Isolation of Aerobic Bacterial Species Associated with Palpable Udder Defects in Non-Dairy Ewes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Selection and Management
2.2. Udder Scoring
2.3. Post-Mortem Udder Collection
Mammary Swab Sample Collection
2.4. Milk Sampling
2.5. Bacterial Culture and Identification
2.6. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-ToF) Mass Spectrometry Identification
2.7. Statistical Analysis
3. Results
3.1. Study A: Bacterial Species Identified from Ewes’ Milk Samples Collected at Weaning and Their Association with Udder Defects
3.2. Study B: Bacterial Species Identified from Mammary Swab Samples Collected during Pre-Mating and Their Association with Udder Defects
3.3. Study C: Bacterial Species Identified from Milk Samples Collected from Ewes during Lactation, Weaning and Post-Weaning at Keeble Massey University Farm
3.4. Study C: Udder Half Bacterial Positivity and Species Identified over Time during Lactation, Weaning and Post-Weaning at Keeble Massey University Farm
3.5. Study C: Association of Udder Half Defect and Bacterial Isolation over Lactation, Weaning and Pre-Mating
3.6. Study C: Bacterial Species Identified from Udder Half Mammary Tissue Swab Samples Collected Post-Weaning and Their Association with Udder Half Defect
3.7. Study C: Comparison of Bacterial Isolation from Ewes’ Udder Half Milk and Swab Samples Collected at Post-Weaning
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Bacterial Species | Number of Individual Udder Halves | ||
---|---|---|---|
Single Occasion | Two or Three Occasions | Four or More Occasions | |
A. viridans | 1 | ||
C. lipophiloflavum | 4 | ||
E. coli | 1 | ||
K. carniphila | 2 | ||
S. petrasii | 2 | ||
Psychrobacter spp. | 1 | ||
A. viridans and S. simulans | 1 | ||
S. auricularis and S. parasanguinis | 1 | ||
Contaminated | 4 | ||
Gram-positive bacilli | 1 | ||
S. aureus | 1 | 1 | |
S. capitis | 1 | ||
CNS-unidentified | 3 | 1 | |
S. simulans | 2 | 6 | |
S. warneri | 1 | 1 | |
S. haemolyticus | 1 | 1 | |
S. auricularis | 1 | 1 | |
S. chromogenes | 2 | 1 | 1 |
S. uberis | 1 | 1 | 2 |
M. haemolytica | 1 | ||
S. xylosus | 2 | ||
S. pluranimalium | 1 |
References
- Fthenakis, G.; Jones, J. The effect of inoculation of coagulase-negative staphylococci into the ovine mammary gland. J. Comp. Pathol. 1990, 102, 211–219. [Google Scholar] [CrossRef]
- Yusuf, O.M.; Logan, C.; Ridler, A.; Greer, A. Investigation into udder characteristics, mastitis and milk production in crossbred sheep. N. Z. J. Anim. Sci. Prod. 2018, 78, 82–87. [Google Scholar]
- Saratsis, P.; Alexopoulos, C.; Tzora, A.; Fthenakis, G. The effect of experimentally induced subclinical mastitis on the milk yield of dairy ewes. Small Rumin. Res. 1999, 32, 205–209. [Google Scholar] [CrossRef]
- Griffiths, K.; Ridler, A.; Compton, C.; Corner-Thomas, R.; Kenyon, P. Investigating associations between lamb survival to weaning and dam udder and teat scores. N. Z. Vet. J. 2019, 67, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, K.; Ridler, A.; Compton, C.; Corner-Thomas, R.; Kenyon, P. Associations between lamb growth to weaning and dam udder and teat scores. N. Z. Vet. J. 2019, 67, 172–179. [Google Scholar] [CrossRef]
- Arsenault, J.; Dubreuil, P.; Higgins, R.; Bélanger, D. Risk factors and impacts of clinical and subclinical mastitis in commercial meat-producing sheep flocks in Quebec, Canada. Prev. Vet. Med. 2008, 87, 373–393. [Google Scholar] [CrossRef] [PubMed]
