Effects of a Bentonite Clay Product and a Preservative Blend on Ileal and Fecal Nutrient Digestibility in Pigs Fed Wheat Naturally Contaminated with Deoxynivalenol
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Feeding and Sample Collection
2.3. Chemical Analyses
2.4. Calculations
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Shea, C.J. Feed additives in swine diets. In Sustainable Swine Nutrition, 2nd ed.; Chiba, L.I., Ed.; Wiley Blackwell: Hoboken, NJ, USA, 2023; pp. 471–491. [Google Scholar]
- Reddy, K.E.; Kim, M.; Kim, K.H.; Ji, S.Y.; Baek, Y.; Chun, J.L.; Jung, H.J.; Choe, C.; Lee, H.J.; Kim, M.; et al. Effect of commercially purified deoxynivalenol and zearalenone mycotoxins on microbial diversity of pig cecum contents. Anim. Biosci. 2021, 34, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Holanda, D.M.; Kim, S.W. Mycotoxin occurrence, toxicity, and detoxifying agents in pig production with an emphasis on deoxynivalenol. Toxins 2021, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jeong, J.Y.; Sung, J.Y.; Kim, B.G. Equations to predict growth performance changes by dietary deoxynivalenol in pigs. Toxins 2021, 13, 360. [Google Scholar] [CrossRef] [PubMed]
- Holanda, D.M.; Kim, S.W. Investigation of the efficacy of mycotoxin-detoxifying additive on health and growth of newly-weaned pigs under deoxynivalenol challenges. Anim. Biosci. 2021, 34, 405–416. [Google Scholar] [CrossRef] [PubMed]
- García, G.R.; Payros, D.; Pinton, P.; Dogi, C.A.; Laffitte, J.; Neves, M.; Gonzalez Pereyra, M.L.; Cavaglieri, L.R.; Oswald, I.P. Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants. Arch. Toxicol. 2018, 92, 983–993. [Google Scholar] [CrossRef]
- Lessard, M.; Savard, C.; Deschene, K.; Lauzon, K.; Pinilla, V.A.; Gagnon, C.A.; Lapointe, J.; Guay, F.; Chorfi, Y. Impact of deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food Chem. Toxicol. 2015, 80, 7–16. [Google Scholar] [CrossRef]
- Weaver, A.C.; See, M.T.; Hansen, J.A.; Kim, Y.B.; De Souza, A.L.; Middleton, T.F.; Kim, S.W. The use of feed additives to reduce the effects of aflatoxin and deoxynivalenol on pig growth, organ health and immune status during chronic exposure. Toxins 2013, 5, 1261–1281. [Google Scholar] [CrossRef]
- Ahn, J.Y.; Kim, J.; Cheong, D.H.; Hong, H.; Jeong, J.Y.; Kim, B.G. An in vitro study on the efficacy of mycotoxin sequestering agents for aflatoxin B1, deoxynivalenol, and zearalenone. Animals 2022, 12, 333. [Google Scholar] [CrossRef]
- Kong, C.; Shin, S.Y.; Kim, B.G. Evaluation of mycotoxin sequestering agents for aflatoxin and deoxynivalenol: An in vitro approach. Springerplus 2014, 3, 346. [Google Scholar] [CrossRef]
- Van Le Thanh, B.; Lessard, M.; Chorfi, Y.; Guay, F. The efficacy of anti-mycotoxin feed additives in preventing the adverse effects of wheat naturally contaminated with Fusarium mycotoxins on performance, intestinal barrier function and nutrient digestibility and retention in weanling pigs. Can. J. Anim. Sci. 2015, 95, 197–209. [Google Scholar] [CrossRef]
