A Preliminary Study on “Personalised Treatment” against Varroa destructor Infestations in Honey Bee (Apis mellifera) Colonies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Honey Bee Colonies
2.2. Treatment
2.3. Mathematical and Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abrahams, E. Right drug-right patient-right time: Personalized medicine coalition. Clin. Transl. Sci. 2008, 1, 11–12. [Google Scholar] [CrossRef] [Green Version]
- Harvey, A.; Brand, A.; Holgate, S.T.; Kristiansen, L.V.; Lehrach, H.; Palotie, A.; Prainsack, B. The future of technologies for personalised medicine. N. Biotechnol. 2012, 29, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Dainat, B.; Evans, J.D.; Chen, Y.P.; Gauthier, L.; Neumann, P. Predictive Markers of Honey Bee Colony Collapse. PLoS ONE 2012, 7, e32151. [Google Scholar] [CrossRef] [Green Version]
- Bailey, L.; Gibbs, A.J.; Woods, R.D. Two viruses from adult honey bees (Apis mellifera Linnaeus). Virology 1963, 21, 390–395. [Google Scholar] [CrossRef]
- Bailey, L. The multiplication and spread of sacbrood virus of bees. Ann. Apl. Biol. 1969, 63, 283–491. [Google Scholar] [CrossRef]
- Chantawannakul, P.; Ward, L.; Boonham, N.; Brown, M. A scientific note on the detection of honeybee viruses using real-time PCR (TaqMan) in Varroa mites collected from a Thai honeybee (Apis mellifera) apiary. J. Invertebr. Pathol. 2006, 91, 69–73. [Google Scholar] [CrossRef]
- Lanzi, G.; Miranda, J.R.; de Boniotti, M.B.; Cameron, C.E.; Lavazza, A.; Capucci, L.; Camazine, S.M.; Rossi, C. Molecular and Biological Characterization of Deformed Wing Virus of Honeybees (Apis mellifera L.). J. Virol. 2006, 80, 4998–5009. [Google Scholar] [CrossRef] [Green Version]
- Maori, E.; Tanne, E.; Sela, I. Corrigendum to “Reciprocal sequence exchange between non-retro viruses and hosts leading to the appearance of new host phenotypes”. Virology 2007, 368, 218. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.J.; Highfield, A.C.; Brettell, L.; Villalobos, E.M.; Budge, G.E.; Powell, M.; Nikaido, S.; Schroeder, D.C. Global Honey Bee Viral Landscape Altered by a Parasitic Mite. Science 2012, 336, 1304–1306. [Google Scholar] [CrossRef]
- Mordecai, G.; Wilfert, L.; Martin, S.; Martin, S.J.; Jones, I.M.; Schroeder, D.C. Diversity in a honey bee pathogen: First report of a third master variant of the Deformed Wing Virus quasispecies. ISME J. 2016, 10, 1264–1273. [Google Scholar] [CrossRef] [Green Version]
- Beaurepaire, A.; Piot, N.; Doublet, V.; Antunez, K.; Campbell, E.; Chantawannakul, P.; Chejanovsky, N.; Gajda, A.; Heerman, M.; Panziera, D.; et al. Diversity and global distribution of viruses of the western honey bee Apis mellifera. Insects 2020, 11, 239. [Google Scholar] [CrossRef]
- Genersch, E.; von der Ohe, W.; Kaatz, H.; Schroeder, A.; Otten, C.; Büchler, R.; Berg, S.; Ritter, W.; Mühlen, W.; Gisder, S.; et al. The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 2010, 41, 332–352. [Google Scholar] [CrossRef] [Green Version]
- Knoll, S.; Pinna, W.; Varcasia, A.; Scala, A.; Cappai, M.G. The honey bee (Apis mellifera L., 1758) and the seasonal adaptation of productions. Highlights on summer to winter transition and back to summer metabolic activity. A review. Livest. Sci. 2020, 235, 104011. [Google Scholar] [CrossRef]
