Plasma Biochemistry, Intestinal Health, and Transcriptome Analysis Reveal Why Laying Hens Produce Translucent Eggs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animal and Sample Collection
2.3. Intestinal Tissue Morphology
2.4. Plasma Biochemical Index
2.5. Intestinal Biochemical Indexes
2.6. Total RNA Isolation and cDNA Library Construction and Sequencing
2.7. Real-Time Fluorescence Quantitative PCR
2.8. Bioinformatics Analysis
2.9. Data Statistics and Analysis
3. Results
3.1. Egg Quality Parameters and Hen Plasma Biochemical Index
3.2. Intestinal Morphology and Structure, Enzyme Activity, and Antioxidant Capacity
3.3. Quality Control and Statistic Alignment for RNA Sequencing Data
3.4. Screening and Validation of Differentially Expressed Genes between Groups
3.5. Functional Enrichment Analysis of Differentially Expressed Genes
4. Discussion
4.1. Translucent Eggs Showed Thicker Eggshell and Lower Egg Yolk Color
4.2. Plasma Lipid Metabolism Disorder Results in Hens Laying Translucent Eggs
4.3. Calcium and Phosphorus Content Decreased in Plasma of Hens Laying Translucent Eggs
4.4. Intestinal Digestion, Absorption, and Metabolism Affected Hens Laying Translucent Eggs
4.5. Intestinal Antioxidant Capacity Decrease Influenced Hens Laying Translucent Eggs
4.6. Transcriptome Analysis in Duodenum
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holst, W.F.; Almquist, H.J.; Lorenz, F.W. A Study of Shell Texture of the Hen’s Egg. Poult. Sci. 1932, 11, 144–149. [Google Scholar] [CrossRef]
- Zhang, H.D.; Zhao, X.F.; Ren, Z.Z.; Tong, M.Q.; Chen, J.N.; Li, S.Y.; Chen, H.; Wang, D.H. Comparison between Different Breeds of Laying Hens in Terms of Eggshell Translucency and Its Distribution in Various Ends of the Eggshell. Poult. Sci. 2021, 100, 101510. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.C.; Curtiss, R. Individual Hen Differences in Egg Shell Mottling and the Relationship of Shell Mottling to Clutch Size, Internal Quality and Weight Loss. Poult. Sci. 1957, 36, 904–908. [Google Scholar] [CrossRef]
- Chousalkar, K.K.; Flynn, P.; Sutherland, M.; Roberts, J.R.; Cheetham, B.F. Recovery of Salmonella and Escherichia coli from Commercial Egg Shells and Effect of Translucency on Bacterial Penetration in Eggs. Int. J. Food Microbiol. 2010, 142, 207–213. [Google Scholar] [CrossRef]
- Wang, D.H.; Chen, H.; Zhou, R.Y.; Huang, C.X.; Gao, H.X.; Fan, B.L.; Liu, G.J.; Ning, Z.H. Study of Measurement Methods on Phenotype of Translucent Eggs. Poult. Sci. 2019, 98, 15853–15869. [Google Scholar] [CrossRef] [PubMed]
- Noy, Y.; Sklan, D. Digestion and Absorption in the Young Chick. Poult. Sci. 1995, 74, 366–373. [Google Scholar] [CrossRef]
- Oviedo-Rondón, E.O. Holistic View of Intestinal Health in Poultry. Anim. Feed. Sci. Technol. 2019, 250, 1–8. [Google Scholar] [CrossRef]
- Johnson, C.D.; Kudsk, K.A. Nutrition and Intestinal Mucosal Immunity. Clin. Nutr. 1999, 18, 337–344. [Google Scholar] [CrossRef]
- Ravindran, V.; Reza Abdollahi, M. Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook. Animals 2021, 11, 2795. [Google Scholar] [CrossRef]
- Zhu, L.P.; Wang, J.P.; Ding, X.M.; Bai, S.P.; Zeng, Q.F.; Su, Z.W.; Xuan, Y.; Applegate, T.J.; Zhang, K.Y. The Effects of Varieties and Levels of Rapeseed Expeller Cake on Egg Production Performance, Egg Quality, Nutrient Digestibility, and Duodenum Morphology in Laying Hens. Poult. Sci. 2019, 98, 4942–4953. [Google Scholar] [CrossRef]