- Kwon, W.B.; Shin, S.Y.; Song, Y.S.; Kong, C.; Kim, B.G. Effects of mycotoxin-sequestering agents on growth performance and nutrient utilization of growing pigs fed deoxynivalenol-contaminated diets. Life 2023, 13, 1953. [Google Scholar] [CrossRef] [PubMed]
- Damato, A.; Vianello, F.; Novelli, E.; Balzan, S.; Gianesella, M.; Giaretta, E.; Gabai, G. Comprehensive review on the interactions of clay minerals with animal physiology and production. Front. Vet. Sci. 2022, 9, 889612. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kim, I.H. Effects of dietary supplementation of sericite on growth performance, nutrient digestibility, blood profiles and fecal microflora shedding in growing pigs. Anim. Feed Sci. Technol. 2013, 184, 100–104. [Google Scholar] [CrossRef]
- Schell, T.C.; Lindemann, M.D.; Kornegay, E.T.; Blodgett, D.J. Effects of feeding aflatoxin-contaminated diets with and without clay to weanling and growing pigs on performance, liver function, and mineral metabolism. J. Anim. Sci. 1993, 71, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Patience, J.F.; Myers, A.J.; Ensley, S.; Jacobs, B.M.; Madson, D. Evaluation of two mycotoxin mitigation strategies in grow-finish swine diets containing corn dried distillers grains with solubles naturally contaminated with deoxynivalenol. J. Anim. Sci. 2014, 92, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Stein, H.H.; Shipley, C.F.; Easter, R.A. Technical note: A technique for inserting a T-cannula into the distal ileum of pregnant sows. J. Anim. Sci. 1998, 76, 1433–1436. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.G.; Stein, H.H. A spreadsheet program for making a balanced Latin Square design. Rev. Colomb. Cienc. Pecu. 2009, 22, 591–596. [Google Scholar]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012.
- Ahn, J.Y.; Kil, D.Y.; Kong, C.; Kim, B.G. Comparison of oven-drying methods for determination of moisture content in feed ingredients. Asian-Australas. J. Anim. Sci. 2014, 27, 1615–1622. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Ahn, J.Y.; Cheong, D.H.Y.; Jeong, J.Y.; Kim, B.G. Deoxynivalenol concentrations in feed ingredients and swine diets measured by enzyme- linked immunosorbent assay and high-performance liquid chromatography. Rev. Bras. Zootec. 2023, 52, e20220155. [Google Scholar] [CrossRef]
- Kong, C.; Adeola, O. Evaluation of amino Acid and energy utilization in feedstuff for swine and poultry diets. Asian-Australas. J. Anim. Sci. 2014, 27, 917–925. [Google Scholar] [CrossRef]