- Ridler, A.L.; Rout-Brown, G.; Flay, K.J.; Velathanthiri, N.; Grinberg, A. Defects and bacterial pathogens in udders of non-dairy breed ewes from New Zealand. N. Z. J. Agric. Res. 2022, 65, 163–171. [Google Scholar] [CrossRef]
- Peterson, S.; Nieper, B.; Collett, M.; Grinberg, A. BRIEF COMMUNICATION: An investigation of mastitis in a hill-country sheep flock. In Proceedings of the New Zealand Society of Animal Production, Rotorua, New Zealand, 28–30 June 2017; pp. 114–116. [Google Scholar]
- Van den Crommenacker-Konings, L.W.; van Dam, P.; Everts, R.; Shittu, A.; Nielen, M.; Lam, T.J.; Koop, G. Dynamics of intramammary infections in suckler ewes during early lactation. J. Dairy Sci. 2021, 104, 5979–5987. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.M.; Willis, Z.N.; Blakeley, M.; Lovatt, F.; Purdy, K.J.; Green, L.E. Bacterial species and their associations with acute and chronic mastitis in suckler ewes. J. Dairy Sci. 2015, 98, 7025–7033. [Google Scholar] [CrossRef]
- Quinlivan, T. Survey observations on ovine mastitis in New Zealand stud Romney flocks: 2. The bacteriology of ovine mastitis. N. Z. Vet. J. 1968, 16, 153–160. [Google Scholar] [CrossRef]
- Ekdahl, M. Characteristics of some organisms causing ovine mastitis. In Proceedings of the Society of Sheep and Beef Cattle Veterinarians of the NZVA, Palmerston North, New Zealand, 9–11 June 1972; pp. 41–46. [Google Scholar]
- Skyrme, H. Hard udders in ewes. N. Z. Vet. J. 1970, 18, 96. [Google Scholar] [CrossRef]
- Grant, C.; Smith, E.M.; Green, L.E. A longitudinal study of factors associated with acute and chronic mastitis and their impact on lamb growth rate in 10 suckler sheep flocks in Great Britain. Prev. Vet. Med. 2016, 127, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Saratsis, P.; Leontides, L.; Tzora, A.; Alexopoulos, C.; Fthenakis, G. Incidence risk and aetiology of mammary abnormalities in dry ewes in 10 flocks in Southern Greece. Prev. Vet. Med. 1998, 37, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Zeleke, M.M.; Flay, K.J.; Kenyon, P.R.; Aberdein, D.; Pain, S.J.; Ridler, A.L. Assessment of Changes in Udder Half Defects over Time in Non-Dairy Ewes. Animals 2023, 13, 784. [Google Scholar] [CrossRef]
- Adkins, P.; Middleton, J.; Fox, L.; Pighetti, K.; Petersson-Wolfe, C. Laboratory Handbook on Bovine Mastitis; National Mastitis Council: New Prague, MN, USA, 2017. [Google Scholar]
- Alatoom, A.A.; Cunningham, S.A.; Ihde, S.M.; Mandrekar, J.; Patel, R. Comparison of direct colony method versus extraction method for identification of Gram-positive cocci by use of Bruker Biotyper matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol. 2011, 49, 2868–2873. [Google Scholar] [CrossRef] [PubMed]
- Almuzara, M.; Barberis, C.; Velázquez, V.R.; Ramirez, M.S.; Famiglietti, A.; Vay, C. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) as a reliable tool to identify species of catalase-negative gram-positive cocci not belonging to the Streptococcus genus. Open Microbiol. J. 2016, 10, 202–208. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.L. The chi-square test of independence. Biochem. Medica 2013, 23, 143–149. [Google Scholar] [CrossRef]
- Team, R.C. R: A language and environment for statistical computing. In Proceedings of the R Foundation for Statistical Computing, Vienna, Austria, 28 June 2016; Available online: http://www.R-project.org/ (accessed on 15 January 2020).
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Koop, G.; Rietman, J.; Pieterse, M. Staphylococcus aureus mastitis in Texel sheep associated with suckling twins. Vet. Rec. 2010, 167, 868. [Google Scholar] [CrossRef]
- Mavrogianni, V.; Fthenakis, G. Clinical, bacteriological, cytological and pathological features of teat disorders in ewes. J. Vet. Med. Ser. A 2007, 54, 219–223. [Google Scholar] [CrossRef]
- Omaleki, L.; Barber, S.R.; Allen, J.L.; Browning, G.F. Mannheimia species associated with ovine mastitis. J. Clin. Microbiol. 2010, 48, 3419–3422. [Google Scholar] [CrossRef]
- Spuria, L.; Biasibetti, E.; Bisanzio, D.; Biasato, I.; De Meneghi, D.; Nebbia, P.; Robino, P.; Bianco, P.; Lamberti, M.; Caruso, C. Microbial agents in macroscopically healthy mammary gland tissues of small ruminants. PeerJ 2017, 5, e3994. [Google Scholar] [CrossRef]
- Marogna, G.; Rolesu, S.; Lollai, S.; Tola, S.; Leori, G. Clinical findings in sheep farms affected by recurrent bacterial mastitis. Small Rumin. Res. 2010, 88, 119–125. [Google Scholar] [CrossRef]
- Zadoks, R.N.; Tassi, R.; Martin, E.; Holopainen, J.; McCallum, S.; Gibbons, J.; Ballingall, K.T. Comparison of bacteriological culture and PCR for detection of bacteria in ovine milk—Sheep are not small cows. J. Dairy Sci. 2014, 97, 6326–6333. [Google Scholar] [CrossRef]
- Greeff, A.; Du Preez, J. Simultaneous isolation of anaerobic bacteria from udder abscesses and mastitic milk in lactating dairy cows. J. S. Afr. Vet. Assoc. 1985, 56, 195–198. [Google Scholar]
- Minguijón, E.; Reina, R.; Pérez, M.; Polledo, L.; Villoria, M.; Ramírez, H.; Leginagoikoa, I.; Badiola, J.; García-Marín, J.F.; De Andrés, D. Small ruminant lentivirus infections and diseases. Vet. Microbiol. 2015, 181, 75–89. [Google Scholar] [CrossRef]
- Migliore, S.; Puleio, R.; Nicholas, R.A.; Loria, G.R. Mycoplasma agalactiae: The sole cause of classical contagious agalactia? Animals 2021, 11, 1782. [Google Scholar] [CrossRef] [PubMed]
- Omaleki, L.; Browning, G.F.; Allen, J.L.; Barber, S.R. The role of Mannheimia species in ovine mastitis. Vet. Microbiol. 2011, 153, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Barber, S.; Allen, J.; Mansell, P.; Browning, G. Mastitis in the ewe. In Proceedings of the Australian Sheep Veterinarians 2006 Conference, Eight Mile Plains, Australia, January 2006; pp. 127–132. [Google Scholar]
- Omaleki, L.; Browning, G.F.; Allen, J.L.; Markham, P.F.; Barber, S.R. Molecular epidemiology of an outbreak of clinical mastitis in sheep caused by Mannheimia haemolytica. Vet. Microbiol. 2016, 191, 82–87. [Google Scholar] [CrossRef]
- Watkins, G.; Jones, J. The effect of the intra-mammary inoculation of lactating ewes with Pasteurella haemolytica isolates from different sources. J. Comp. Pathol. 1992, 106, 9–14. [Google Scholar] [CrossRef]
- Gelasakis, A.; Mavrogianni, V.; Petridis, I.; Vasileiou, N.; Fthenakis, G. Mastitis in sheep–The last 10 years and the future of research. Vet. Microbiol. 2015, 181, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Persson, Y.; Nyman, A.-K.; Söderquist, L.; Tomic, N.; Waller, K.P. Intramammary infections and somatic cell counts in meat and pelt producing ewes with clinically healthy udders. Small Rumin. Res. 2017, 156, 66–72. [Google Scholar] [CrossRef]
- El-Masannat, E.; Jones, J.; Scott, M. The experimental production of mastitis in sheep by intramammary inoculation of Pasteurella haemolytica. J. Comp. Pathol. 1991, 105, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Rosa, N.M.; Agnoletti, F.; Lollai, S.; Tola, S. Comparison of PCR-RFLP, API® 20 Strep and MALDI-TOF MS for identification of Streptococcus spp. collected from sheep and goat milk samples. Small Rumin. Res. 2019, 180, 35–40. [Google Scholar] [CrossRef]
- Pyörälä, S.; Taponen, S. Coagulase-negative staphylococci—Emerging mastitis pathogens. Vet. Microbiol. 2009, 134, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Waller, K.P.; Aspán, A.; Nyman, A.; Persson, Y.; Andersson, U.G. CNS species and antimicrobial resistance in clinical and subclinical bovine mastitis. Vet. Microbiol. 2011, 152, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Fragkou, I.; Papaioannou, N.; Cripps, P.; Boscos, C.; Fthenakis, G. Teat lesions predispose to invasion of the ovine mammary gland by Mannheimia haemolytica. J. Comp. Pathol. 2007, 137, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Mavrogianni, V.; Cripps, P.; Fthenakis, G. Bacterial flora and risk of infection of the ovine teat duct and mammary gland throughout lactation. Prev. Vet. Med. 2007, 79, 163–173. [Google Scholar] [CrossRef]
- Brook, I. Microbiology of polymicrobial abscesses and implications for therapy. J. Antimicrob. Chemother. 2002, 50, 805–810. [Google Scholar] [CrossRef]
Bacterial Species | Study A (Weaning, 2018) | Study B (Pre-Mating, 2019) | ||||||
---|---|---|---|---|---|---|---|---|
Hard | Lump | Normal | Study A Total | Hard | Lump | Normal | Study B Total | |
Staphylococcus aureus | 0 | 3 | 3 | 6 | 2 | 1 | 3 | 6 |
Staphylococcus caprae | 0 | 0 | 2 | 2 | ||||
Staphylococcus chromogenes | 0 | 1 | 3 | 4 | 0 | 0 | 1 | 1 |
Staphylococcus simulans | 1 | 2 | 3 | 6 | 0 | 3 | 3 | 6 |
Staphylococcus devriesei | 0 | 0 | 1 | 1 | ||||
Staphylococcus warnerii | 0 | 0 | 3 | 3 | ||||
CNS (species unidentified) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
Streptococcus oralis | 0 | 1 | 0 | 1 | ||||
Streptococcus pluranimalium | 0 | 0 | 1 | 1 | ||||
Streptococcus uberis | 0 | 3 | 1 | 4 | 1 | 3 | 1 | 5 |
Streptococcus salivarius | 0 | 1 | 0 | 1 | ||||
Streptococcus suis | 0 | 2 | 2 | |||||
Streptococcus (species unidentified) | 0 | 3 | 0 | 3 | 0 | 0 | 1 | 1 |
Mannheimia haemolytica | 1 | 5 | 1 | 7 | 4 | 0 | 2 | 6 |
Arcanobacterium pluranimalium | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
Trueperella pyogenes | 2 | 1 | 0 | 3 | ||||
Corynebacterium pseudotuberculosis | 0 | 1 | 1 | 2 | ||||
Helcococcus ovis | 0 | 1 | 0 | 1 | ||||
Gram-positive bacilli | 0 | 0 | 2 | 2 | ||||
Mixed infection | ||||||||
Escherichia coli and M. haemolytica | 0 | 0 | 1 | 1 | 1 | 2 | 0 | 3 |
Staphylococcus aureus and Helcococcus ovis | 0 | 1 | 0 | 1 | ||||
S. parasanguinis and Neisseria flavescens | 0 | 0 | 1 | 1 | ||||
S. uberis and Helcococcus ovis | 0 | 1 | 0 | 1 | ||||
S. uberis and Streptococcus suis | 0 | 1 | 0 | 1 | ||||
Streptococcus spp. and Staphylococcus spp. | 0 | 0 | 1 | 1 | ||||
Contamination * | 1 | 3 | 19 | 23 | 0 | 5 | 6 | 11 |
No bacterial growth | 0 | 6 | 61 | 67 | 3 | 34 | 54 | 91 |
No milk sample excreted | 3 | 11 | 9 | 23 | ||||
TOTAL | 7 | 39 | 108 | 154 | 14 | 58 | 76 | 148 |
Udder Half Defects | ||||||
---|---|---|---|---|---|---|
Parameters | Hard | Lump | Normal | Total | X2 (p-Value) | Cramer’s V |
Bacterial positivity | ||||||
Positive | 3 | 19 | 19 | 41 | <0.05 | 0.26 |
Negative | 0 | 6 | 62 | 68 | ||
Bacterial species | ||||||
M. haemolytica | 1 | 5 | 1 | 7 | <0.05 | 0.23 |
S. aureus | 0 | 3 | 3 | 6 | ||
Streptococcus | 0 | 7 | 2 | 9 | ||
CNS | 1 | 4 | 12 | 17 | ||
Others | 1 | 0 | 2 | 3 |
Udder Half Defect Category | ||||||
---|---|---|---|---|---|---|
Parameters | Hard | Lump | Normal | Total | X2 (p-Value) | Cramer’s V |
Bacterial positivity | ||||||
Positive | 11 | 20 | 15 | 46 | >0.05 | 0.24 |
Negative | 3 | 34 | 54 | 91 | ||
Bacterial species | ||||||
M. haemolytica | 4 | 2 | 6 | <0.05 | 0.25 | |
S. aureus | 2 | 1 | 3 | 6 | ||
Streptococcus | 1 | 7 | 1 | 9 | ||
CNS | 4 | 4 | 8 | |||
Mixed infection | 4 | 2 | 6 | |||
Gram-positive bacilli | 4 | 4 | 3 | 11 |
Bacterial Spp. | Day 7 | Day 14 | Day 21 | Day 28 | Day 35 | Day 42 | Weaning | Post-Weaning | Total |
---|---|---|---|---|---|---|---|---|---|
Aerococcus viridans | 1 | 1 | |||||||
Corynebacterium lipophiloflavum | 1 | 2 | 1 | 4 | |||||
Escherichia coli | 1 | 1 | |||||||
Kocuria carniphila | 1 | 1 | 2 | ||||||
Mannheimia haemolytica | 3 | 1 | 1 | 1 | 1 | 1 | 8 | ||
Staphylococcus aureus | 1 | 2 | 1 | 1 | 5 | ||||
Staphylococcus auricularis | 2 | 1 | 1 | 1 | 1 | 6 | |||
Staphylococcus capitis | 2 | 1 | 3 | ||||||
Staphylococcus chromogenes | 2 | 3 | 2 | 3 | 1 | 2 | 13 | ||
Staphylococcus haemolyticus | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 9 | |
Staphylococcus petrasii | 1 | 1 | 2 | ||||||
Staphylococcus simulans | 5 | 5 | 5 | 5 | 5 | 2 | 3 | 4 | 34 |
Staphylococcus warneri | 1 | 1 | 1 | 1 | 1 | 5 | |||
Staphylococcus xylosus | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 12 | |
Streptococcus pluranimalium | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | |
Streptococcus uberis | 1 | 2 | 2 | 4 | 2 | 1 | 1 | 1 | 14 |
