Habitat Suitability and Conflict Zone Mapping for the Blue Bull (Boselaphus tragocamelus) across Nepal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Blue Bull Presence Data
2.2.2. Environmental Variables
2.3. Data Analysis
2.3.1. Blue Bull Habitat Suitability Modeling
2.3.2. Potential Conflict Zones Mapping
3. Results
3.1. Predicted Suitable Habitats for the Blue Bull
3.2. Factors Affecting the Blue Bull’s Distribution in Nepal
3.3. Models Accuracy in Predicting the Current Suitable Habitat of the Blue Bull
3.4. Potential Human–Blue Bull Conflict Zones
4. Discussion
4.1. Predicted Suitable Habitats for the Blue Bull
4.2. Factors Affecting the Blue Bull’s Distribution in Nepal
4.3. Potential Human–Blue Bull Conflict Zones
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IUCN SSC Antelope Specialist Group. Boselaphus tragocamelus. In The IUCN Red List of Threatened Species 2016: E.T2893A115064758; IUCN Red List: Gland, Switzerland, 2016. [Google Scholar] [CrossRef]
- Mallon, D. Boselaphus Tragocamelus’ IUCN, Red List of Threatened Species Version 2008; International Union for the Conservation of Nature: Gland, Switzerland, 2008. [Google Scholar]
- Jnawali, S.R.; Baral, H.; Lee, S.; Acharya, K.; Upadhyay, G.; Pandey, M.; Griffiths, J. The status of Nepal mammals: The national red list series, department of national Parks and wildlife conservation kathmandu, Nepal. In Preface by Simon M. Stuart Chair IUCN Species Survival Commission The Status of Nepal’s Mammals: The National Red List Series 4; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2011; Volume 4. [Google Scholar]
- Leslie, D.M. Boselaphus tragocamelus (artiodactyla: Bovidae). Mamm. Species 2008, 813, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Koirala, P.; Neupane, B.; Silwal, T.; Dhami, B.; Regmi, S.; Dahal, D. Distribution of blue bull (Boselaphus tragocamelus) and its conservation threats in Bardia National Park, Nepal. J. For. Nat. Resour. Manag. 2020, 2, 50–60. [Google Scholar] [CrossRef]
- Aryal, A. Blue bull (Boselaphus tragocamelus) in Lumbini–a World heritage site of Nepal. TigerPaper 2007, 32, 4–9. [Google Scholar]
- Khanal, S.; Aryal, A.; Morley, C.G.; Wright, W.; Singh, N.B. Challenges of conserving blue bull (Boselaphus tragocamelus) outside the protected areas of Nepal. Proc. Zool. Soc. 2018, 71, 352–362. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Farashi, A.; Rashki, A. Habitat suitability of Persian leopard (Panthera pardus saxicolor) in Iran in future. Environ. Earth Sci. 2017, 76, 697. [Google Scholar] [CrossRef]
- Kushwaha, S.P.S.; Roy, P.S. Geospatial technology for wildlife habitat evaluation. Trop. Ecol. 2002, 43, 137–150. [Google Scholar]
- Hao, T.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 2020, 43, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Kafley, H.; Khadka, M.; Sharma, M. Habitat evaluation and suitability modeling of Rhinoceros unicornis in Chitwan National Park, Nepal: A geospatial approach. In Proceedings of the XIII World Forestry Congress, Buenos Aires, Argentina, 17–23 October 2009. [Google Scholar]
- Beery, S.; Cole, E.; Parker, J.; Perona, P.; Winner, K. Species distribution modeling for machine learning practitioners: A review. In Proceedings of the ACM SIGCAS Conference on Computing and Sustainable Societies, Virtual, 28 June–2 July 2021; pp. 329–348. [Google Scholar]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Adhikari, D.; Tiwary, R.; Singh, P.P.; Upadhaya, K.; Singh, B.; Haridasan, K.E.; Bhatt, B.B.; Chettri, A.; Barik, S.K. Ecological niche modeling as a cumulative environmental impact assessment tool for biodiversity assessment and conservation planning: A case study of critically endangered plant Lagerstroemia minuticarpa in the Indian Eastern Himalaya. J. Environ. Manag. 2019, 243, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Raymond, C.V.; McCune, J.L.; Rosner-Katz, H.; Chadès, I.; Schuster, R.; Gilbert, B.; Bennett, J.R. Combining species distribution models and value of information analysis for spatial allocation of conservation resources. J. Appl. Ecol. 2020, 57, 819–830. [Google Scholar] [CrossRef]