- Xiao, X.; Zhu, Y.; Deng, B.; Wang, J.; Shi, S.; Wang, S.; Han, X.; Zhao, L.; Song, T. Effects of Dietary Phytosterol Supplementation on the Productive Performance, Egg Quality, Length of Small Intestine, and Tibia Quality in Aged Laying Hens. Animals 2023, 13, 662. [Google Scholar] [CrossRef]
- Chen, J.F.; Xu, M.M.; Kang, K.L.; Tang, S.G.; He, C.Q.; Qu, X.Y.; Guo, S.C. The Effects and Combinational Effects of Bacillus subtilis and Montmorillonite on the Intestinal Health Status in Laying Hens. Poult. Sci. 2020, 99, 1311–1319. [Google Scholar] [CrossRef]
- Gu, Y.F.; Chen, Y.P.; Jin, R.; Wang, C.; Wen, C.; Zhou, Y.M. A Comparison of Intestinal Integrity, Digestive Function, and Egg Quality in Laying Hens with Different Ages. Poult. Sci. 2021, 100, 100949. [Google Scholar] [CrossRef] [PubMed]
- Shalaei, M.; Hosseini, S.M.; Zergani, E. Effect of Different Supplements on Eggshell Quality, Some Characteristics of Gastrointestinal Tract and Performance of Laying Hens. Vet. Res. Forum 2014, 5, 277–286. [Google Scholar] [PubMed]
- Cheng, X.; Ning, Z. Research Progress on Bird Eggshell Quality Defects: A Review. Poult. Sci. 2023, 102, 102283. [Google Scholar] [CrossRef]
- Wongdee, K.; Chanpaisaeng, K.; Teerapornpuntakit, J.; Charoenphandhu, N. Intestinal Calcium Absorption. Compr. Physiol. 2021, 11, 2047–2073. [Google Scholar] [CrossRef] [PubMed]
- Kebreab, E.; France, J.; Kwakkel, R.P.; Leeson, S.; Darmani Kuhi, H.; Dijkstra, J. Development and Evaluation of a Dynamic Model of Calcium and Phosphorus Flows in Layers. Poult. Sci. 2009, 88, 680–689. [Google Scholar] [CrossRef]
- Peng, J.B.; Chen, X.Z.; Berger, U.V.; Vassilev, P.M.; Tsukaguchi, H.; Brown, E.M.; Hediger, M.A. Molecular Cloning and Characterization of a Channel-like Transporter Mediating Intestinal Calcium Absorption. J. Biol. Chem. 1999, 274, 22739–22746. [Google Scholar] [CrossRef]
- Bronner, F. Recent Developments in Intestinal Calcium Absorption. Nutr. Rev. 2009, 67, 109–113. [Google Scholar] [CrossRef]
- Fleet, J.C.; Schoch, R.D. Molecular Mechanisms for Regulation of Intestinal Calcium Absorption by Vitamin D and Other Factors. Crit. Rev. Clin. Lab. Sci. 2010, 47, 181–195. [Google Scholar] [CrossRef]
- Hoenderop, J.G.J.; Nilius, B.; Bindels, R.J.M. Calcium Absorption across Epithelia. Physiol. Rev. 2005, 85, 373–422. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-H.; Li, Y.-J.; Liu, L.; Liu, J.-S.; Bao, M.; Yang, N.; Hou, Z.-C.; Ning, Z.-H. Traits of Eggshells and Shell Membranes of Translucent Eggs. Poult. Sci. 2017, 96, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.E.; Tharrington, J.B.; Curtis, P.A.; Jones, F.T. Shell Characteristics of Eggs from Historic Strains of Single Comb White Leghorn Chickens and the Relationship of Egg Shape to Shell Strength. Int. J. Poult. Sci. 2004, 3, 17–19. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-Level Expression Analysis of RNA-Seq Experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Yu, G. Enrichplot: Visualization of Functional Enrichment Result, R Package. Version 1.12.3; 2022. Available online: https://www.bioconductor.org/packages/release/bioc/html/enrichplot.Html (accessed on 10 January 2024).
- Shi, X.; Liang, Q.; Wang, E.; Jiang, C.; Zeng, L.; Chen, R.; Li, J.; Xu, G.; Zheng, J. A Method to Reduce the Occurrence of Egg Translucency and Its Effect on Bacterial Invasion. Foods 2023, 12, 2538. [Google Scholar] [CrossRef]
- Bouvarel, I.; Nys, Y.; Lescoat, P. Hen Nutrition for Sustained Egg Quality. In Improving the Safety and Quality of Eggs and Egg Products: Egg Chemistry, Production and Consumption; Nys, Y., Bain, M., Van Immerseel, F., Eds.; Woodhead Publishing: Brussels, Belgium, 2011; pp. 261–299. [Google Scholar]
- Ren, H.L.; Zhao, X.Y.; Di, K.Q.; Li, L.H.; Hao, E.Y.; Chen, H.; Zhou, R.Y.; Nie, C.S.; Wang, D.H. Eggshell Translucency in Late-Phase Laying Hens and Its Effect on Egg Quality and Physiological Indicators. Front. Vet. Sci. 2023, 10, 1133752. [Google Scholar] [CrossRef]
- Orellana, L.; Neves, D.; Krehling, J.; Burin, R.; Soster, P.; Almeida, L.; Urrutia, A.; Munoz, L.; Escobar, C.; Bailey, M.; et al. Effect of Translucency and Eggshell Color on Broiler Breeder Egg Hatchability and Hatch Chick Weight. Poult. Sci. 2023, 102, 102866. [Google Scholar] [CrossRef] [PubMed]
- Yunitasari, F.; Jayanegara, A.; Ulupi, N. Performance, Egg Quality, and Immunity of Laying Hens Due to Natural Carotenoid Supplementation: A Meta-Analysis. Food Sci. Anim. Resour. 2023, 43, 282–304. [Google Scholar] [CrossRef] [PubMed]
- Dansou, D.M.; Zhang, H.; Yu, Y.; Wang, H.; Tang, C.; Zhao, Q.; Qin, Y.; Zhang, J. Carotenoid Enrichment in Eggs: From Biochemistry Perspective. Anim. Nutr. 2023, 14, 315–333. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, G.C.; Canogullari, S.; Baylan, M.; Alasahan, S. Determination of Some External and Internal Quality Traits of Japanese Quail (Coturnix coturnix japonica) Eggs on the Basis of Eggshell Colour and Spot Colour. Eurasian J. Vet. Sci. 2015, 31, 235–241. [Google Scholar] [CrossRef]
- Li, Q.P.; Gooneratne, S.R.; Wang, R.L.; Zhang, R.; An, L.L.; Chen, J.J.; Pan, W. Effect of Different Molecular Weight of Chitosans on Performance and Lipid Metabolism in Chicken. Anim. Feed. Sci. Technol. 2016, 211, 174–180. [Google Scholar] [CrossRef]
- Stapane, L.; Le Roy, N.; Ezagal, J.; Rodriguez-Navarro, A.B.; Labas, V.; Combes-Soia, L.; Hincke, M.T.; Gautron, J. Avian Eggshell Formation Reveals a New Paradigm for Vertebrate Mineralization via Vesicular Amorphous Calcium Carbonate. J. Biol. Chem. 2020, 295, 15853–15869. [Google Scholar] [CrossRef]
- Nie, W.; Yang, Y.; Yuan, J.; Wang, Z.; Guo, Y. Effect of Dietary Nonphytate Phosphorus on Laying Performance and Small Intestinal Epithelial Phosphate Transporter Expression in Dwarf Pink-Shell Laying Hens. J. Anim. Sci. Biotechnol. 2013, 4, 34. [Google Scholar] [CrossRef]
- Cusack, M.; Fraser, A.C.; Stachel, T. Magnesium and Phosphorus Distribution in the Avian Eggshell. Comp. Biochem. Physiol.-B Biochem. Mol. Biol. 2003, 134, 63–69. [Google Scholar] [CrossRef]
- Xu, Z.R.; Hu, C.H.; Xia, M.S.; Zhan, X.A.; Wang, M.Q. Effects of Dietary Fructooligosaccharide on Digestive Enzyme Activities, Intestinal Microflora and Morphology of Male Broilers. Poult. Sci. 2003, 82, 1030–1036. [Google Scholar] [CrossRef]
- Yason, C.V.; Summers, B.A.; Schat, K.A. Pathogenesis of Rotavirus Infection in Various Age Groups of Chickens and Turkeys: Pathology. Am. J. Vet. Res. 1987, 48, 927–938. [Google Scholar]
- Giannenas, I.; Tsalie, E.; Triantafillou, E.; Hessenberger, S.; Teichmann, K.; Mohnl, M.; Tontis, D. Assessment of Probiotics Supplementation via Feed or Water on the Growth Performance, Intestinal Morphology and Microflora of Chickens after Experimental Infection with Eimeria Acervulina, Eimeria Maxima and Eimeria Tenella. Avian Pathol. 2014, 43, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Lallès, J.P. Intestinal Alkaline Phosphatase: Multiple Biological Roles in Maintenance of Intestinal Homeostasis and Modulation by Diet. Nutr. Rev. 2010, 68, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xie, J.; Wang, B.; Tang, J. Effect of γ-Aminobutyric Acid on Digestive Enzymes, Absorption Function, and Immune Function of Intestinal Mucosa in Heat-Stressed Chicken. Poult. Sci. 2014, 93, 2490–2500. [Google Scholar] [CrossRef]
- Diaz De Barboza, G.; Guizzardi, S.; Tolosa De Talamoni, N. Molecular Aspects of Intestinal Calcium Absorption. World J. Gastroenterol. 2015, 21, 7142–7154. [Google Scholar] [CrossRef] [PubMed]
- Mutz, K.O.; Heilkenbrinker, A.; Lönne, M.; Walter, J.G.; Stahl, F. Transcriptome Analysis Using Next-Generation Sequencing. Curr. Opin. Biotechnol. 2013, 24, 22–30. [Google Scholar] [CrossRef]
- Dai, H.; Lu, X. MGST1 Alleviates the Oxidative Stress of Trophoblast Cells Induced by Hypoxia/Reoxygenation and Promotes Cell Proliferation, Migration, and Invasion by Activating the PI3K/AKT/MTOR Pathway. Open Med. 2022, 17, 2062–2071. [Google Scholar] [CrossRef]
Index | Items | Group C | Group T | p-Value |
---|---|---|---|---|
Egg quality | Eggshell thickness/mm | 0.40 ± 0.04 | 0.43 ± 0.04 | <0.01 |
Eggshell ratio/% | 10.49 ± 0.92 | 11.03 ± 0.86 | <0.01 | |
Egg yolk color | 9.25 ± 1.96 | 8.61 ± 1.94 | 0.01 | |
Plasma biochemical indexes | MDA (nmol/mL) | 3.87 ± 0.12 | 4.56 ± 0.12 | 0.01 |