Staphylococcus auricularis and Streptococcus parasanguinis | 1 | 1 | |||||||
Aerococcus viridans and Staphylococcus simulans | 1 | 1 | |||||||
Corynebacterium spp. | 1 | 1 | |||||||
Psychrobacter spp. | 1 | 1 | |||||||
Gram-positive bacilli | 1 | 1 | 1 | 3 | |||||
CNS-unidentified | 1 | 1 | 1 | 1 | 1 | 5 | |||
Contaminated * | 5 | 5 | |||||||
No bacterial growth | 33 | 32 | 30 | 32 | 35 | 35 | 38 | 35 | 270 |
No Sample | 39 | 43 | 43 | 43 | 43 | 41 | 43 | 44 | 339 |
Total | 96 | 96 | 96 | 96 | 96 | 88 | 92 | 92 | 752 |
Bacterial Species | Udder Half Defect Category | |||
---|---|---|---|---|
Hard | Lump | Normal | Total | |
Staphylococcus aureus | 3 | 1 | 1 | 5 |
Staphylococcus capitis | 3 | 3 | ||
Staphylococcus chromogenes | 13 | 13 | ||
Staphylococcus haemolyticus | 9 | 9 | ||
Staphylococcus petrasii | 2 | 2 | ||
Staphylococcus simulans | 4 | 3 | 27 | 34 |
Staphylococcus warneri | 1 | 4 | 5 | |
Staphylococcus xylosus | 1 | 1 | 10 | 12 |
Staphylococcus auricularis | 1 | 5 | 6 | |
Streptococcus pluranimalium | 2 | 5 | 7 | |
Streptococcus uberis | 6 | 1 | 7 | 14 |
Mannheimia haemolytica | 2 | 5 | 1 | 8 |
Aerococcus viridans | 1 | 1 | ||
Corynebacterium lipophiloflavum | 1 | 3 | 4 | |
Escherichia coli | 1 | 1 | ||
Kocuria carniphila | 2 | 2 | ||
Corynebacterium spp. | 1 | 1 | ||
Aerococcus viridans and Staphylococcus simulans | 1 | 1 | ||
Staphylococcus auricularis and Streptococcus parasanguinis | 1 | 1 | ||
Psychrobacter spp. | 1 | 1 | ||
CNS (unidentified) | 5 | 5 | ||
Gram-positive bacilli | 1 | 2 | 3 | |
Contaminated * | 1 | 4 | 5 | |
No bacterial growth | 13 | 19 | 238 | 270 |
No milk excreted | 59 | 94 | 186 | 339 |
Total | 92 | 128 | 532 | 752 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeleke, M.M.; Kenyon, P.R.; Flay, K.J.; Aberdein, D.; Pain, S.J.; Velathanthiri, N.; Ridler, A.L. Isolation of Aerobic Bacterial Species Associated with Palpable Udder Defects in Non-Dairy Ewes. Animals 2024, 14, 2317. https://doi.org/10.3390/ani14162317
Zeleke MM, Kenyon PR, Flay KJ, Aberdein D, Pain SJ, Velathanthiri N, Ridler AL. Isolation of Aerobic Bacterial Species Associated with Palpable Udder Defects in Non-Dairy Ewes. Animals. 2024; 14(16):2317. https://doi.org/10.3390/ani14162317
Chicago/Turabian StyleZeleke, Mandefrot M., Paul R. Kenyon, Kate J. Flay, Danielle Aberdein, Sarah J. Pain, Niluka Velathanthiri, and Anne L. Ridler. 2024. "Isolation of Aerobic Bacterial Species Associated with Palpable Udder Defects in Non-Dairy Ewes" Animals 14, no. 16: 2317. https://doi.org/10.3390/ani14162317
APA StyleZeleke, M. M., Kenyon, P. R., Flay, K. J., Aberdein, D., Pain, S. J., Velathanthiri, N., & Ridler, A. L. (2024). Isolation of Aerobic Bacterial Species Associated with Palpable Udder Defects in Non-Dairy Ewes. Animals, 14(16), 2317. https://doi.org/10.3390/ani14162317