Inbreeding Depression and Purging for Meat Performance Traits in German Sheep Breeds
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Estimated Heritabilities, Residual and Genetic Correlations and (co-)Variances
3.2. Inbreeding Depression for Daily Weight Gain
3.2.1. Individual Rate of Inbreeding
3.2.2. Ancestral and New Inbreeding According to Kalinowski
3.2.3. Interaction of F×Fa_Bal and F
3.3. Inbreeding Depression for the Meatiness Score
3.3.1. Individual Rate of Inbreeding
3.3.2. Ancestral and New Inbreeding According to Kalinowski
3.3.3. Interaction of F×Fa_Bal and F
3.4. Inbreeding Depression for the Ultrasound Muscle Thickness
3.4.1. Individual Rate of Inbreeding
3.4.2. Ancestral and New Inbreeding According to Kalinowski
3.4.3. Interaction of F×Fa_Bal and F
3.5. Inbreeding Depression for the Ultrasound Fat Thickness
3.5.1. Individual Rate of Inbreeding
3.5.2. Ancestral and New Inbreeding According to Kalinowski
3.5.3. Interaction of F×Fa_Bal and F
3.6. Inbreeding Depression by Breeding Directions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Justinski, C.; Wilkens, J.; Distl, O. Genetic Diversity and Trends of Ancestral and New Inbreeding in German Sheep Breeds by Pedigree Data. J. Anim. 2023, 13, 623. [Google Scholar] [CrossRef] [PubMed]
- Boutonnet, J.-P. Perspectives of the sheep meat world market on future production systems and trends. Small Rumin. Res. 1999, 34, 189–195. [Google Scholar] [CrossRef]
- Doekes, H.P.; Bijma, P.; Windig, J.J. How depressing is inbreeding? A meta-analysis of 30 years of research on the effects of inbreeding in livestock. Genes 2021, 12, 926. [Google Scholar] [CrossRef] [PubMed]
- Leroy, G. Inbreeding depression in livestock species: Review and meta-analysis. J. Anim. Breed. Genet. 2014, 45, 618–628. [Google Scholar] [CrossRef]
- Abebe, A.S.; Alemayehu, K.; Johansson, A.M.; Gizaw, S. Breeding practices and trait preferences of smallholder farmers for indigenous sheep in the northwest highlands of Ethiopia: Inputs to design a breeding program. PLoS ONE 2020, 15, e0233040. [Google Scholar] [CrossRef]
- Burke, J.; Apple, J.; Roberts, W.; Boger, C.; Kegley, E. Effect of breed-type on performance and carcass traits of intensively managed hair sheep. Meat Sci. 2003, 63, 309–315. [Google Scholar] [CrossRef]
- Cloete, J.; Hoffman, L.; Cloete, S. A comparison between slaughter traits and meat quality of various sheep breeds: Wool, dual-purpose and mutton. Meat Sci. 2012, 91, 318–324. [Google Scholar] [CrossRef]
- Negussie, E.; Abegaz, S.; Rege, J. Genetic trend and effects of inbreeding on growth performance of tropical fat-tailed sheep. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002; pp. 19–23. [Google Scholar]
- Van Wyk, J.; Fair, M.; Cloete, S. Case study: The effect of inbreeding on the production and reproduction traits in the Elsenburg Dormer sheep stud. Livest. Sci. 2009, 120, 218–224. [Google Scholar] [CrossRef]
- Pedrosa, V.; Santana, M., Jr.; Oliveira, P.; Eler, J.; Ferraz, J. Population structure and inbreeding effects on growth traits of Santa Inês sheep in Brazil. Small Rumin. Res. 2010, 93, 135–139. [Google Scholar] [CrossRef]
- Borges Barbosa, A.C.; Souza Romano, G.d.; Solar Velarde, J.M.D.; Sterman Ferraz, J.B.; Breno Pedrosa, V.; Batista Pinto, L.F. Pedigree analysis of Santa Inês sheep and inbreeding effects on performance traits. Rev. Mex. Cienc. Pecu. 2020, 11, 590–604. [Google Scholar] [CrossRef]
- Hossein-Zadeh, N.G. Inbreeding effects on body weight traits of Iranian Moghani sheep. Arch. Anim. Breed. 2012, 55, 171–178. [Google Scholar] [CrossRef][Green Version]
- Dorostkar, M.; Shodja, J.; Rafat, S.; Rokouei, M.; Esfandyari, H. Inbreeding and inbreeding depression in Iranian Moghani sheep breed. J. Agric. Sci. Technol. 2012, 14, 549–556. [Google Scholar]
- Mokhtari, M.; Shahrbabak, M.M.; Esmailizadeh, A.; Shahrbabak, H.M.; Gutierrez, J. Pedigree analysis of Iran-Black sheep and inbreeding effects on growth and reproduction traits. Small Rumin. Res. 2014, 116, 14–20. [Google Scholar] [CrossRef]
- Baneh, H.; Ahmadpanah, J.; Mandal, A. Studies on inbreeding and its effects on growth traits of Iran-Black sheep. Songklanakarin J. Sci. Technol. 2019, 41, 1219–1225. [Google Scholar]
- Yeganehpur, Z.; Roshanfekr, H.; Fayazi, J.; Beyranvand, M.H. Inbreeding depression on growth traits of Iranian Lori sheep. Rev. Colomb. Cienc. Pecu. 2016, 29, 264–273. [Google Scholar] [CrossRef]
- Patiabadi, Z.; Varkoohi, S.; Savar-Sofla, S. Inbreeding and inbreeding depression on body weight in Iranian Shal sheep. Iran. J. Appl. Anim. Sci. 1999, 6, 887–893. [Google Scholar]
- Wiener, G.; Lee, G.; Woolliams, J. Effects of rapid inbreeding and of crossing of inbred lines on the body weight growth of sheep. J. Anim. Sci. 1992, 55, 89–99. [Google Scholar] [CrossRef]
- Erasmus, G.; Van Wyk, J.; Konstantinov, K. Inbreeding in the Elsenburg Dormer sheep stud. S. Afr. J. Anim. Sci. 1993, 23, 77–80. [Google Scholar]
- Norberg, E.; Sørensen, A.C. Inbreeding trend and inbreeding depression in the Danish populations of Texel, Shropshire, and Oxford Down. J. Anim. Sci. 2007, 85, 299–304. [Google Scholar] [CrossRef]
- Hedrick, P.W.; Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 2016, 31, 940–952. [Google Scholar] [CrossRef]
- Hedrick, P.W. Purging inbreeding depression and the probability of extinction: Full-sib mating. