Antioxidant, Immunostimulant, and Growth-Promoting Effects of Dietary Annona squamosa Leaf Extract on Nile Tilapia, Oreochromis niloticus, and Its Tolerance to Thermal Stress and Aeromonas sobria Infection
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Plant Collection and Preparation
2.2. Fish Rearing Conditions
2.3. Experimental Design and Diets
2.4. Growth Performance
2.5. Sampling
2.6. Evaluation of Health-Related Parameters
2.6.1. Hematological Analyses
2.6.2. Hepatorenal Function Indicators and Stress Indicators
2.6.3. Assessment of Oxidant/Antioxidant Status
2.6.4. Non-Specific Immunological Assessment
2.6.5. Digestive Enzyme Assays in the Intestine
2.7. Challenge with Cold Temperature Stress
2.8. Aeromonas Sobria Bacterial Challenge
2.9. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Hematological Indices
3.3. Hepatorenal Function and Stress Indicators
3.4. The Activity of Antioxidant Enzymes
3.5. Nonspecific Immune Parameters
3.6. Activity of Digestive Enzymes in the Intestine
3.7. Cold-Water Stress Tolerance and Challenge with A. sobria
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prabu, E.; Rajagopalsamy, C.; Ahilan, B.; Jeevagan, I.J.M.A.; Renuhadevi, M. Tilapia–an excellent candidate species for world aquaculture: A review. Annu. Res. Rev. Biol. 2019, 31, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Haygood, A.M.; Jha, R. Strategies to modulate the intestinal microbiota of Tilapia (Oreochromis sp.) in aquaculture: A review. Rev. Aquacult. 2018, 10, 320–333. [Google Scholar] [CrossRef]
- Mansour, A.T.; Ashour, M.; Alprol, A.E.; Alsaqufi, A.S. Aquatic Plants and Aquatic Animals in the Context of Sustainability: Cultivation Techniques, Integration, and Blue Revolution. Sustainability 2022, 14, 3257. [Google Scholar] [CrossRef]
- El-Sayed, A.-F.M. Tilapia Culture; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Li, Y.; Cai, S.-H. Identification and pathogenicity of Aeromonas sobria on tail-rot disease in juvenile tilapia Oreochromis niloticus. Curr. Microbiol. 2011, 62, 623–627. [Google Scholar] [CrossRef]
- El-Houseiny, W.; Mansour, M.F.; Mohamed, W.A.; Al-Gabri, N.A.; El-Sayed, A.A.; Altohamy, D.E.; Ibrahim, R.E. Silver nanoparticles mitigate Aeromonas hydrophila-induced immune suppression, oxidative stress, and apoptotic and genotoxic effects in Oreochromis niloticus. Aquaculture 2021, 535, 736430. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Liu, Z.; Kang, Y.; Wang, J. Transcriptomic responses to heat stress in rainbow trout Oncorhynchus mykiss head kidney. Fish Shellfish Immunol. 2018, 82, 32–40. [Google Scholar] [CrossRef]
- Baras, E.; Jacobs, B.; Mélard, C. Effect of water temperature on survival, growth and phenotypic sex of mixed (XX–XY) progenies of Nile tilapia Oreochromis niloticus. Aquaculture 2001, 192, 187–199. [Google Scholar] [CrossRef]
- Dadar, M.; Dhama, K.; Vakharia, V.N.; Hoseinifar, S.H.; Karthik, K.; Tiwari, R.; Khandia, R.; Munjal, A.; Salgado-Miranda, C.; Joshi, S.K. Advances in aquaculture vaccines against fish pathogens: Global status and current trends. Rev. Fish. Sci. Aquac. 2017, 25, 184–217. [Google Scholar] [CrossRef]
- Teuber, M. Veterinary use and antibiotic resistance. Curr. Opin. Microbiol. 2001, 4, 493–499. [Google Scholar] [CrossRef]
- Gule, T.T.; Geremew, A. Dietary Strategies for Better Utilization of Aquafeeds in Tilapia Farming. Aquacult. Nutr. 2022, 2022, 9463307. [Google Scholar] [CrossRef]
- El-Houseiny, W.; Khalil, A.A.; Abd-Elhakim, Y.M.; Badr, H.A. The potential role of turmeric and black pepper powder diet supplements in reversing cadmium-induced growth retardation, ATP depletion, hepatorenal damage, and testicular toxicity in Clarias gariepinus. Aquaculture 2019, 510, 109–121. [Google Scholar] [CrossRef]
- Mansour, A.T.; Mahboub, H.H.; Elshopakey, G.E.; Aziz, E.K.; Alhajji, A.H.; Rayan, G.; Ghazzawy, H.S.; El-Houseiny, W. Physiological Performance, Antioxidant and Immune Status, Columnaris Resistance, and Growth of Nile Tilapia That Received Alchemilla vulgaris-Supplemented Diets. Antioxidants 2022, 11, 1494. [Google Scholar] [CrossRef]
- Ibrahim, R.E.; El-Houseiny, W.; Behairy, A.; Abo-Elmaaty, A.; Al-Sagheer, A.A. The palliative role of Eruca sativa leaves dietary supplementation against oxidative stress, immunosuppression, and growth retardation in temperature-stressed Oreochromis niloticus. J. Therm. Biol. 2019, 84, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.; Khanna, A.; Bhandari, R.; Yadav, S.; Gautam, D. Phytochemical screening of Annona squamosa and haematological studies in clarias batrachus. World J. Pharm. Pharm. Sci. 2016, 5, 1121–1131. [Google Scholar]
