Bamboo Plant Part Preference Affects the Nutrients Digestibility and Intestinal Microbiota of Geriatric Giant Pandas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Subjects and Animal Husbandry
2.3. Sample Collection
2.4. Apparent Nutrient Digestibility Measurement
2.5. Genomic DNA Extraction from Feces and Sequencing
2.6. Fecal Microbiota Analysis
2.7. Statistical Analysis
3. Results
3.1. Bamboo Part and Age Affect Apparent Nutrient Digestibility of Giant Pandas
3.2. Bamboo Part and Age Affect Fecal Microbial Profiles of Giant Pandas
3.3. The Correlation between Fecal Microbiota and Nutrient Digestibility in Giant Pandas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, Z.S.; Zhang, W.P.; Wang, L.H.; Hou, R.; Zhang, M.H.; Fei, L.S.; Zhang, X.J.; Huang, H.; Bridgewater, L.C.; Jiang, Y.; et al. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. MBio 2015, 6, e00022-00015. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, P.; Hou, R.; Zhang, Z.W.; Feng, F.F.; Yang, Z.S.; Gu, X.D.; Qi, D.W. The development and characteristics of feeding behaviour in captive giant pandas. Folia. Zool. 2017, 66, 189–195. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X.; Ding, Y.; Hu, Y.B.; Nie, Y.G.; Wei, W.; Ma, S.; Yan, L.; Zhu, L.F.; Wei, F.W. Seasonal variation in nutrient utilization shapes gut microbiome structure and function in wild giant pandas. Proc. Biol. Sci. 2017, 284, 20170955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.P.; Liu, W.B.; Hou, R.; Zhang, L.; Schmitz-Esser, S.; Sun, H.B.; Xie, J.J.; Zhang, Y.F.; Wang, C.D.; Li, L.F.; et al. Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose. ISME J. 2018, 12, 1319–1328. [Google Scholar] [CrossRef] [Green Version]
- Hansen, R.L.; Carr, M.M.; Apanavicius, C.J.; Jiang, P.; Bissell, H.A.; Gocinski, B.L.; Maury, F.; Himmelreich, M.; Beard, S.; Ouellette, J.R.; et al. Seasonal shifts in giant panda feeding behavior: Relationships to bamboo plant part consumption. Zoo. Biol. 2010, 29, 470–483. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.R.; Zhong, H.J.; Hou, R.; Ayala, J.; Liu, G.M.; Yuan, S.B.; Yan, Z.; Zhang, W.P.; Liu, Y.L.; Cai, K.L.; et al. A diet diverse in bamboo parts is important for giant panda (Ailuropoda melanoleuca) metabolism and health. Sci. Rep. 2017, 7, 3377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.L.; Willard, S.; Kouba, A.; Sparks, D.; Holmes, W.; Falcone, J.; Williams, C.H.; Brown, A. Dietary shifts affect the gastrointestinal microflora of the giant panda (Ailuropoda melanoleuca). J. Anim. Physiol. Anim. Nutr. 2013, 97, 577–585. [Google Scholar] [CrossRef]
- Yan, Z.; Xu, Q.; Hsu, W.H.; Esser, S.S.; Ayala, J.; Hou, R.; Yao, Y.; Jiang, D.D.; Yuan, S.B.; Wang, H.R. Consuming different structural parts of bamboo induce gut microbiome changes in captive giant pandas. Curr. Microbiol. 2021, 78, 2998–3009. [Google Scholar] [CrossRef]
- Jin, L.; Wu, D.F.; Li, C.W.; Zhang, A.Y.; Xiong, Y.W.; Wei, R.P.; Zhang, G.Q.; Yang, S.Z.; Deng, W.W.; Li, T.; et al. Bamboo nutrients and microbiome affect gut microbiome of giant panda. Symbiosis 2020, 80, 293–304. [Google Scholar] [CrossRef]
- Zmora, N.; Suez, J.; Elinav, E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 35–56. [Google Scholar] [CrossRef] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tun, H.M.; Mauroo, N.F.; Yuen, C.S.; Ho, J.C.W.; Wong, M.T.; Leung, F.C.-C. Microbial diversity and evidence of novel homoacetogens in the gut of both geriatric and adult giant pandas (Ailuropoda melanoleuca). PLoS ONE 2014, 9, e79902. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.H.; Lin, D.Q.; Guo, H.Y.; Gu, H.L.; Ying, C.P.; Zhang, Y.; Zhang, J.L.; Liu, K.; Tang, W.Q. Integrated analysis of blood mRNAs and microRNAs reveals immune changes with age in the Yangtze finless porpoise (Neophocaena asiaeorientalis). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2021, 256, 110635. [Google Scholar] [CrossRef] [PubMed]
