlaack, C. Why so negative? Exploring the socio-economic impacts of large carnivores from a European perspective. Biol. Conserv. 2021, 255, 108918. [Google Scholar] [CrossRef]
- Ripple, W.J.; Beschta, R.L. Wolf reintroduction, predation risk, and cottonwood recovery in Yellowstone National Park. Forest Ecol. Manag. 2003, 184, 299–313. [Google Scholar] [CrossRef]
- Lodberg-Holm, H.K.; Teglas, B.S.; Tyers, D.B.; Jimenez, M.D.; Smith, D.W. Spatial and temporal variability in summer diet of gray wolves (Canis lupus) in the Greater Yellowstone Ecosystem. J. Mammal. 2021, 102, 1030–1041. [Google Scholar] [CrossRef] [PubMed]
- Fehér, P.; Frank, K.; Katona, K. Hazai nagyragadozóktól való félelem lehetséges hatásai a zsákmányaik viselkedésére: Szakirodalmi elemzés. (Potential effects of landscape of fear created by large carnivores of Hungary on their prey: A systematic literature review). J. Land. Ecol. 2021, 19, 1–12. [Google Scholar] [CrossRef]
- Creel, S.; Christianson, D.; Liley, S.; Winnie, J.A. Predation risk affects reproductive physiology and demography of elk. Science 2007, 315, 960. [Google Scholar] [CrossRef] [PubMed]
- Manning, A.D.; Gordon, I.J.; Ripple, W.J. Restoring landscapes of fear with wolves in the Scottish Highlands. Biol. Conserv. 2009, 142, 2314–2321. [Google Scholar] [CrossRef]
- Ripple, W.J.; Beschta, R.L. Wolves and the ecology of fear: Can predation risk structure ecosystems? BioScience 2004, 54, 755–766. [Google Scholar] [CrossRef]
- Valeix, M.; Loveridge, A.J.; Chamaillé-Jammes, S.; Davidson, Z.; Murindagomo, F.; Fritz, H.; Macdonald, D.W. Behavioral adjustments of African herbivores to predation risk by lions: Spatiotemporal variations influence habitat use. Ecology 2009, 90, 23–30. [Google Scholar] [CrossRef]
- Preisser, E.L.; Bolnick, D.I.; Benard, M.E. Scared to Death? The Effects of Intimidation and Consumption in Predator-Prey Interactions. Ecology 2005, 86, 501–509. [Google Scholar] [CrossRef]
- Brown, J.S.; Laundré, J.W.; Gurung, M. The ecology of fear: Optimal foraging, game theory, and trophic interactions. J. Mammal. 1999, 80, 385–399. [Google Scholar] [CrossRef]
- Brown, J.S.; Kotler, B.P. Hazardous duty pay and the foraging cost of predation. Ecol. Lett. 2004, 7, 999–1014. [Google Scholar] [CrossRef]
- Caro, T. Antipredator Defenses in Birds and Mammals; University of Chicago Press: Chicago, IL, USA, 2005; p. 592. [Google Scholar]
- Eccard, J.A.; Pusenius, J.; Sundell, J.; Halle, S.; Ylönen, H. Foraging patterns of voles at heterogeneous avian and uniform mustelid predation risk. Oecologia 2008, 157, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Apfelbach, R.; Blanchard, C.D.; Blanchard, R.J.; Hayes, R.A.; McGregor, I.S. The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neurosci. Biobehav. Rev. 2005, 9, 1123–1144. [Google Scholar] [CrossRef] [PubMed]
- Eccard, J.A.; Meißner, J.K.; Heurich, M. European roe deer increase vigilance when faced with immediate predation risk by Eurasian lynx. Ethology 2017, 123, 30–40. [Google Scholar] [CrossRef]
- Bubnicki, J.W.; Churski, M.; Schmidt, K.; Diserens, T.A.; Kuijper, D.P. Linking spatial patterns of terrestrial herbivore community structure to trophic interactions. Elife 2019, 8, e44937. [Google Scholar] [CrossRef]