- Bouchard, M.J.; Chorfi, Y.; Letourneau-Montminy, M.P.; Guay, F. Effects of deoxynivalenol and sodium meta-bisulphite on nutrient digestibility in growing pigs. Arch. Anim. Nutr. 2019, 73, 360–373. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Kersten, S.; Valenta, H.; Breves, G. Inactivation of deoxynivalenol-contaminated cereal grains with sodium metabisulfite: A review of procedures and toxicological aspects. Mycotoxin Res. 2012, 28, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Pahlow, G.; Goyarts, T.; Rohweder, D.; Wilkerling, K.; Breves, G.; Valenta, H.; Doll, S. Effects of increasing concentrations of sodium metabisulphite (Na2S2O5, SBS) on deoxynivalenol (DON) concentration and microbial spoilage of triticale kernels preserved without and with propionic acid at various moisture contents. Mycotoxin Res. 2009, 25, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Kong, C.; Song, M.; Kim, B.G. Effects of dietary deoxynivalenol and zearalenone on apparent ileal digestibility of amino acids in growing pigs. Anim. Feed Sci. Technol. 2016, 219, 77–82. [Google Scholar] [CrossRef]
- Holanda, D.M.; Yiannikouris, A.; Kim, S.W. Investigation of the efficacy of a postbiotic yeast cell wall-based blend on newly-weaned pigs under a dietary challenge of multiple mycotoxins with emphasis on deoxynivalenol. Toxins 2020, 12, 504. [Google Scholar] [CrossRef] [PubMed]
- Lun, A.K.; Young, L.G.; Lumsden, J.H. The effects of vomitoxin and feed intake on the performance and blood characteristics of young pigs. J. Anim. Sci. 1985, 61, 1178–1185. [Google Scholar] [CrossRef] [PubMed]
- González-Vega, J.C.; Stein, H.H. -Invited review—Calcium digestibility and metabolism in pigs. Asian-Australas. J. Anim. Sci. 2014, 27, 1–9. [Google Scholar] [CrossRef]
- Bai, L.L.; Ming, D.X.; Dong, S.R.; Yang, Z.Y.; Wang, W.H.; Zhang, S.; Piao, X.S.; Liu, L.; Wang, F.L. Dietary maifanite supplementation did not affect the apparent total tract digestibility of calcium and phosphorus in growing pigs. Asian-Australas. J. Anim. Sci. 2018, 31, 245–251. [Google Scholar] [CrossRef]
- Chen, Y.J.; Kwon, O.S.; Min, B.J.; Son, K.S.; Cho, J.H.; Hong, J.W.; Kim, I.H. The effects of dietary Biotite V supplementation as an alternative substance to antibiotics in growing pigs. Asian-Australas. J. Anim. Sci. 2005, 18, 1642–1645. [Google Scholar] [CrossRef]
- Zeebone, Y.Y.; Kovacs, M.; Bota, B.; Zdenek, V.; Taubner, T.; Halas, V. Dietary fumonisin may compromise the nutritive value of feed and distort copper and zinc digestibility and retention in weaned piglets. J. Anim. Physiol. Anim. Nutr. 2023, 107, 504–517. [Google Scholar] [CrossRef]
- Chestnut, A.B.; Anderson, P.D.; Cochran, M.A.; Fribourg, H.A.; Gwinn, K.D. Effects of hydrated sodium calcium aluminosilicate on fescue toxicosis and mineral absorption. J. Anim. Sci. 1992, 70, 2838–2846. [Google Scholar] [CrossRef] [PubMed]
- Entwistle, J.; Latta, D.E.; Scherer, M.M.; Neumann, A. Abiotic degradation of chlorinated solvents by clay minerals and Fe(II): Evidence for reactive mineral intermediates. Environ. Sci. Technol. 2019, 53, 14308–14318. [Google Scholar] [CrossRef] [PubMed]