- Fiddler, R.N. Collaborative study of modified AOAC method of analysis for nitrite in meat and meat products. J. Assoc. Off. Anal. Chem. 1977, 60, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.L.; McGarrell, D.M.; Sun, Y.N.; Titus Brown, C.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucl. Acids Res. 2014, 42, D633–D642. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Bray, J.R.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 326–349. [Google Scholar] [CrossRef]
- Kim, B.R.; Shin, J.; Guevarra, R.B.; Lee, J.H.; Kim, D.W.; Seol, K.-H.; Lee, J.-H.; Kim, H.B.; Isaacson, R.E. Deciphering diversity indices for a better understanding of microbial communities. J. Microbiol. Biotechnol. 2017, 27, 2089–2093. [Google Scholar] [CrossRef] [Green Version]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. Proc. Int. AAAI Conf. Web Soc. Media 2009, 3, 361–362. [Google Scholar] [CrossRef]
- Peng, Z.R.; Zeng, D.; Wang, Q.; Niu, L.L.; Ni, X.Q.; Zou, F.Q.; Yang, M.Y.; Sun, H.; Zhou, Y.; Liu, Q.; et al. Decreased microbial diversity and Lactobacillus group in the intestine of geriatric giant pandas (Ailuropoda melanoleuca). World. J. Microbiol. Biotechnol. 2016, 32, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Valle Gottlieb, M.G.; Closs, V.E.; Junges, V.M.; Schwanke, C.H.A. Impact of human aging and modern lifestyle on gut microbiota. Crit. Rev. Food Sci. Nutr. 2018, 58, 1557–1564. [Google Scholar] [CrossRef]
- Xu, Y.C.; Yang, Y.H.; Li, B.W.; Xie, Y.L.; Shi, Y.H.; Le, G.W. Dietary methionine restriction improves gut microbiota composition and prevents cognitive impairment in D-galactose-induced aging mice. Food Funct. 2022, 13, 12896–12914. [Google Scholar] [CrossRef] [PubMed]
- Elzinga, S.; Nielsen, B.D.; Schott II, H.C.; Rapson, J.; Robison, C.I.; McCutcheon, J.; Harris, P.A.; Geor, R. Comparison of nutrient digestibility between adult and aged horses. J. Equine Vet. Sci. 2014, 34, 1164–1169. [Google Scholar] [CrossRef]
- Swanson, K.S.; Kuzmuk, K.; Schook, L.B.; FaheyJr, G.C. Diet affects nutrient digestibility, hematology, and serum chemistry of senior and weanling dogs. J. Anim. Sci. 2004, 82, 1713–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shriver, J.A.; Carter, S.D.; Sutton, A.L.; Richert, B.T.; Senne, B.W.; Pettey, L.A. Effects of adding fiber sources to reduced-crude protein, amino acid-supplemented diets on nitrogen excretion, growth performance, and carcass traits of finishing pigs. J. Anim. Sci. 2003, 81, 492–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, K.; Kitano, Y.; Shuang, E.; Hatakeyama, Y.; Sakamoto, Y.; Honma, T.; Tsuduki, T. Decreased lipid absorption due to reduced pancreatic lipase activity in aging male mice. Biogerontology 2014, 15, 463–473. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.L.; Wei, W.Z.; Hu, L.G.; Zhang, Y.; Zhang, H.F.; Liu, J.B. Reduced feeding frequency improves feed efficiency associated with altered fecal microbiota and bile acid composition in pigs. Front. Microbiol. 2021, 12, 761210. [Google Scholar] [CrossRef]
- Li, R.Q.; Fan, W.; Tian, G.; Zhu, H.M.; He, L.; Cai, J.; Huang, Q.F.; Cai, Q.L.; Li, B.; Bai, Y.Q.; et al. The sequence and de novo assembly of the giant panda genome. Nature 2010, 463, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Kim, S.-E.; Kim, A.-R.; Kang, S.; Park, M.-Y.; Sung, M.-K. Dietary fat intake and age modulate the composition of the gut microbiota and colonic inflammation in C57BL/6J mice. BMC Microbiol. 2019, 19, 193. [Google Scholar] [CrossRef]