- Suresh, K.; Manoharan, S.; Panjamurthy, K.; Kavitha, K. Chemopreventive and antilipidperoxidative efficacy of Annona squamosa bark extracts in experimental oral carcinogenesis. Pak. J. Biol. Sci. 2006, 9, 2600–2605. [Google Scholar] [CrossRef] [Green Version]
- Pardhasaradhi, B.; Reddy, M.; Ali, A.M.; Kumari, A.L.; Khar, A. Antitumour activity of Annona squamosa seed extracts is through the generation of free radicals and induction of apoptosis. Indian J. Biochem. Biophys. 2004, 41, 167–172. [Google Scholar] [PubMed]
- Pandey, N.; Barve, D. Phytochemical and pharmacological review on Annona squamosa Linn. Int. J. Res. Pharm. Biomed. Sci. 2011, 2, 1404–1412. [Google Scholar]
- Kumar, M.; Changan, S.; Tomar, M.; Prajapati, U.; Saurabh, V.; Hasan, M.; Sasi, M.; Maheshwari, C.; Singh, S.; Dhumal, S. Custard apple (Annona squamosa L.) leaves: Nutritional composition, phytochemical profile, and health-promoting biological activities. Biomolecules 2021, 11, 614. [Google Scholar] [CrossRef]
- Vanitha, V.; Umadevi, K.; Vijayalakshmi, K. Determination of bioactive components of Annona squamosa L. leaf by GC-MS analysis. Int. J. Pharm. Sci. Drug Res. 2011, 3, 309–312. [Google Scholar]
- Shenoy, C.; Patil, M.; Kumar, R. Antibacterial and wound healing activity of the leaves of Annona squamosa Linn. (Annonaceae). Res. J. Pharmacogn. Phytochem. 2009, 1, 44–50. [Google Scholar]
- Paul, R.; Khanna, A.; Gautam, D.S.; Bhandari, R.; Patel, D.; Nigam, P. Effect of aqueous leaf extract of Annona squamosa on Clarias batrachus fish infected with Aeromonas hydrophila with reference to haematological parameters. World J. Pharm. Res. 2017, 7, 992–1005. [Google Scholar]
- Nguyen, M.; Nguyen, V.; Le, V.; Trieu, L.; Lam, T.; Bui, L.; Nhan, L.; Danh, V. Assessment of preliminary phytochemical screening, polyphenol content, flavonoid content, and antioxidant activity of custard apple leaves (Annona squamosa Linn.). In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK; p. 062012.
- El-Chaghaby, G.A.; Ahmad, A.F.; Ramis, E.S. Evaluation of the antioxidant and antibacterial properties of various solvents extracts of Annona squamosa L. leaves. Arab. J. Chem. 2014, 7, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elghany, A.A.; Mohamad, E.A. Ex-vivo transdermal delivery of Annona squamosa entrapped in niosomes by electroporation. J. Radiat. Res. Appl. Sci. 2020, 13, 164–173. [Google Scholar]
- CCoA, C. Canadian Council on Animal Care Guidelines on: The Care and Use of Fish in Research. Teach. Test. 2005. [Google Scholar]
- Boyd, C.E.; Tucker, C.S. Pond Aquaculture Water Quality Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Adeshina, I.; Jenyo-Oni, A.; Emikpe, B. Use of Eugenia cayrophyllata oil as anaesthetic in farm raised african catfish Clarias gariepinus juveniles. Egypt. J. Exp. Biol 2016, 12, 71–76. [Google Scholar]
- Jain, N.C. Essentials of Veterinary Hematology; Lea and Febiger: Philadelphia, PA, USA, 1993; pp. 76–250. [Google Scholar]
- Henry, R.J. Clinical Chemistry, Principles and Technics; Hoeber Medical Division, Harper & Row: New York, NY, USA, 1964. [Google Scholar]
- Reinhold, R. Determination of serum albumin. Clin. Chem 1953, 21, 1370–1372. [Google Scholar]
- Coles, E. Veterinary Clinical Pathology. WB Saunders Company. Phila. Lond. 1986. [Google Scholar]
- Wenger, C.; Kaplan, A.; Rubaltelli, F.; Hammerman, C. Alkaline phosphatase. In Clinical Chemistry; The C. V. Mosby Co.: St. Louis, MO, USA, 1984; pp. 1094–1098. [Google Scholar]
- Burtis, C.A.; Ashwood, E.R. Tietz Textbook Of Clinical Chemistry; American Association for Clinical Chemistry: Washington, DC, USA, 1994. [Google Scholar]
- Murray, R. Aspartate aminotransferase. In Clinical Chemistry; Kaplan, A., Glucose, K., Eds.; The CV Mosby Co.: St. Louis, MO, USA; Toronto, ON, Canada; Princeton, NJ, USA, 1984; pp. 1112–1116. [Google Scholar]
- Fossati, P.; Prencipe, L.; Berti, G. Enzymic creatinine assay: A new colorimetric method based on hydrogen peroxide measurement. Clin. Chem. 1983, 29, 1494–1496. [Google Scholar] [CrossRef]
- Kaplan, A. Urea; In Clinical Chemistry; Kaplan, A., Glucose, K., Eds.; the C. V Mosby Co.St Louis Toronto Princeton. 1984, pp. 418–437.
- Trinder, P. Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J. Clin. Pathol. 1969, 22, 246. [Google Scholar] [CrossRef] [Green Version]
- Tunn, S.; Möllmann, H.; Barth, J.; Derendorf, H.; Krieg, M. Simultaneous measurement of cortisol in serum and saliva after different forms of cortisol administration. Clin. Chem. 1992, 38, 1491–1494. [Google Scholar] [CrossRef]
- Koracevic, D.; Koracevic, G.; Djordjevic, V.; Andrejevic, S.; Cosic, V. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol. 2001, 54, 356–361. [Google Scholar]
- Aebi, H. Catalase in vitro. In Methods Enzymol; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Nishikimi, M.; Rao, N.A.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 1972, 46, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Beutler, E. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [Google Scholar] [PubMed]
- Uchiyama, M.; Mihara, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar]
- Kumari, J.; Sahoo, P. Effects of cyclophosphamide on the immune system and disease resistance of Asian catfish Clarias batrachus. Fish Shellfish Immunol. 2005, 19, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Ellis, A.E. Lysozyme assays. Tech. Fish Immunol. 1990, 1, 101–103. [Google Scholar]
- Siwicki, A.K.; Anderson, D.P.; Rumsey, G.L. Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol. 1994, 41, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Scheidegger, E.; Fracalanzza, S.; Teixeira, L.; Cardarelli-Leite, P. RFLP analysis of a PCR-amplified fragment of the 16S rRNA gene as a tool to identify Enterococcus strains. Mem. Inst. Oswaldo Cruz 2009, 104, 1003–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, F.; Song, W.; Shao, Q.; Peng, X.; Xiao, J.; Hua, Y.; Owari, B.N.; Zhang, T.; Ng, W.K. Partial replacement of fish meal by fermented soybean meal in diets for black sea bream, Acanthopagrus schlegelii, juveniles. J. World Aquacult. Soc. 2011, 42, 184–197. [Google Scholar] [CrossRef]
- Mansour, A.T.; Fayed, W.M.; Elkhayat, B.K.; Ali, E.; Omar, M.A.; Nour, A.-A.M.; Morshedy, S.A. Yucca schidigera extract dietary supplementation affects growth performance, hematological and physiological status of European seabass. Ann. Anim. Sci. 2021, 21, 1043–1060. [Google Scholar] [CrossRef]
- García-Beltrán, J.M.; Mansour, A.T.; Alsaqufi, A.S.; Ali, H.M.; Esteban, M.Á. Effects of aqueous and ethanolic leaf extracts from drumstick tree (Moringa oleifera) on gilthead seabream (Sparus aurata L.) leucocytes, and their cytotoxic, antitumor, bactericidal and antioxidant activities. Fish Shellfish Immunol. 2020, 106, 44–55. [Google Scholar] [CrossRef]
- Sallam, A.E.; Mansour, A.T.; Alsaqufi, A.S.; Salem, M.E.-S.; El-Feky, M.M. Growth performance, antioxidative status, innate immunity, and ammonia stress resistance of Siganus rivulatus fed diet supplemented with zinc and zinc nanoparticles. Aquacult. Rep. 2020, 18, 100410. [Google Scholar] [CrossRef]
- Refaey, M.M.; Mehrim, A.I.; Zenhom, O.A.; Mansour, A.T. Effect of fatty acids manipulation on survival and physiological response of hybrid red tilapia under chronic cold stress. Aquaculture 2022, 561, 738663. [Google Scholar] [CrossRef]
- Mansour, A.T.; Hamed, H.S.; El-Beltagi, H.S.; Mohamed, W.F. Modulatory Effect of Papaya Extract against Chlorpyrifos-Induced Oxidative Stress, Immune Suppression, Endocrine Disruption, and DNA Damage in Female Clarias gariepinus. Int. J. Environ. Res. Public 2022, 19, 4640. [Google Scholar] [CrossRef] [PubMed]
- Safira, A.; Widayani, P.; An-Najaaty, D.; Rani, C.A.M.; Septiani, M.; Putra, Y.A.S.; Solikhah, T.I.; Khairullah, A.R.; Raharjo, H.M. A Review of an Important Plants: Annona squamosa Leaf. Pharmacogn. J. 2022, 14, 456–463. [Google Scholar] [CrossRef]
- Farag, M.A.; Paré, P.W. Phytochemical analysis and anti-inflammatory potential of Hyphaene thebaica L. fruit. J. Food Sci. 2013, 78, C1503–C1508. [Google Scholar] [CrossRef]
- El-Garhy, H.A.; Khattab, S.; Moustafa, M.M.; Ali, R.A.; Azeiz, A.Z.A.; Elhalwagi, A.; El Sherif, F. Silybin content and overexpression of chalcone synthase genes in Silybum marianum L. plants under abiotic elicitation. Plant Physiol. Biochem. 2016, 108, 191–202. [Google Scholar] [CrossRef] [PubMed]
- El-Houseiny, W.; Khalil, A.A.; Abd-Elhakim, Y.M.; Arisha, A.H.; Moselhy, A.A.; Dahshan, H.; Saber, T.; Saber, T.M.; Ahmed, M.M. Alleviative effects of dietary Silybum marianum and co-enzyme Q10 on waterborne nickel-induced impaired growth, immunosuppression, tissue damage, immune-related genes dysregulation, and reduced resistance to Pseudomonas aeruginosa in Oreochromis niloticus. Aquacult. Rep. 2022, 26, 101308. [Google Scholar]
- Toutou, M.M.; Soliman, A.A.; Elokaby, M.A.; Abdel-Rahim, M.M.; Abouelwafa, A.E.; Abd Elmoneam, M.Y. The potential antimicrobial effects of dietary supplementation with Arak, Salvadora persica, on growth, health status, and pathogenic bacterial loads in Nile tilapia, Oreochromis niloticus fingerlings. Egypt. J. Aquat. Res. 2019, 45, 251–257. [Google Scholar] [CrossRef]
- Zaragoza, O.D.R.; Rodríguez, M.H.; Bückle Ramirez, L.F. Thermal stress effect on tilapia Oreochromis mossambicus (Pisces: Cichlidae) blood parameters. Mar. Freshwat. Behav. Physiol. 2008, 41, 79–89. [Google Scholar] [CrossRef]
- Kalyani, R.L.; Vijaykumar, P.; Pammi, S.; Rajkumar, M.; Swamy, P.; Murthy, K. Biosynthesis of silver nanoparticles using Annona squamosa leaf extract with synergistic antibacterial activity. Indian J. Pharm. Sci. 2019, 81, 1036–1044. [Google Scholar] [CrossRef]
- Shukry, W.; Galilah, D.; Elrazek, A.; Shapana, H. Mineral composition, nutritional properties, vitamins, and bioactive compounds in Annona squamosa L. grown at different sites of Egypt. Ser. Bot. Environ. Sci 2019, 1, 7–22. [Google Scholar]
- Varadharaj, V.; Janarthanan, U.; Krishnamurthy, V.; Synnah, J. Assessment of Phytonutrients in the Ethanolic Leaf Extract of Annona squamosa (L.). World J. Pharm. Pharm. Sci 2014, 3, 725–732. [Google Scholar]
- Akram, M.; Munir, N.; Daniyal, M.; Egbuna, C.; Găman, M.-A.; Onyekere, P.F.; Olatunde, A. Vitamins and Minerals: Types, sources and their functions. In Functional Foods and Nutraceuticals; Springer: Berlin/Heidelberg, Germany, 2020; pp. 149–172. [Google Scholar]
- Adeshina, I.; Tiamiyu, L.O.; Akpoilih, B.U.; Jenyo-Oni, A.; Ajani, E.K. Dietary Mitracarpus scaber leaves extract improved growth, antioxidants, non-specific immunity, and resistance of Nile tilapia, Oreochromis niloticus to Gyrodactylus malalai infestation. Aquaculture 2021, 535, 736377. [Google Scholar] [CrossRef]
- Uribe, C.; Folch, H.; Enríquez, R.; Moran, G. Innate and adaptive immunity in teleost fish: A review. Vet. Med. 2011, 56, 486. [Google Scholar] [CrossRef] [Green Version]
- Neumann, N.F.; Stafford, J.L.; Barreda, D.; Ainsworth, A.J.; Belosevic, M. Antimicrobial mechanisms of fish phagocytes and their role in host defense. Dev. Comp. Immunol. 2001, 25, 807–825. [Google Scholar] [CrossRef]
- Magnadóttir, B.; Jónsdóttir, H.; Helgason, S.; Björnsson, B.; Jørgensen, T.Ø.; Pilström, L. Humoral immune parameters in Atlantic cod (Gadus morhua L.): I. The effects of environmental temperature. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1999, 122, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, J.H.; Solanki, H.K.; Tripathi, P.; Patel, N.J.; Jani, G.K. Evaluation of antimutagenic potential of Annona squamosa leaf extract. Elixir Hum. Physiol. 2011, 31, 1960–1965. [Google Scholar]
- Kumar, Y. Evaluation of antidiabetic and antioxidant potential of custard apple (Annona squamosa) Leaf extracts: A compositional study. Int. J. Chem. Stud. 2019, 7, 889–895. [Google Scholar]
- Soni, H.; Malik, J.; Yadav, A.P.; Yadav, B. Characterization of rutin isolated by leaves Annona squamosa by modern analytical techniques. Eur. J. Biomed. Pharm. Sci. 2018, 5, 484–489. [Google Scholar]
- Luca, S.V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A.C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr. 2020, 60, 626–659. [Google Scholar] [CrossRef] [PubMed]
- Saglam, D.; Atli, G.; Dogan, Z.; Baysoy, E.; Gurler, C.; Eroglu, A.; Canli, M. Response of the antioxidant system of freshwater fish (Oreochromis niloticus) exposed to metals (Cd, Cu) in differing hardness. Turk. J. Fish. Aquat. Sci. 2014, 14, 43–52. [Google Scholar]
- Aratani, Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 2018, 640, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Vikas, B.; Akhil, B.; Remani, P.; Sujathan, K. Free radical scavenging properties of Annona squamosa. Asian Pac. J. Cancer Prev.: APJCP 2017, 18, 2725. [Google Scholar] [PubMed]
- Lakshmi, S.; Dhanya, G. Phytochemical analysis of Annona squamosa seed extracts. Int. Res. J. Pharm. Appl. Sci. 2013, 3, 29–31. [Google Scholar]
- Abdille, M.H.; Singh, R.; Jayaprakasha, G.; Jena, B. Antioxidant activity of the extracts from Dillenia indica fruits. Food Chem. 2005, 90, 891–896. [Google Scholar] [CrossRef]
- Khalil, A.A.; Abd-Elhakim, Y.M.; Said, E.N.; Moselhy, A.A.; Abu-Elsaoud, A.M.; El-Houseiny, W. Milk thistle and co-enzyme Q10 fortified diets lessen the nickel chloride-induced neurotoxic and neurobehavioral impairments in Oreochromis niloticus via regulating the oxidative stress response, acetylcholinesterase activity, and brain nickel content. Aquaculture 2022, 553, 738102. [Google Scholar] [CrossRef]
- Asadi, M.; Mirvaghefei, A.; Nematollahi, M.; Banaee, M.; Ahmadi, K. Effects of Watercress (Nasturtium nasturtium) extract on selected immunological parameters of rainbow trout (Oncorhynchus mykiss). Open Vet. J. 2012, 2, 32–39. [Google Scholar] [CrossRef]
- Pandey, V.; Giri, I.; Singh, S.; Srivastava, A. Pharmacognostical and physiochemical study on the leaves of Annona squamosa Linn. Int. J. Res. Pharm. Sci. 2014, 4, 8–12. [Google Scholar]
- Mommsen, T.P.; Vijayan, M.M.; Moon, T.W. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fish. 1999, 9, 211–268. [Google Scholar] [CrossRef]
- Tort, L.; Koumoundouros, G. Stress in farmed fish. Its consequences in health and performance. In Recent Advances in Aquaculture Research; Springer: Berlin/Heidelberg, Germany, 2010; pp. 55–83. [Google Scholar]
- Tripathi, Y.B. Insulin secreting and α-glucosidase inhibitory activity of hexane extract of Annona squamosa Linn. in streptozotocin (STZ) induced diabetic rats. Indian J. Exp. Biol. 2014, 52, 623–629. [Google Scholar]
- Davis, J.A.; Sharma, S.; Mittra, S.; Sujatha, S.; Kanaujia, A.; Shukla, G.; Katiyar, C.; Lakshmi, B.; Bansal, V.S.; Bhatnagar, P.K. Antihyperglycemic effect of Annona squamosa hexane extract in type 2 diabetes animal model: PTP1B inhibition, a possible mechanism of action? Indian J. Pharmacol. 2012, 44, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Houseiny, W.; Abd El-Hakim, Y.M.; Metwally, M.M.; Ghfar, S.S.A.; Khalil, A.A. The single or combined Silybum marianum and co-enzyme Q10 role in alleviating fluoride-induced impaired growth, immune suppression, oxidative stress, histological alterations, and reduced resistance to Aeromonas sobria in African catfish (Clarias gariepinus). Aquaculture 2022, 548, 737693. [Google Scholar]
- Sakai, M. Current research status of fish immunostimulants. Aquaculture 1999, 172, 63–92. [Google Scholar] [CrossRef]
- Cosentino, S.; Tuberoso, C.I.G.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E.; Palmas, F. In-vitro antimicrobial activity and chemical composition of Sardinian thymus essential oils. Lett. Appl. Microbiol. 1999, 29, 130–135. [Google Scholar] [CrossRef]
- Santhoshkumar, R.; Kumar, N.S. Phytochemical analysis and antimicrobial activities of Annona squamosa (L.) leaf extracts. J. Pharmacogn. Phytochem. 2016, 5, 128–131. [Google Scholar]
- Gajalakshmi, S.; Vijayalakshmi, S.; Devi, R.V. Phytochemical and pharmacological properties of Annona muricata: A review. Int. J. Pharm. Pharm. Sci. 2012, 4, 3–6. [Google Scholar]
- Chandra, H.; Bishnoi, P.; Yadav, A.; Patni, B.; Mishra, A.P.; Nautiyal, A.R. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials—A review. Plants 2017, 6, 16. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Samir, F.; Abd El-Naby, A.S.; Monier, M.N. Antioxidative and immunostimulatory effect of dietary cinnamon nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.) and its susceptibility to hypoxia stress and Aeromonas hydrophila infection. Fish Shellfish Immunol. 2018, 74, 19–25. [Google Scholar] [CrossRef]
- Abd El-Hakim, Y.M.; El-Houseiny, W.; Abd Elhakeem, E.-M.; Ebraheim, L.L.; Moustafa, A.A.; Mohamed, A.A.R. Melamine and curcumin enriched diets modulate the haemato-immune response, growth performance, oxidative stress, disease resistance, and cytokine production in Oreochromis niloticus. Aquat. Toxicol. 2020, 220, 105406. [Google Scholar] [CrossRef]
Ingredients (g kg−1) | ASLE Levels g/kg Diet | ||||
---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | |
Hearing fish meal (65% protein and 9% fat) | 110 | 110 | 110 | 110 | 110 |
Soybean meal (44% protein and 1.9% fat) | 420 | 420 | 420 | 420 | 420 |
Ground corn (8% protein and 2% fat) | 290 | 285 | 280 | 275 | 270 |
Wheat bran (12% protein and 0.2% fat) | 100 | 100 | 100 | 100 | 100 |
Corn oil | 30 | 30 | 30 | 30 | 30 |
Cod liver oil | 20 | 20 | 20 | 20 | 20 |
ASLE | 0 | 5 | 10 | 15 | 20 |
Vitamin premix 1 | 10 | 10 | 10 | 10 | 10 |
Mineral premix 2 | 20 | 20 | 20 | 20 | 20 |
Chemical analysis | |||||
Crude protein (N × 6.25) | 308 | 305 | 307 | 308 | 309 |
Crude lipids | 73 | 73 | 77 | 77 | 77 |
Crude fiber | 53 | 53 | 55 | 57 | 57 |
Ash | 72 | 72 | 73 | 74 | 74 |
Nitrogen free extract 3 | 494 | 497 | 488 | 484 | 483 |
Gross energy (kcal/kg) 4 | 446.03 | 445.57 | 446.78 | 445.70 | 445.86 |
Items | Dietary A. squamosa Leaves Extract (ASLE) Levels (g/kg Diet) | p Value | ||||||
---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | Treatment | Linear | Quadratic | |
Initial body weight (g) | 11.87 ± 0.467 | 12.50 ± 0.289 | 12.43 ± 0.318 | 12.80 ± 0.321 | 13.07 ± 0.348 | 0.244 | 0.37 | 0.825 |
Final body weight (g) | 42.07 d ± 0.348 | 42.73 cd ± 0.273 | 45.27 c ± 0.674 | 52.67 b ± 1.453 | 57.00 a ± 1.155 | 0.005 | 0.0001 | 0.0001 |
Weight gain (%) | 255.39 b ± 11.40 | 242.14 b ± 5.83 | 264.28 b ± 4.14 | 311.41 a ± 1.10 | 336.37 a ± 2.89 | 0.001 | 0.0001 | 0.0001 |
Specific growth rate (%) | 2.10 b ± 0.05 | 2.04 b ± 0.02 | 2.14 b ± 0.01 | 2.36 a ± 0.005 | 2.45 a ± 0.01 | 0.003 | 0.0001 | 0.0001 |
Feed intake (g) | 52.17 c ± 0.441 | 51.17 c ± 0.441 | 52.70 c ± 0.379 | 56.00 b ± 0.577 | 60.00 a ± 0.577 | 0.001 | 0.0001 | 0.0001 |
Feed conversion ratio | 1.723 a ± 0.019 | 1.687 a ± 0.012 | 1.600 b ± 0.006 | 1.400 c ± 0.026 | 1.360 c ± 0.012 | 0.08 | 0.0001 | 0.0001 |
Protein efficiency ratio | 1.88 c ± 0.02 | 1.94 bc ± 0.01 | 2.03 b ± 0.01 | 2.31 a ± 0.04 | 2.37 a ± 0.02 | 0.0001 | 0.0001 | 0.054 |
Survival % | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | - | - | - |
Items | Dietary A. squamosa Leaves Extract (ASLE) Levels (g/kg Diet) | p Value | ||||||
---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | Treatment | Linear | Quadratic | |
RBCs (106/mm3) | 2.383 b ± 0.12 | 2.477 b ± 0.09 | 2.650 ab ± 0.09 | 2.760 a ± 0.07 | 2.917 a ± 0.04 | 0.008 | 0.001 | 0.846 |
Hb (gm/dL) | 7.327 d ± 0.043 | 7.423 cd ± 0.038 | 7.573 c ± 0.043 | 7.740 b ± 0.074 | 7.970 a ± 0.038 | 0.000 | 0.000 | 0.154 |
PCV (%) | 21.98 d ± 0.130 | 22.27 cd ± 0.113 | 22.72 c ± 0.130 | 23.22 b ± 0.221 | 23.91 a ± 0.114 | 0.000 | 0.000 | 0.154 |
MCV (fl) | 92.60 ± 3.921 | 90.13 ± 2.900 | 85.88 ± 2.323 | 84.19 ± 1.263 | 81.99 ± 0.760 | 0.072 | 0.006 | 0.748 |
MCH (%) | 30.87 ± 1.306 | 30.04 ± 0.966 | 28.63 ± 0.774 | 28.06 ± 0.421 | 27.33 ± 0.253 | 0.071 | 0.006 | 0.747 |
WBCs (103/mm3) | 5.357 d ± 0.030 | 5.403 d ± 0.049 | 5.553 c ± 0.047 | 5.877 b ± 0.043 | 6.043 a ± 0.049 | 0.000 | 0.000 | 0.031 |
Lymphocytes (103/mm3) | 2.943 c ± 0.018 | 2.953 c ± 0.019 | 3.017 b ± 0.020 | 3.130 a ± 0.012 | 3.183 a ± 0.020 | 0.000 | 0.000 | 0.069 |
Heterophils (103/mm3) | 1.433 c ± 0.018 | 1.453 bc ± 0.027 | 1.503 b ± 0.015 | 1.590 a ± 0.012 | 1.633 a ± 0.009 | 0.000 | 0.000 | 0.224 |
Eosinophils (103/mm3) | 0.330 d ± 0.006 | 0.357 d ± 0.009 | 0.393 c ± 0.015 | 0.470 b ± 0.012 | 0.510 a ± 0.012 | 0.000 | 0.000 | 0.132 |
Monocytes (103/mm3) | 0.650 c ± 0.006 | 0.640 c ± 0.006 | 0.640 c ± 0.006 | 0.687 b ± 0.009 | 0.717 a ± 0.009 | 0.000 | 0.000 | 0.001 |
Items | Dietary A. squamosa Leaf Extract (ASLE) Level (g/kg Diet) | p Value | ||||||
---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | Treatment | Linear | Quadratic | |
Total proteins (g/dL) | 5.300 c ± 0.161 | 5.473 c ± 0.159 | 6.183 b ± 0.073 | 6.600 a ± 0.115 | 6.967 a ± 0.073 | 0.001 | 0.001 | 0.843 |
Albumin (g/dL) | 2.320 d ± 0.062 | 2.290 d ± 0.038 | 2.640 c ± 0.049 | 2.883 b ± 0.073 | 3.090 a ± 0.042 | 0.001 | 0.001 | 0.102 |
Globulin (g/dL) | 2.980 c ± 0.117 | 3.183 c ± 0.148 | 3.543 b ± 0.023 | 3.717 ab ± 0.044 | 3.877 a ± 0.032 | 0.001 | 0.001 | 0.428 |
ALT (U/L) | 12.21 a ± 0.653 | 12.19 a ± 0.641 | 11.08 ab ± 0.159 | 10.78 ab ± 0.280 | 10.12 b ± 0.093 | 0.026 | 0.002 | 0.773 |
AST (U/L) | 27.70 a ± 0.321 | 27.63 a ± 0.291 | 27.02 ab ± 0.073 | 26.85 b ± 0.132 | 26.72 b ± 0.117 | 0.023 | 0.002 | 0.698 |