- Forester, B.R.; DeChaine, E.G.; Bunn, A.G. Integrating ensemble species distribution modelling and statistical phylogeography to inform projections of climate change impacts on species distributions. Divers. Distrib. 2013, 19, 1480–1495. [Google Scholar] [CrossRef]
- Paudel, P.K.; Bhattarai, B.P.; Kindlmann, P. An overview of the biodiversity in Nepal. In Himalayan Biodiversity in the Changing World; Springer: Dordrecht, The Netherlands, 2012; pp. 1–40. [Google Scholar]
- Bhattacharjee, A.; Anadón, J.D.; Lohman, D.J.; Doleck, T.; Lakhankar, T.; Shrestha, B.B.; Thapa, P.; Devkota, D.; Tiwari, S.; Jha, A. The impact of climate change on biodiversity in Nepal: Current knowledge, lacunae, and opportunities. Climate 2017, 5, 80. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.B.; Aryal, R. Climate change in Nepal and its impact on Himalayan glaciers. Reg. Environ. Chang. 2011, 11, 65–77. [Google Scholar] [CrossRef]
- Karki, R.; Talchabhadel, R.; Aalto, J.; Baidya, S.K. New climatic classification of Nepal. Theor. Appl. Climatol. 2016, 125, 799–808. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Wake, C.P.; Dibb, J.E.; Mayewski, P.A. Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. Int. J. Climatol. A J. R. Meteorol. Soc. 2000, 20, 317–327. [Google Scholar] [CrossRef]
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- Araújo, M.B.; Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 2006, 33, 1677–1688. [Google Scholar] [CrossRef]
- Zeng, Y.; Low, B.W.; Yeo, D.C.J. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecol. Modell. 2016, 341, 5–13. [Google Scholar] [CrossRef]
- Hijmans, R.J. Cross-validation of species distribution models: Removing spatial sorting bias and calibration with a null model. Ecology 2012, 93, 679–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. A J. R. Meteorol. Soc. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- GEOFABRIK Open Street Map Data in Layered GIS Format Version 0.7.12-2022-03-31. 2022. Available online: http://download.geofabrik.de/ (accessed on 2 May 2022).
- ESRI ArcGIS Desktop; Release 10.8.1; Environmental Systems Research Institute: Redlands, CA, USA, 2020.
- Thuiller, W.; Georges, D.; Engler, R.; Breiner, F. Biomod2: Ensemble Platform for Species Distribution Modeling. R Package Version 3.4.6. 2020. Available online: https://cran.r-project.org/web/packages/biomod2/index.html (accessed on 7 May 2022).
- HDX Search for a Dataset-Humanitarian Data Exchange. HDX. 2022. Available online: https://data.humdata.org/dataset (accessed on 7 May 2022).
- ODM Livestock Population. 2022. Available online: https://opendatanepal.com/dataset/livestock-population (accessed on 7 May 2022).
- USGS Earth Explorer. 2022. Available online: https://earthexplorer.usgs.gov/ (accessed on 7 May 2022).
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Zurell, D.; Franklin, J.; König, C.; Bouchet, P.J.; Dormann, C.F.; Elith, J.; Fandos, G.; Feng, X.; Guillera-Arroita, G.; Guisan, A. A standard protocol for reporting species distribution models. Ecography 2020, 43, 1261–1277. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Lobo, J.; Jiménez-valverde, A.; Real, R. AUC: Erratum: Predicting species distribution: Offering more than simple habitat models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Marmion, M.; Parviainen, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distributions 2009, 15, 59–69. [Google Scholar] [CrossRef]
- ICIMOD International Centre for Integrated Mountain Development (Regional Database System). Land Cover of Nepal; ICIMOD: Lalitpur, Nepal, 2022; Available online: http://rds.icimod.org (accessed on 8 May 2022).
- Forest Resource Assessment. DFRS State of Nepal’s Forests; Forest Resource Assessment: Kathmandu, Nepal, 2015. [Google Scholar]
- Neupane, B.; Dhami, B.; Bista, S.; Sadadev, B.M.; Regmi, S.; Shrestha, S.; Shrestha, B.; Traxmandlova, I.; Varachova, S.; Kindlmann, P. Ecological factors determining barking deer distribution and habitat use in the Mid-Hills of Nepal. Front. Ecol. Evol. 2022, 10, 894369. [Google Scholar] [CrossRef]
- Aryal, M.; Panthi, S.; Bhatta, M.; Magrati, T.P.; Shrestha, A.K.; Shrestha, P.B.; Karki, A. Population status, distribution and potential threats of the Blue Bull Boselaphus tragocamelus (Mammalia: Cetartiodactyla: Bovidae) along the Tinau River of Rupandehi District, Nepal. J. Threat. Taxa 2016, 8, 9638. [Google Scholar] [CrossRef] [Green Version]
- Kafle, K.; Thanet, D.R.; Poudel, P.; Gautam, D.; Thapa, G.; Bhatt, P. Status and conservation threats to large mammals of the Laljhadi Mohana Biological Corridor, Nepal. J. Anim. Divers. 2020, 2, 16–33. [Google Scholar] [CrossRef]
- Katuwal, H.B.; Sharma, H.P.; Shaner, P.J.L.; Gurung, R.; Thapa, V.; Magar, T.G.; Gurung, T.B.; Parajuli, K.; Gurung, M.B.; Basnet, H. Updating spatial information of 27 mammal species in Nepal. JAPS J. Anim. Plant Sci. 2018, 28, 1735–1745. [Google Scholar]
- Rai, T.P. Wild animals maintained in jamunkhadi mini zoo, conservation status, and their occurrence in Jhapa District, Nepal. Adhyayan J. 2022, 9, 40–55. [Google Scholar] [CrossRef]
- Niyogi, R.; Sarkar, M.S.; Hazra, P.; Rahman, M.; Banerjee, S.; John, R. Habitat connectivity for the conservation of small ungulates in a human-dominated landscape. ISPRS Int. J. Geo-Inf. 2021, 10, 180. [Google Scholar] [CrossRef]
- Habib, B.; Dar, T.A.; Khan, J.A.; Kushwaha, S.P.S. Evaluation of habitat suitability models for four sympatric ungulate species in Pathri Rao Watershed adopting geo-statistical modelling. Curr. Sci. 2010, 99, 500–506. [Google Scholar]
- Mathur, V.B. The Ecological Interaction between Habitat Composition, Habitat Quality and Abundance of Some Wild Ungulates in India. Doctoral Dissertation, University of Oxford, Oxford, UK, 1991. [Google Scholar]
- Talchabhadel, R.; Karki, R.; Thapa, B.R.; Maharjan, M.; Parajuli, B. Spatio-temporal variability of extreme precipitation in Nepal. Int. J. Climatol. 2018, 38, 4296–4313. [Google Scholar] [CrossRef]
- Bhat, S.A.; Telang, S.; Wani, M.A.; Sheikh, K.A. Food habits of Nilgai (Boselaphus tragocamelus) in Van Vihar National Park, Bhopal, Madhya Pradesh, India. Biomed. Pharmacol. J. 2012, 5, 141–147. [Google Scholar] [CrossRef]
- Yan, H.; Liang, C.; Li, Z.; Liu, Z.; Miao, B.; He, C.; Sheng, L. Impact of precipitation patterns on biomass and species richness of annuals in a dry steppe. PLoS ONE 2015, 10, 1–14. [Google Scholar] [CrossRef]
- Eisenberg, J.F. Comparison of ungulate adaptations in the new world and old world tropical forest with special reference to Ceylon and the rainforests of Central America. Behav. Ungulate Relat. Manag. 1974, 585–602. [Google Scholar]
- Khatri, T.B. Status and Food Habits of Nilgai in Royal Bardia National Park, Nepal. Doctoral Dissertation, Norwegian University of Life Sciences, Ås Municipality, Norway, 1993. [Google Scholar]
- Khan, J.A.; Kumar, S.; Khan, A.; Musavi, A.; Malik, P.K.; Kushwaha, S.P.S.; Khati, D.S.; Sarin, G.D. An ecological study in the buffer zone of the Corbett Tiger Reserve: Prey abundance and habitat conditions. Int. J. Ecol. Environ. Sci. 2008, 34, 121–131. [Google Scholar]
- Bayani, A.; Watve, M. Differences in behaviour of the nilgai (Boselaphus tragocamelus) during foraging in forest versus in agricultural land. J. Trop. Ecol. 2016, 32, 469–481. [Google Scholar] [CrossRef]
- Wegge, P.; Odden, M.; Pokharel, C.P.; Storaas, T. Predator–prey relationships and responses of ungulates and their predators to the establishment of protected areas: A case study of tigers, leopards and their prey in Bardia National Park, Nepal. Biol. Conserv. 2009, 142, 189–202. [Google Scholar] [CrossRef]
- Babbar, B.K.; Singla, N.; Kaur, H.; Verma, M.; Rani, K.; Bala, B.; Jain, S. Bio-ecology, behaviour and management of blue bull, Boselaphus tragocamelus. Int. J. Pest Manag. 2022, 1–16. [Google Scholar] [CrossRef]
- Karanth, K.K.; Gopalaswamy, A.M.; DeFries, R.; Ballal, N. Assessing Patterns of Human-Wildlife Conflicts and Compensation around a Central Indian Protected Area. PLoS ONE 2012, 7, e50433. [Google Scholar] [CrossRef]
Source | Category | Variable | Unit |
---|---|---|---|
WorldClim | Bioclimatic | BIO1 = Annual Mean Temperature | °C |
BIO2 = Mean Diurnal Range (Mean of monthly (max temp–min temp)) | °C | ||
BIO3 = Isothermality (BIO2/BIO7) (×100) | % | ||
BIO4 = Temperature Seasonality (standard deviation × 100) | °C | ||
BIO5 = Max Temperature of Warmest Month | °C | ||
BIO6 = Min Temperature of Coldest Month | °C | ||
BIO7 = Temperature Annual Range (BIO5-BIO6) | °C | ||
BIO8 = Mean Temperature of Wettest Quarter | °C | ||
BIO9 = Mean Temperature of Driest Quarter | °C | ||
BIO10 = Mean Temperature of Warmest Quarter | °C | ||
BIO11 = Mean Temperature of Coldest Quarter | °C | ||
BIO12 = Annual Precipitation | mm | ||
BIO13 = Precipitation of Wettest Month | mm | ||
BIO14 = Precipitation of Driest Month | mm | ||
BIO15 = Precipitation Seasonality (Coefficient of Variation) | % | ||
BIO16 = Precipitation of Wettest Quarter | mm | ||
BIO17 = Precipitation of Driest Quarter | mm | ||
BIO18 = Precipitation of Warmest Quarter | mm | ||
BIO19 = Precipitation of Coldest Quarter | mm | ||
USGS | Topographic | Elevation | km |
Aspect | Degree | ||
Slope | Degree | ||
GEOFABRIK | Distance to water | km | |
Landsat | Vegetation-related | Mean EVI, Minimum EVI, Maximum EVI (Enhanced Vegetation Index) | Dimensionless |
GFC | Forest | Dimensionless | |
Department of Survey, Nepal | Anthropogenic | Distance to settlement | km |
GEOFABRIK | Distance to the motor road | km | |
Distance to path | km | ||
HUMDATA | Population density | Dimensionless | |
Livestock density | Dimensionless | ||
ICIMOD | LULC | km |