- Li, X.F.; Guo, J.; Ji, K.L.; Zhang, P. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota. Sci. Rep. 2016, 6, 32953. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.H.; Guan, X.F.; Liu, X.Y.; Zhuang, W.J.; Xiao, Y.Q.; Zheng, Y.F.; Wang, Q. Polysaccharides from bamboo shoot (Leleba oldhami Nakal) byproducts alleviate antibiotic-associated diarrhea in mice through their interactions with gut microbiota. Foods 2022, 11, 2647. [Google Scholar] [CrossRef]
- Cao, K.F.; Zhang, H.H.; Han, H.H.; Song, Y.; Bai, X.L.; Sun, H. Effect of dietary protein sources on the small intestine microbiome of weaned piglets based on high-throughput sequencing. Lett. Appl. Microbiol. 2016, 62, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.M.; Tian, G.; Chen, D.W.; Zheng, P.; Yu, J.; He, J.; Mao, X.B.; Huang, Z.Q.; Luo, Y.H.; Luo, J.Q.; et al. Dietary protein levels and amino acid supplementation patterns alter the composition and functions of colonic microbiota in pigs. Anim. Nutr. 2020, 6, 143–151. [Google Scholar] [CrossRef]
- Niu, Q.; Li, P.H.; Hao, S.S.; Kim, S.W.; Du, T.R.; Hua, J.D.; Huang, R.H. Characteristics of gut microbiota in sows and their relationship with apparent nutrient digestibility. Int. J. Mol. Sci. 2019, 20, 870. [Google Scholar] [CrossRef] [Green Version]
- Niu, Q.; Li, P.H.; Hao, S.S.; Zhang, Y.Q.; Kim, S.W.; Li, H.Z.; Ma, X.; Gao, S.; He, L.C.; Wu, W.J.; et al. Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. Sci. Rep. 2015, 5, 9938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Song, S.X.; Ma, Y.F.; Xu, X.L.; Zhou, G.H.; Li, C.B. A short-term feeding of dietary casein increases abundance of Lactococcus lactis and upregulates gene expression involving obesity prevention in cecum of young rats compared with dietary chicken protein. Front. Microbiol. 2019, 10, 2411. [Google Scholar] [CrossRef] [PubMed]
- Han, K.N.; Jin, W.Y.; Mao, Z.J.; Dong, S.Y.; Zhang, Q.; Yang, Y.H.; Chen, B.C.; Wu, H.H.; Zeng, M.Y. Microbiome and butyrate production are altered in the gut of rats fed a glycated fish protein diet. J. Funct. Foods 2018, 47, 423–433. [Google Scholar] [CrossRef]
Parameters | Adult Giant Panda | Old Giant Panda | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Shoots | Leaves | Shoots | Leaves | Bamboo Part | Age | Bamboo Part * Age | ||
Dry matter (%) | 26.56 | 32.67 | 32.67 | 26.44 | 3.66 | 0.99 | 0.99 | 0.10 |
Gross energy (%) | 41.11 ab | 43.00 a | 35.89 ab | 28.11 b | 4.56 | 0.52 | 0.04 | 0.30 |
Crude protein (%) | 81.78 a | 58.67 b | 83.11 a | 53.56 b | 1.95 | <0.01 | 0.31 | 0.10 |
Ether extract (%) | 52.56 a | 47.22 a | 49.00 a | 12.22 b | 0.77 | <0.01 | < 0.01 | <0.01 |
Crude fiber (%) | 14.67 bc | 27.67 a | 7.78c | 22.01 ab | 4.26 | <0.01 | 0.07 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Zhao, W.; Xiang, G.; Lv, R.; Dong, Y.; Yan, H.; Li, M. Bamboo Plant Part Preference Affects the Nutrients Digestibility and Intestinal Microbiota of Geriatric Giant Pandas. Animals 2023, 13, 844. https://doi.org/10.3390/ani13050844
Yao Y, Zhao W, Xiang G, Lv R, Dong Y, Yan H, Li M. Bamboo Plant Part Preference Affects the Nutrients Digestibility and Intestinal Microbiota of Geriatric Giant Pandas. Animals. 2023; 13(5):844. https://doi.org/10.3390/ani13050844
Chicago/Turabian StyleYao, Ying, Wenjia Zhao, Guilin Xiang, Ruiqing Lv, Yanpeng Dong, Honglin Yan, and Mingxi Li. 2023. "Bamboo Plant Part Preference Affects the Nutrients Digestibility and Intestinal Microbiota of Geriatric Giant Pandas" Animals 13, no. 5: 844. https://doi.org/10.3390/ani13050844
APA StyleYao, Y., Zhao, W., Xiang, G., Lv, R., Dong, Y., Yan, H., & Li, M. (2023). Bamboo Plant Part Preference Affects the Nutrients Digestibility and Intestinal Microbiota of Geriatric Giant Pandas. Animals, 13(5), 844. https://doi.org/10.3390/ani13050844