ALP (IU/L) | 24.27 a ± 0.088 | 24.19 a ± 0.058 | 24.08 ab ± 0.060 | 23.87 b ± 0.104 | 23.61 c ± 0.059 | 0.001 | 0.001 | 0.132 |
Urea (mg/dL) | 2.767 a ± 0.027 | 2.760 a ± 0.023 | 2.687 ab ± 0.032 | 2.590 b ± 0.026 | 2.220 c ± 0.057 | 0.001 | 0.001 | 0.001 |
Creatinine (mg/dL) | 0.447 a ± 0.012 | 0.440 a ± 0.006 | 0.423 a ± 0.009 | 0.357 b ± 0.015 | 0.317 c ± 0.012 | 0.001 | 0.001 | 0.018 |
Cortisol (ng/L) | 53.53 a ± 0.906 | 52.27 a ± 0.657 | 51.40 a ± 0.737 | 46.27 b ± 1.105 | 43.17 c ± 0.441 | 0.001 | 0.001 | 0.024 |
Glucose (mg/dL) | 75.43 a ± 1.260 | 74.53 a ± 1.017 | 73.07 a ± 1.090 | 68.40 b ± 1.127 | 63.33 c ± 0.982 | 0.001 | 0.001 | 0.019 |
Items | Dietary A. squamosa Leaf Extract (ASLE) Levels (g/kg Diet) | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | Treatment | Linear | Quadratic | ||
Serum | TAC (mM/L) | 1.623 c ± 0.050 | 1.847 c ± 0.032 | 2.070 c ± 0.117 | 3.160 b ± 0.181 | 4.350 a ± 0.465 | 0.001 | 0.001 | 0.009 |
CAT (U/L) | 69.60 d ± 1.900 | 74.73 cd ± 0.561 | 77.90 c ± 0.693 | 89.83 b ± 2.429 | 97.90 a ± 1.908 | 0.001 | 0.001 | 0.041 | |
SOD (U/mL) | 6.100 c ± 0.569 | 6.833 c ± 0.504 | 7.500 c ± 0.404 | 9.567 b ± 0.578 | 13.50 a ± 0.866 | 0.001 | 0.001 | 0.006 | |
GSH (μmol/mL) | 11.43 c ± 0.517 | 12.70 c ± 0.473 | 13.27 c ± 0.318 | 15.63 b ± 0.593 | 18.57 a ± 0.809 | 0.001 | 0.001 | 0.036 | |
MDA (nmol/mL) | 13.23 a ± 0.722 | 12.33 ab ± 0.088 | 11.87 b ± 0.203 | 9.833 c ± 0.145 | 9.300 c ± 0.153 | 0.001 | 0.001 | 0.539 | |
MPO (U/L) | 63.23 a ± 0.536 | 62.17 a ± 0.176 | 61.70 a ± 0.379 | 53.03 b ± 1.415 | 45.83 c ± 1.878 | 0.001 | 0.001 | 0.001 | |
Liver homogenate | CAT (U/g tissue) | 1.76 d ± 0.04 | 1.85 d ± 0.04 | 1.98 c ± 0.03 | 2.16 b ± 0.03 | 2.35 a ± 0.03 | 0.001 | 0.001 | 0.093 |
SOD (U/g tissue) | 4.26 e ± 0.04 | 4.40 d ± 0.03 | 4.59 c ± 0.04 | 4.82 b ± 0.05 | 5.07 a ± 0.05 | 0.001 | 0.001 | 0.126 | |
MDA (nmol/g tissue) | 18.47 a ± 0.93 | 16.40 b ± 0.72 | 14.27 c ± 0.62 | 12.6 d ± 0.46 | 11.13 e ± 0.19 | 0.001 | 0.001 | 0.498 | |
Post-cold challenge mortality % | 6.66 ± 6.66 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almarri, S.H.; Khalil, A.A.; Mansour, A.T.; El-Houseiny, W. Antioxidant, Immunostimulant, and Growth-Promoting Effects of Dietary Annona squamosa Leaf Extract on Nile Tilapia, Oreochromis niloticus, and Its Tolerance to Thermal Stress and Aeromonas sobria Infection. Animals 2023, 13, 746. https://doi.org/10.3390/ani13040746
Almarri SH, Khalil AA, Mansour AT, El-Houseiny W. Antioxidant, Immunostimulant, and Growth-Promoting Effects of Dietary Annona squamosa Leaf Extract on Nile Tilapia, Oreochromis niloticus, and Its Tolerance to Thermal Stress and Aeromonas sobria Infection. Animals. 2023; 13(4):746. https://doi.org/10.3390/ani13040746
Chicago/Turabian StyleAlmarri, Salem Hamad, Alshimaa A. Khalil, Abdallah Tageldein Mansour, and Walaa El-Houseiny. 2023. "Antioxidant, Immunostimulant, and Growth-Promoting Effects of Dietary Annona squamosa Leaf Extract on Nile Tilapia, Oreochromis niloticus, and Its Tolerance to Thermal Stress and Aeromonas sobria Infection" Animals 13, no. 4: 746. https://doi.org/10.3390/ani13040746
APA StyleAlmarri, S. H., Khalil, A. A., Mansour, A. T., & El-Houseiny, W. (2023). Antioxidant, Immunostimulant, and Growth-Promoting Effects of Dietary Annona squamosa Leaf Extract on Nile Tilapia, Oreochromis niloticus, and Its Tolerance to Thermal Stress and Aeromonas sobria Infection. Animals, 13(4), 746. https://doi.org/10.3390/ani13040746