- Sokół, R.; Gałęcki, R.; Michalczyk, M. Controlled Infestation of Honeybee Colonies with Varroa Destructor Females. J. Apic. Sci. 2019, 63, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Ginsburg, G.S.; Willard, H.F. Genomic and personalized medicine: Foundations and applications. Transl. Res. 2009, 154, 277–287. [Google Scholar] [CrossRef]
- Peng, Y.-S.; Fang, Y.; Xu, S.; Ge, L. The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans. J. Invertebr. Pathol. 1987, 49, 54–60. [Google Scholar] [CrossRef]
- Boot, W.J.; Tan, N.Q.; Dien, P.C.; Huan, L.V.; Dung, N.V.; Long, L.T.; Beetsma, J. Reproductive success of Varroa jacobsoni in brood of its original host, Apis cerana, in comparison to that of its new host, A. mellifera (Hymenoptera: Apidae). Bull. Entomol. Res. 1997, 87, 119–126. [Google Scholar] [CrossRef]
- Boecking, O.; Rath, W.; Drescher, W. Behavioral strategies of Apis mellifera and Apis cerana against Varroa jacobsoni. Int. J. Acarol. 1993, 19, 173–177. [Google Scholar] [CrossRef]
- Oddie, M.A.Y.; Dahle, B.; Neumann, P. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection. PeerJ 2017, 24, e3956. [Google Scholar] [CrossRef] [Green Version]
- Oddie, M.A.Y.; Dahle, B.; Neumann, P. Reduced Postcapping Period in Honey Bees Surviving Varroa destructor by Means of Natural Selection. Insects 2018, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Morse, R.A.; Miksa, D.; Masenheimer, J.A. Varroa resistance in U.S. honey bees. Am. Bee J. 1991, 131, 433–434. [Google Scholar]
- Mondet, F.; Beaurepaire, A.; McAfee, A.; Locke, B.; Alaux, C.; Blanchard, S.; Danka, B.; Le Conte, Y. Honey bee survival mechanisms against the parasite Varroa destructor: A systematic review of phenotypic and genomic research efforts. Int. J. Parasitol. 2020, 50, 433–447. [Google Scholar] [CrossRef]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef]
- Boncristiani, H.; Underwood, R.; Schwarz, R.; Evans, J.D.; Pettis, J.; van Engelsdorp, D. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J. Insect Physiol. 2012, 58, 613–620. [Google Scholar] [CrossRef]
- Korta, E.; Bakkali, A.; Berrueta, L.A.; Gallo, B.; Vicente, F.; Kilchenmann, V.; Bogdanov, S. Study of acaricide stability in honey. Characterization of amitraz degradation products in honey and beeswax. J. Agric. Food Chem. 2001, 49, 5835–5842. [Google Scholar] [CrossRef]
- Elzen, P.J.; Baxter, J.R.; Spivak, M.; Wilson, W.T. Amitraz resistance in varroa: New discovery in North America. Am. Bee J. 1999, 139, 362. [Google Scholar]
- Sammataro, D.; Untalan, P.; Guerrero, F.; Finley, J. The resistance of varroa mites (Acari: Varroidae) to acaricides and the presence of esterase. Int. J. Acarol. 2005, 31, 67–74. [Google Scholar] [CrossRef]
- Kamler, M.; Nesvorna, M.; Stara, J.; Erban, T.; Hubert, J. Comparison of tau-fluvalinate, acrinathrin, and amitraz effects on susceptible and resistant populations of Varroa destructor in a vial test. Exp. Appl. Acarol. 2016, 69, 1–9. [Google Scholar] [CrossRef]
- de Mattos, I.M.; Soares, A.E.E.; Tarpy, D.R. Effects of synthetic acaricides on honey bee grooming behavior against the parasitic Varroa destructor mite. Apidologie 2017, 48, 483–494. [Google Scholar] [CrossRef] [Green Version]
- O’Neal, S.T.; Brewster, C.C.; Bloomquist, J.R.; Anderson, T.D. Amitraz and its metabolite modulate honey bee cardiac function and tolerance to viral infection. J. Invertebr. Pathol. 2016, 149, 119–126. [Google Scholar] [CrossRef] [Green Version]
- The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006, 443, 931–949. [Google Scholar] [CrossRef] [Green Version]
- Elsik, C.G.; Mackey, A.J.; Reese, J.T.; Milshina, N.V.; Roos, D.S.; Weinstock, G.M. Creating a honey bee consensus gene set. Genome Biol. 2007, 8, R13. [Google Scholar] [CrossRef] [Green Version]
- Elsik, C.G.; Worley, K.C.; Bennett, A.K.; Beye, M.; Camara, F.; Childers, C.P.; de Graaf, D.C.; Debyser, G.; Deng, J.; Devreese, B.; et al. Finding the missing honey bee genes: Lessons learned from a genome upgrade. BMC Genom. 2014, 15, 86. [Google Scholar] [CrossRef] [Green Version]
- Beye, M.; Gattermeier, I.; Hasselmann, M.; Gempe, T.; Schioett, M.; Baines, J.F.; Schlipalius, D.; Mougel, F.; Emore, C.; Rueppell, O.; et al. Exceptionally high levels of recombination across the honey bee genome. Genome Res. 2006, 16, 1339–1344. [Google Scholar] [CrossRef] [Green Version]
- Gadau, J.; Page, R.E., Jr.; Werren, J.H.; Schmid-Hempel, P. Genome Organization and Social Evolution in Hymenoptera. Naturwissenschaften 2000, 87, 87–89. [Google Scholar] [CrossRef]
- Büchler, R.; Costa, C.; Hatjina, F.; Andonov, S.; Meixner, M.D.; Le Conte, Y.; Uzunov, A.; Berg, S.; Bienkowska, M.; Bouga, M.; et al. The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. J. Apic. Res. 2014, 53, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Rusert, L.M.; Pettis, J.S.; Tarpy, D.R. Introduction of Varroa destructor has not altered honey bee queen mating success in the Hawaiian archipelago. Sci. Rep. 2021, 11, 1366. [Google Scholar] [CrossRef]
- Akyol, E.; Yeninar, H.; Karatepe, M.; Karatepe, B.; Özkök, D. Effects of queen ages on Varroa (Varroa destructor) infestation level in honey bee (Apis mellifera caucasica) colonies and colony performance. Ital. J. Anim. Sci. 2007, 6, 143–149. [Google Scholar] [CrossRef]
- Gregorc, A.; Planinc, I. Use of Thymol Formulations, Amitraz, and Oxalic Acid for the Control of the Varroa Mite in Honey Bee (Apis mellifera carnica) Colonies. J. Apic. Sci. 2012, 56, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, L.; Faucon, J.-P. Changes in the response time for Varroa jacobsoni exposed to amitraz. J. Apic. Res. 2000, 39, 155–158. [Google Scholar] [CrossRef]
- Sajid, N.Z.; Aziz, M.A.; Bodlah, I.; Rana, R.M.; Ghramh, H.A.; Khan, K.A. Efficacy assessment of soft and hard acaricides against Varroa destructor mite infesting honey bee (Apis mellifera) colonies, through sugar roll method. Saudi J. Biol. Sci. 2020, 27, 53–59. [Google Scholar] [CrossRef]
June | ||
---|---|---|
| ||
September | ||
| ||
after 12 days |
| |
formation of groups | I 12 colonies (1–20 V. destructor) | II 12 colonies (<21 V. destructor) |
Personalised treatment | ||
Apiwarol dose: 1 tab./colony/1 treatment/for 30 min. after 18 h | ||
2 treatments every 4 days | 4 colonies (a) | 4 colonies (A) |
4 treatments every 2 days | 4 colonies (b) | 4 colonies (B) |
without treatment | 4 colonies (c) | 4 colonies (C) |
after the last treatment |
| |
after 12 days |
|
Subgroup | Colony Number | Brood Area (dm2) | Mite Counts | V/dm2 | ΔV/dm2 | Mite Counts on Screened Bottom Boards | |||
---|---|---|---|---|---|---|---|---|---|
Before Treatment | After Treatment | Before Treatment | After Treatment | Before Treatment | After Treatment | ||||
Ia | 1 | 14 | 18.5 | 12 | 22 | 0.86 | 1.19 | 0.33 | 46 |
2 | 12.5 | 16 | 17 | 30 | 1.36 | 1.86 | 0.50 | 32 | |
3 | 16.5 | 19 | 9 | 31 | 0.55 | 1.63 | 1.08 | 63 | |
4 | 16 | 19.5 | 20 | 24 | 1.25 | 1.23 | −0.02 | 80 | |
Av/SD | 14.75 (±1.6) | 18.25 (±1.35) | 14.5 (±4.27) | 26.75 (±3.83) | 1.00 (±0.37) | 1.47 (±0.32) | 0.47 (±0.46) | 55.25 (± 18.02) | |
Ib | 5 | 14 | 18 | 11 | 18 | 0.79 | 1 | 0.21 | 21 |
6 | 16 | 17.5 | 18 | 12 | 1.13 | 0.69 | −0.44 | 8 | |
7 | 18 | 20 | 20 | 11 | 1.11 | 0.55 | −0.56 | 34 | |
8 | 12.5 | 19.5 | 12 | 14 | 0.96 | 0.72 | −0.24 | 17 | |
Av/SD | 15.13 (±2.07) | 18.75 (±1.03) | 15.25 (±3.83) | 13.75 (±2.68) | 0.99 (±0.16) | 0.74 (±0.19) | −0.25 (±0.34) | 20 (± 9.35) | |
Ic | 9 | 14.5 | 17 | 16 | 37 | 1.1 | 2.18 | 1.08 | 73 |
10 | 14 | 20 | 19 | 40 | 1.36 | 2 | 0.64 | 104 | |
11 | 14.5 | 18 | 17 | 34 | 1.18 | 1.89 | 0.71 | 57 | |
12 | 16 | 18.5 | 15 | 51 | 0.94 | 2.76 | 1.82 | 133 | |
Av/SD | 14.75 (±0.75) | 18.38 (±1.08) | 16.75 (±1.48) | 40.5 (±6.42) | 1.14 (±0.17) | 2.20 (±0.39) | 1.06 (±0.54) | 91.75 (± 29.2) |
Subgroup | Colony Number | Brood Area (dm2) | Mite Counts | V/dm2 | ΔV/dm2 | Mite Counts on Screened Bottom Boards | |||
---|---|---|---|---|---|---|---|---|---|
Before Treatment | After Treatment | Before Treatment | After Treatment | Before Treatment | After Treatment | ||||
IIA | 1 | 16.5 | 17 | 33 | 37 | 2 | 2.18 | 0.18 | 56 |
2 | 14 | 16 | 29 | 24 | 2.07 | 1.5 | −0.57 | 71 | |
3 | 16 | 18 | 36 | 48 | 2.25 | 2.67 | 0.42 | 27 | |
4 | 18 | 19 | 28 | 52 | 1.56 | 2.74 | 1.18 | 92 | |
Av/SD | 16.13 (±1.42) | 17.5 (±1.12) | 31.5 (±3.2) | 40.25 (±10.87) | 1.97 (±0.29) | 2.27 (±0.57) | 0.30 (±0.72) | 61.5 (± 23.67) | |
IIB | 5 | 12.5 | 16 | 41 | 24 | 3.28 | 1.5 | −1.78 | 36 |
6 | 16 | 17 | 32 | 27 | 2 | 1.56 | −0.44 | 75 | |
7 | 14 | 18 | 25 | 19 | 1.79 | 1.06 | −0.73 | 40 | |
8 | 14.5 | 19 | 46 | 21 | 3.17 | 1.1 | −2.07 | 12 | |
Av/SD | 14.25 (±1.25) | 17.5 (±1.12) | 36 (±8.09) | 22.75 (±3.03) | 2.56 (±0.77) | 1.3 (±0.26) | −1.25 (±0.26) | 40.75 (± 22.49) | |
IIC | 9 | 16 | 17.5 | 50 | 57 | 3.13 | 3.26 | 0.13 | 84 |
10 | 18 | 19 | 31 | 39 | 1.72 | 2.05 | 0.33 | 31 | |
11 | 13.5 | 17 | 27 | 33 | 2 | 1.94 | −0.06 | 112 | |
12 | 17 | 19.5 | 34 | 42 | 2 | 2.15 | 0.15 | 47 | |
Av/SD | 16.13 (±1.67) | 18.25 (±1.03) | 35.5 (±8.73) | 42.75 (±8.84) | 2.213 (±0.63) | 2.35 (±0.61) | 0.13 (±0.61) | 68.5 (± 31.63) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokół, R.; Michalczyk, M. A Preliminary Study on “Personalised Treatment” against Varroa destructor Infestations in Honey Bee (Apis mellifera) Colonies. Animals 2023, 13, 987. https://doi.org/10.3390/ani13060987
Sokół R, Michalczyk M. A Preliminary Study on “Personalised Treatment” against Varroa destructor Infestations in Honey Bee (Apis mellifera) Colonies. Animals. 2023; 13(6):987. https://doi.org/10.3390/ani13060987
Chicago/Turabian StyleSokół, Rajmund, and Maria Michalczyk. 2023. "A Preliminary Study on “Personalised Treatment” against Varroa destructor Infestations in Honey Bee (Apis mellifera) Colonies" Animals 13, no. 6: 987. https://doi.org/10.3390/ani13060987
APA StyleSokół, R., & Michalczyk, M. (2023). A Preliminary Study on “Personalised Treatment” against Varroa destructor Infestations in Honey Bee (Apis mellifera) Colonies. Animals, 13(6), 987. https://doi.org/10.3390/ani13060987