- Laundré, J.W.; Hernández, L.; Altendorf, K.B. Wolves, elk, and bison: Re-establishing the “landscape of fear” in Yellowstone National Park, USA. Can. J. Zool. 2001, 79, 1401–1409. [Google Scholar] [CrossRef]
- Proudman, N.J.; Churski, M.; Bubnicki, J.W.; Nilsson, J.-Å.; Kuijper, D.P.J. Red deer allocate vigilance differently in response to spatio-temporal patterns of risk from human hunters and wolves. Wildl. Res. 2020, 48, 163–174. [Google Scholar] [CrossRef]
- Reeder, D.A.M.; Kramer, K.M. Stress in free-ranging mammals: Integrating physiology, ecology, and natural history. J. Mammal. 2005, 86, 225–235. [Google Scholar] [CrossRef]
- Sheriff, M.J.; Dantzer, B.; Delehanty, B.; Palme, R.; Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 2011, 166, 869–887. [Google Scholar] [CrossRef]
- Gort-Esteve, A.; Carbajal, A.; López, M.; Manteca, X.; Ruiz-Olmo, J.; Riera, J.L. Faecal cortisol levels in a wild Iberian red deer population are best explained by prior weather conditions. J. Zool. 2024, 322, 375–385. [Google Scholar] [CrossRef]
- Chomba, C.; Chabwela, H. Does Kidney Fat Index Determine Body Condition of the Common Hippopotamus (Hippopotamus amphibius) in Luangwa River, Zambia? Glob. J. Biol. Agric. Health Sci. 2016, 5, 16–23. [Google Scholar]
- Nelson, R.J.; Kriegsfeld, L.J. (Eds.) An Introduction to Behavioral Endocrinology; Sinauer Associates Inc. Publishers: Sunderland, MA, USA, 2017. [Google Scholar]
- Zwijacz-Kozica, T.; Selva, N.; Barja, I.; Silvan, G.; Martinez-Fernandez, L.; Illera, J.C.; Jodlowski, M. Concentration of fecal cortisol metabolites in chamois in relation to tourist pressure in Tatra National Park (South Poland). Acta Theriol. 2013, 58, 215–222. [Google Scholar] [CrossRef]
- Szott, I.D.; Pretorius, Y.; Ganswindt, A.; Koyama, N.F. Physiological stress response of African elephants to wildlife tourism in Madikwe Game Reserve, South Africa. Wildl. Res. 2019, 47, 34–43. [Google Scholar] [CrossRef]
- Abrams, P.A. The evolution of predator–prey interactions: Theory and evidence. Annu. Rev. Ecol. Syst. 2000, 31, 79–105. [Google Scholar] [CrossRef]
- Christianson, D.; Creel, S. A nutritionally-mediated risk effect of wolves on elk. Ecology 2010, 91, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Zbyryt, A.; Bubnicki, J.W.; Kuijper, D.P.J.; Dehnhard, M.; Churski, M.; Schmidt, K. Do wild ungulates experience higher stress with humans than with large carnivores? Behav. Ecol. 2018, 29, 19–30. [Google Scholar] [CrossRef]
- Creel, S.; Winnie, J.A.; Christianson, D. Glucocorticoid stress hormones and the effect of predation risk on elk reproduction. Proc. Natl. Acad. Sci. USA 2009, 106, 12388–12393. [Google Scholar] [CrossRef]
- Csányi, S.; Márton, M.; Major, F.C.; Schally, G. Vadgazdálkodási Adattár–2020/2021; National Game Management Database: Gödöllő, Hungary, 2021. [Google Scholar]
- Der Deutsche Jagdschutz Verband. Available online: https://www.jagdverband.de/jagd-und-wildunfallstatistik (accessed on 30 November 2024).
- Statistics Austria. Official Data of Austria. Available online: https://www.statistik.at/en/statistics/agriculture-and-forestry/animals-animal-production/ (accessed on 30 November 2024).
- Statistical Office of the Republic of Slovenia. Official Data of Slovenia. Available online: https://pxweb.stat.si/SiStatData/pxweb/en/Data/-/1673150S.px/table/tableViewLayout2/ (accessed on 30 November 2024).