Protected Areas (PAs) | Total Area (Km2) | Total Suitable Area (Km2) | Area (%) of Suitable Habitat Out of the Total Area of Specific PA | Area Covered within Specific PA Out of the Total Suitable Area within PA | |
---|---|---|---|---|---|
Shuklaphanta | National Park | 305 | 270.64 | 89% | 8% |
Buffer Zone | 243 | 228.78 | 94% | 7% | |
Bardia | National Park | 968 | 152.84 | 16% | 5% |
Buffer Zone | 327 | 162.67 | 50% | 5% | |
Banke | National Park | 550 | 111.29 | 20% | 3% |
Buffer Zone | 344 | 149.59 | 43% | 5% | |
Chitwan | National Park | 952 | 873.75 | 91% | 27% |
Buffer Zone | 750 | 518.83 | 69% | 16% | |
Parsa | National Park | 499 | 264.26 | 53% | 8% |
Buffer Zone | 298 | 51.14 | 17% | 2% | |
Koshi Tappu | Wildlife Reserve | 175 | 150.12 | 86% | 5% |
Buffer Zone | 173 | 173 | 100% | 5% | |
Annapurna | Conservation Area | 7629 | 34.63 | 0% | Less than 1 |
Shivapuri | National Park | 159 | 26.23 | 16% | Less than 1 |
Black buck | Conservation Area | 16 | 12.68 | 79% | Less than 1 |
Environmental Variables | Generalized Linear Model | MAXENT.Phillips.2 | Random Forest | Ensemble | Percentage Contribution |
---|---|---|---|---|---|
Slope | 0.598 | 0.71 | 0.142 | 0.483 | 31% |
Aspect | 0.075 | 0.019 | 0.005 | 0.033 | 2% |
Mean diurnal range | 0 | 0 | 0.023 | 0.008 | 0% |
Isothermality | 0.212 | 0.043 | 0.005 | 0.087 | 6% |
Precipitation of driest month | 0.209 | 0.102 | 0.021 | 0.111 | 7% |
Precipitation seasonality | 0.492 | 0.027 | 0.03 | 0.183 | 12% |
Precipitation of warmest quarter | 0.202 | 0.042 | 0.015 | 0.086 | 6% |
Precipitation of coldest quarter | 0.095 | 0.049 | 0.045 | 0.063 | 4% |
Distance to path | 0.252 | 0.122 | 0.002 | 0.125 | 8% |
Distance to the motor road | 0.065 | 0 | 0.003 | 0.023 | 1% |
Distance to settlement | 0.14 | 0.072 | 0.014 | 0.075 | 5% |
Distance to water | 0.086 | 0.004 | 0.006 | 0.032 | 2% |
Forest | 0.128 | 0.159 | 0.04 | 0.109 | 7% |
Population density | 0.048 | 0.162 | 0.052 | 0.087 | 6% |
Livestock density | 0.086 | 0.007 | 0.019 | 0.037 | 2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhami, B.; Bhusal, A.; Adhikari, B.; Miya, M.S.; Maharjan, S.K.; Neupane, D.; Adhikari, H. Habitat Suitability and Conflict Zone Mapping for the Blue Bull (Boselaphus tragocamelus) across Nepal. Animals 2023, 13, 937. https://doi.org/10.3390/ani13050937
Dhami B, Bhusal A, Adhikari B, Miya MS, Maharjan SK, Neupane D, Adhikari H. Habitat Suitability and Conflict Zone Mapping for the Blue Bull (Boselaphus tragocamelus) across Nepal. Animals. 2023; 13(5):937. https://doi.org/10.3390/ani13050937
Chicago/Turabian StyleDhami, Bijaya, Arjun Bhusal, Binaya Adhikari, Mahamad Sayab Miya, Surya Kumar Maharjan, Dinesh Neupane, and Hari Adhikari. 2023. "Habitat Suitability and Conflict Zone Mapping for the Blue Bull (Boselaphus tragocamelus) across Nepal" Animals 13, no. 5: 937. https://doi.org/10.3390/ani13050937
APA StyleDhami, B., Bhusal, A., Adhikari, B., Miya, M. S., Maharjan, S. K., Neupane, D., & Adhikari, H. (2023). Habitat Suitability and Conflict Zone Mapping for the Blue Bull (Boselaphus tragocamelus) across Nepal. Animals, 13(5), 937. https://doi.org/10.3390/ani13050937