- Hunder, G.; Schumann, K.; Strugala, G.; Gropp, J.; Fichtl, B.; Forth, W. Influence of subchronic exposure to low dietary deoxynivalenol, a trichothecene mycotoxin, on intestinal absorption of nutrients in mice. Food Chem. Toxicol. 1991, 29, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Phillips, T.D.; Afriyie-Gyawu, E.; Williams, J.; Huebner, H.; Ankrah, N.A.; Ofori-Adjei, D.; Jolly, P.; Johnson, N.; Taylor, J.; Marroquin-Cardona, A.; et al. Reducing human exposure to aflatoxin through the use of clay: A review. Food Addit. Contam. A 2008, 25, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Yunus, A.W.; Bohm, J. Serum cation profile of broilers at various stages of exposure to deoxynivalenol. Mycotoxin Res. 2013, 29, 113–117. [Google Scholar] [CrossRef]
- Churakov, S.V.; Dahn, R. Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy. Environ. Sci. Technol. 2012, 46, 5713–5719. [Google Scholar] [CrossRef]
- Maresca, M.; Mahfoud, R.; Garmy, N.; Fantini, J. The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells. J. Nutr. 2002, 132, 2723–2731. [Google Scholar] [CrossRef]
- Pinton, P.; Braicu, C.; Nougayrede, J.P.; Laffitte, J.; Taranu, I.; Oswald, I.P. Deoxynivalenol impairs porcine intestinal barrier function and decreases the protein expression of claudin-4 through a mitogen-activated protein kinase-dependent mechanism. J. Nutr. 2010, 140, 1956–1962. [Google Scholar] [CrossRef]
- Bondy, S.C.; Harrington, M.E. L amino acids and D-glucose bind stereospecifically to a colloidal clay. Science 1979, 203, 1243–1244. [Google Scholar] [CrossRef]
- Ghadiri, M.; Chrzanowski, W.; Lee, W.H.; Rohanizadeh, R. Layered silicate clay functionalized with amino acids: Wound healing application. RSC Adv. 2014, 4, 35332–35343. [Google Scholar] [CrossRef]
Item, % | Uncontaminated Wheat | Contaminated Wheat | Soybean Meal |
---|---|---|---|
Dry matter | 91.1 | 87.8 | 89.2 |
Gross energy, kcal/kg | 3917 | 3813 | 4124 |
Crude protein | 10.5 | 13.3 | 42.9 |
Ether extract | 1.79 | 2.13 | 2.92 |
Neutral detergent fiber | 13.8 | 12.3 | 9.51 |
Acid detergent fiber | 3.20 | 3.25 | 4.83 |
Ash | 1.62 | 1.73 | 6.51 |
Starch | 69.4 | 67.4 | - 1 |
Calcium | 0.07 | 0.06 | 0.42 |
Phosphorus | 0.25 | 0.34 | 0.65 |
Phytate-phosphorus | 0.18 | 0.25 | - 1 |
Deoxynivalenol, mg/kg | 0.043 | 1.639 | 0.105 |
Items | UCD | CD | BEN | PB |
---|---|---|---|---|
Ingredient, % | ||||
Uncontaminated wheat | 86.1 | - | - | - |
Contaminated wheat 2 | - | 86.1 | 86.1 | 86.1 |
Soybean meal, 42.8% crude protein | 9.5 | 9.5 | 9.5 | 9.5 |
Soybean oil | 1.0 | 1.0 | 1.0 | 1.0 |
L-Lys·HCl, 78.8% | 0.3 | 0.3 | 0.3 | 0.3 |
Ground limestone | 1.7 | 1.7 | 1.7 | 1.7 |
Chromium oxide | 0.5 | 0.5 | 0.5 | 0.5 |
Vitamin–mineral premix 3 | 0.3 | 0.3 | 0.3 | 0.3 |
Salt | 0.3 | 0.3 | 0.3 | 0.3 |
Corn starch | 0.25 | 0.25 | - | - |
Bentonite | - | - | 0.25 | - |
Preservative blend | - | - | - | 0.25 |
Analyzed chemical composition | ||||
Dry matter, % | 91.2 | 88.2 | 88.2 | 88.3 |
Gross energy, kcal/kg | 3893 | 3799 | 3802 | 3796 |
Crude protein, % | 13.3 | 15.6 | 15.5 | 15.5 |
Ether extract, % | 3.2 | 3.5 | 2.9 | 3.2 |
Amylase-treated neutral detergent fiber, % | 13.7 | 11.9 | 11.2 | 11.5 |
Acid detergent fiber, % | 3.30 | 3.41 | 3.18 | 3.36 |
Ash, % | 4.62 | 4.73 | 4.87 | 4.94 |
Calcium, % | 0.74 | 0.71 | 0.67 | 0.77 |
Phosphorus, % | 0.25 | 0.33 | 0.33 | 0.35 |
Potassium, % | 0.41 | 0.42 | 0.41 | 0.47 |
Sodium, % | 0.13 | 0.10 | 0.11 | 0.17 |
Magnesium, % | 0.11 | 0.13 | 0.13 | 0.14 |
Chloride, % | 0.29 | 0.32 | 0.28 | 0.35 |
Iron, mg/kg | 213 | 217 | 273 | 252 |
Zinc, mg/kg | 64.5 | 87.5 | 66.0 | 97.5 |
Deoxynivalenol, mg/kg | 0.036 | 1.628 | 1.564 | 0.636 |
Items, % | UCD | CD | BEN | PB |
---|---|---|---|---|
Indispensable amino acid | ||||
Arg | 0.71 | 0.70 | 0.59 | 0.70 |
His | 0.32 | 0.33 | 0.30 | 0.35 |
Ile | 0.43 | 0.46 | 0.40 | 0.47 |
Leu | 0.87 | 0.92 | 0.81 | 0.93 |
Lys | 0.92 | 0.81 | 0.76 | 0.73 |
Met | 0.19 | 0.22 | 0.24 | 0.26 |
Phe | 0.67 | 0.70 | 0.62 | 0.71 |
Thr | 0.55 | 0.56 | 0.48 | 0.53 |
Val | 0.62 | 0.65 | 0.59 | 0.65 |
Dispensable amino acid | ||||
Ala | 0.48 | 0.48 | 0.43 | 0.48 |
Asp | 1.01 | 0.98 | 0.80 | 0.96 |
Cys | 0.26 | 0.29 | 0.31 | 0.30 |
Glu | 3.00 | 3.45 | 3.21 | 3.61 |
Gly | 0.54 | 0.55 | 0.51 | 0.55 |
Pro | 1.10 | 1.27 | 1.25 | 1.40 |
Ser | 0.66 | 0.70 | 0.68 | 0.72 |
Tyr | 0.47 | 0.47 | 0.43 | 0.52 |
Item, % | UCD | CD | BEN | PB | SEM | p-Value for Contrast | ||
---|---|---|---|---|---|---|---|---|
UCD vs. CD | CD vs. BEN | CD vs. PB | ||||||
Apparent ileal digestibility | ||||||||
Dry matter | 69.0 | 72.3 | 72.3 | 73.4 | 2.1 | 0.277 | 0.993 | 0.702 |
Organic matter | 71.0 | 74.7 | 74.9 | 75.6 | 2.0 | 0.204 | 0.953 | 0.742 |
Crude protein | 72.9 | 76.7 | 75.3 | 77.6 | 2.0 | 0.183 | 0.609 | 0.736 |
Apparent total tract digestibility | ||||||||
Dry matter | 90.0 | 89.4 | 89.2 | 88.6 | 0.7 | 0.516 | 0.807 | 0.414 |
Organic matter | 91.4 | 91.0 | 90.9 | 90.2 | 0.7 | 0.586 | 0.963 | 0.354 |
Crude protein | 86.9 | 88.0 | 87.8 | 87.6 | 1.4 | 0.533 | 0.892 | 0.791 |
Item, % | UCD | CD | BEN | PB | SEM | p-Values for Contrast | ||
---|---|---|---|---|---|---|---|---|
UCD vs. CD | CD vs. BEN | CD vs. PB | ||||||
Apparent ileal digestibility | ||||||||
Calcium | 51.5 | 49.4 | 47.5 | 55.3 | 5.1 | 0.749 | 0.770 | 0.380 |
Phosphorus | 35.5 | 37.7 | 39.6 | 45.2 | 4.1 | 0.639 | 0.694 | 0.129 |
Potassium | 72.1 | 75.9 | 71.2 | 78.6 | 3.7 | 0.458 | 0.342 | 0.583 |
Sodium | −230.1 | −352.4 | −344.5 | −130.0 | 32.9 | 0.008 | 0.846 | <0.001 |
Magnesium | 11.3 | 12.3 | 11.8 | 21.4 | 4.6 | 0.875 | 0.935 | 0.150 |
Chloride | 72.0 | 64.7 | 62.2 | 64.2 | 7.8 | 0.432 | 0.798 | 0.965 |
Iron | 5.0 | 6.0 | 14.4 | 14.4 | 4.7 | 0.852 | 0.127 | 0.127 |
Zinc | −1.1 | 21.1 | 1.7 | 26.2 | 3.3 | <0.001 | 0.001 | 0.290 |
Apparent total tract digestibility | ||||||||
Calcium | 70.9 | 68.2 | 63.9 | 69.3 | 3.2 | 0.483 | 0.228 | 0.770 |
Phosphorus | 54.8 | 58.3 | 56.1 | 57.1 | 2.5 | 0.293 | 0.471 | 0.697 |
Potassium | 74.6 | 74.1 | 77.6 | 76.9 | 3.1 | 0.908 | 0.341 | 0.458 |
Sodium | 83.2 | 74.5 | 67.5 | 83.6 | 3.7 | 0.048 | 0.106 | 0.039 |
Magnesium | 47.0 | 48.0 | 43.7 | 47.8 | 2.7 | 0.755 | 0.151 | 0.944 |
Chloride | 95.2 | 94.3 | 94.6 | 95.0 | 0.9 | 0.366 | 0.788 | 0.475 |
Iron | 24.1 | 20.6 | 28.8 | 23.7 | 5.6 | 0.594 | 0.203 | 0.630 |
Zinc | 7.6 | 11.2 | −11.2 | 8.3 | 5.5 | 0.623 | 0.010 | 0.681 |
Item, % | UCD | CD | BEN | PB | SEM | p-Value for Contrast | ||
---|---|---|---|---|---|---|---|---|
UCD vs. CD | CD vs. BEN | CD vs. PB | ||||||
Indispensable amino acid | ||||||||
Arg | 84.2 | 84.0 | 79.8 | 85.1 | 1.5 | 0.886 | 0.043 | 0.557 |
His | 81.6 | 82.3 | 78.5 | 84.1 | 1.6 | 0.752 | 0.088 | 0.415 |
Ile | 79.3 | 80.0 | 75.4 | 81.9 | 1.5 | 0.709 | 0.040 | 0.369 |
Leu | 81.2 | 81.9 | 78.1 | 83.4 | 1.7 | 0.779 | 0.135 | 0.515 |
Lys | 84.4 | 82.6 | 79.0 | 81.8 | 1.5 | 0.358 | 0.087 | 0.720 |
Met | 77.8 | 80.5 | 82.3 | 84.9 | 1.7 | 0.276 | 0.463 | 0.086 |
Phe | 80.8 | 81.6 | 78.3 | 83.2 | 1.7 | 0.734 | 0.192 | 0.514 |
Thr | 74.5 | 74.5 | 67.9 | 74.4 | 2.0 | 0.994 | 0.027 | 0.963 |
Val | 76.3 | 77.6 | 73.3 | 79.3 | 2.0 | 0.661 | 0.146 | 0.538 |
Dispensable amino acid | ||||||||
Ala | 70.3 | 71.2 | 64.1 | 72.1 | 2.7 | 0.815 | 0.074 | 0.802 |
Asp | 76.0 | 74.1 | 64.6 | 75.1 | 2.1 | 0.503 | 0.004 | 0.740 |
Cys | 72.8 | 74.4 | 76.0 | 75.9 | 2.2 | 0.617 | 0.615 | 0.639 |
Glu | 83.7 | 86.7 | 86.0 | 87.8 | 1.6 | 0.196 | 0.737 | 0.622 |
Gly | 61.5 | 65.0 | 65.0 | 64.0 | 4.9 | 0.609 | 0.994 | 0.879 |
Pro | 79.4 | 83.7 | 83.1 | 85.6 | 1.6 | 0.054 | 0.761 | 0.336 |
Ser | 77.3 | 78.2 | 76.0 | 79.6 | 1.6 | 0.666 | 0.325 | 0.557 |
Tyr | 75.7 | 77.2 | 73.4 | 79.7 | 1.7 | 0.539 | 0.134 | 0.296 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.Y.; Yoo, S.B.; Song, Y.S.; Park, N.; Kim, B.G. Effects of a Bentonite Clay Product and a Preservative Blend on Ileal and Fecal Nutrient Digestibility in Pigs Fed Wheat Naturally Contaminated with Deoxynivalenol. Animals 2023, 13, 3752. https://doi.org/10.3390/ani13243752
Shin SY, Yoo SB, Song YS, Park N, Kim BG. Effects of a Bentonite Clay Product and a Preservative Blend on Ileal and Fecal Nutrient Digestibility in Pigs Fed Wheat Naturally Contaminated with Deoxynivalenol. Animals. 2023; 13(24):3752. https://doi.org/10.3390/ani13243752
Chicago/Turabian StyleShin, Seung Youp, Seung Bin Yoo, Yoon Soo Song, Noa Park, and Beob Gyun Kim. 2023. "Effects of a Bentonite Clay Product and a Preservative Blend on Ileal and Fecal Nutrient Digestibility in Pigs Fed Wheat Naturally Contaminated with Deoxynivalenol" Animals 13, no. 24: 3752. https://doi.org/10.3390/ani13243752
APA StyleShin, S. Y., Yoo, S. B., Song, Y. S., Park, N., & Kim, B. G. (2023). Effects of a Bentonite Clay Product and a Preservative Blend on Ileal and Fecal Nutrient Digestibility in Pigs Fed Wheat Naturally Contaminated with Deoxynivalenol. Animals, 13(24), 3752. https://doi.org/10.3390/ani13243752