- Central Statistical Office. In Official Data of Poland. Available online: https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/concise-statistical-yearbook-of-poland-2023,1,24.html (accessed on 30 November 2024).
- Czech Statistical Office. Official Data of Czech Republic. Available online: https://vdb.czso.cz/vdbvo2/faces/en/index.jsf?page=vystup-objekt&pvo=LES0331&z=T&f=TABULKA&skupId=2342&katalog=30841&evo=v930_!_LES0331-2021_1&&str=v363 (accessed on 30 November 2024).
- Statistical Office of the Slovak Republic. Official Data of Slovakia. Available online: https://slovak.statistics.sk/wps/portal/!ut/p/z1/rVTbcpswEP2aPMpagYTEI77JF0qMuTjWSwew3FAH7DTUaf6-cupOmjLB7kz1oBHsOSudsythhe-wqrNj-SVryn2dPZjvtXI-h3wq-n3iAXA2hOksGYYycglQwKv3ABEsRzCNvYVczqgBMKxMOPUXv8KSxwSmQRAlqQjtTzE988fRwvJcKgfD5e3Y8AeWiHzHAiCv_Lf088HA8Fk8ZGlgL0a_-QPpTSj3AYQvGUy9SbJ0Q9sGz37le2EYRn6agkwtk94mEoIkAYidMx8-GB5cx-8QqLrl_e1fS-A7_XKSCBPug5SuT-Zt_9uADv_FrXVhf59cx-8AdPk35md-B-Aq_zsAqrt_U6ywKurm0Nzj9T5_yu6RrtHhe34DZnood1lR6hs4Pulm9_LnH0EcyhnYSOTAEeVUI1EUFsoyt9Bsqy2ds1PuQ1Fu8Bo2rrC3eYG2GWOIMpahjLoEaabNKVxnQ3SrFu3Dqu5WXZ32u3AbLuVQlxpWdd5I_xLAdHSka7w2UvmHUufGi2Opn3FS779V5hmK_tHJCeAZVmVe9Z6Lqgc9YgnuUItQ4Vq2WZ_etfLr46PyTPH3daN_NPjuv1f_UCVvoxL2C9otR9thP0By9RMt701a/dz/d5/L2dBISEvZ0FBIS9nQSEh/ (accessed on 30 November 2024).
- Baker, M.R.; Gobush, K.S.; Vynne, C.H. Review of factors influencing stress hormones in fish and wildlife. J. Nat. Conserv. 2013, 21, 309–318. [Google Scholar] [CrossRef]
- Shipley, L.A.; Cook, R.C.; Hewitt, D.G. Techniques for Wildlife Nutritional Ecology. In The Wildlife Techniques Manual, 8th ed.; Silvy, N.J., Ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2020; Volume 1, pp. 669–731. [Google Scholar]
- Riney, T. Evaluating condition of free ranging red deer (Cervus elaphus), with special reference to New Zealand. N. Z. J. Sci. 1955, 36, 429–463. [Google Scholar]
- Large Carnivore Populations Across Europe. Available online: https://environment.ec.europa.eu/topics/nature-and-biodiversity/habitats-directive/large-carnivores/large-carnivore-populations-across-europe_en (accessed on 18 November 2024).