LDL-C (mmol/L) | 5.19 ± 0.60 | 2.59 ± 0.38 | <0.01 | |
HDL-C (mmol/L) | 0.97 ± 0.29 | 0.37 ± 0.09 | 0.04 | |
Calcium (mmol/L) | 5.49 ± 1.32 | 3.16 ± 0.85 | 0.02 | |
Phosphorus (mmol/L) | 1.60 ± 0.27 | 1.19 ± 0.30 | 0.02 |
Tissue | Intestinal | Items | Group C (n = 10) | Group T (n = 10) | p-Value |
---|---|---|---|---|---|
Duodenum | Morphometry | Villus length/Crypt depth | 5.02 ± 0.97 | 2.61 ± 0.24 | 0.04 |
Digestive enzymes | Chymotrypsin (U/mgprot) | 8.75 ± 1.32 | 7.35 ± 0.42 | 0.01 | |
Energy metabolism enzymes | T-ATPase (U/mgprot) | 11.55 ± 2.05 | 9.74 ± 0.92 | 0.04 | |
AKP (U/mgprot) | 6.19 ± 1.16 | 5.12 ± 0.72 | 0.04 | ||
SDH (U/mgprot) | 9.89 ± 1.84 | 7.54 ± 1.07 | 0.01 | ||
Antioxidant capacity | GSH-Px (umol/gprot) | 57.98 ± 4.86 | 51.40 ± 6.73 | 0.04 | |
MDA (nmol/mgprot) | 2.09 ± 0.20 | 2.31 ± 0.10 | 0.02 | ||
Jejunum | Digestive enzymes | Lipase (U/gprot) | 6.74 ± 1.02 | 5.42 ± 0.49 | <0.01 |
Energy metabolism enzymes | Na+K+-ATPase (U/mgprot) | 1.17 ± 0.11 | 0.99 ± 0.13 | 0.01 | |
Antioxidant capacity | T-AOC (mmol/gprot) | 25.31 ± 2.38 | 21.29 ± 2.73 | 0.01 | |
GSH-Px (umol/gprot) | 58.52 ± 6.49 | 52.85 ± 3.91 | 0.04 | ||
Ileum | Digestive enzymes | amylase (U/gprot) | 520.94 ± 55.07 | 449.75 ± 64.96 | 0.03 |
Energy metabolism enzymes | Ca2+Mg2+-ATPase (U/mgprot) | 1.13 ± 0.23 | 0.90 ± 0.11 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Hao, D.; Liu, W.; Liu, W.; Li, D.; Lei, Q.; Zhou, Y.; Liu, J.; Cao, D.; Wang, J.; et al. Plasma Biochemistry, Intestinal Health, and Transcriptome Analysis Reveal Why Laying Hens Produce Translucent Eggs. Animals 2024, 14, 2593. https://doi.org/10.3390/ani14172593
Du Y, Hao D, Liu W, Liu W, Li D, Lei Q, Zhou Y, Liu J, Cao D, Wang J, et al. Plasma Biochemistry, Intestinal Health, and Transcriptome Analysis Reveal Why Laying Hens Produce Translucent Eggs. Animals. 2024; 14(17):2593. https://doi.org/10.3390/ani14172593
Chicago/Turabian StyleDu, Yuanjun, Dan Hao, Wei Liu, Wei Liu, Dapeng Li, Qiuxia Lei, Yan Zhou, Jie Liu, Dingguo Cao, Jie Wang, and et al. 2024. "Plasma Biochemistry, Intestinal Health, and Transcriptome Analysis Reveal Why Laying Hens Produce Translucent Eggs" Animals 14, no. 17: 2593. https://doi.org/10.3390/ani14172593
APA StyleDu, Y., Hao, D., Liu, W., Liu, W., Li, D., Lei, Q., Zhou, Y., Liu, J., Cao, D., Wang, J., Sun, Y., Chen, F., Han, H., & Li, F. (2024). Plasma Biochemistry, Intestinal Health, and Transcriptome Analysis Reveal Why Laying Hens Produce Translucent Eggs. Animals, 14(17), 2593. https://doi.org/10.3390/ani14172593