- Huber, S.; Palme, R.; Arnold, W. Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer (Cervus elaphus). Gen. Comp. Endocr. 2003, 130, 48–54. [Google Scholar] [CrossRef]
- Romero, L.M. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen. Comp. Endocr. 2002, 128, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Laundré, J.W.; Hernández, L.; Ripple, W.J. The landscape of fear: Ecological implications of being afraid. Open Ecol. J. 2010, 3, 1–7. [Google Scholar] [CrossRef]
- Gentsch, R.P.; Kjellander, P.; Röken, B.O. Cortisol response of wild ungulates to trauma situations: Hunting is not necessarily the worst stressor. Eur. J. Wildlife Res. 2018, 64, 1–12. [Google Scholar] [CrossRef]
- Blanco, J.C.; Sundseth, K. The Situation of the Wolf (Canis lupus) in the European Union—An In-Depth Analysis; A Report of the N2K Group for DG Environment; European Commission: Brussels, Belgium, 2023. [Google Scholar] [CrossRef]
- Kalandarishvili, A.; Fehér, Á.; Katona, K. Differences in livestock consumption by grey wolf, golden jackal, coyote and stray dog revealed by a systematic review. Hystrix 2024. [Google Scholar] [CrossRef]
- Chung, S.; Son, G.H.; Kim, K. Circadian rhythm of adrenal glucocorticoid: Its regulation and clinical implications. Biochim. Biophys. Acta 2011, 1812, 581–591. [Google Scholar] [CrossRef]
- Bonino, N.; Bustos, J.C. Kidney mass and kidney fat index in the European hare inhabiting Northwestern Patagonia. Mastozoología Neotropical. 1998, 5, 81–85. [Google Scholar]
- Mattiello, S.; Andreoli, E.; Stefanelli, A.; Cantafora, A.; Bianchi, A. How to evaluate body conditions of red deer (Cervus elaphus) in an alpine environment? Ital. J. Anim. Sci. 2009, 8, 555–565. [Google Scholar] [CrossRef]
- Harder, J.D.; Kirkpatrick, R.L. Physiological methods in wildlife research. In Research and Management Techniques for Wildlife and Habitats; Bookhout, T.A., Ed.; The Wildlife Society: Bethesda, MD, USA, 1994; pp. 275–306. [Google Scholar]
- Ferraro, D.E.; Bombieri, G. Wolf Management in Italy and Europe with a Focus on Management in France, Austria and Slovenia. 2022. Available online: https://www.iononhopauradellupo.it/en/la-gestione-del-lupo-in-italia-e-in-europa-con-un-approfondimento-sulla-gestione-in-francia-austria-e-slovenia/ (accessed on 3 December 2024).
- Position Statement on the Wolf Hunting Quota for 2018/2019. Available online: http://slovakwildlife.org/en/stanoviskokvotavlka2018 (accessed on 4 December 2024).
Ungulate Species | Population Density (ind./km2) | Harvest Density (ind./km2) |
---|---|---|
Red deer | 1.8 | 1.2 |
Fallow deer | 0.2 | 0.1 |
Roe deer | 3 | 1.1 |
Mouflon | 0.3 | 0.1 |
Wild boar | 0.5 | 1.3 |
Year | No Occurrence | Occasional | Resident |
---|---|---|---|
2006 | 144 | 5 | 0 |
2014 | 142 | 3 | 4 |
2021 | 75 | 9 | 65 |
2006→2014 | –1.4% | –40% | - |
2014→2021 | –47.2% | +200% | +1525% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biró, Z.; Katona, K.; Szabó, L.; Sütő, D.; Heltai, M. Grey Wolf (Canis lupus) Recolonization in Hungary: Does the Predation Risk Affect the Red Deer (Cervus elaphus) Population? Animals 2024, 14, 3557. https://doi.org/10.3390/ani14243557
Biró Z, Katona K, Szabó L, Sütő D, Heltai M. Grey Wolf (Canis lupus) Recolonization in Hungary: Does the Predation Risk Affect the Red Deer (Cervus elaphus) Population? Animals. 2024; 14(24):3557. https://doi.org/10.3390/ani14243557
Chicago/Turabian StyleBiró, Zsolt, Krisztián Katona, László Szabó, Dávid Sütő, and Miklós Heltai. 2024. "Grey Wolf (Canis lupus) Recolonization in Hungary: Does the Predation Risk Affect the Red Deer (Cervus elaphus) Population?" Animals 14, no. 24: 3557. https://doi.org/10.3390/ani14243557
APA StyleBiró, Z., Katona, K., Szabó, L., Sütő, D., & Heltai, M. (2024). Grey Wolf (Canis lupus) Recolonization in Hungary: Does the Predation Risk Affect the Red Deer (Cervus elaphus) Population? Animals, 14(24), 3557. https://doi.org/10.3390/ani14243557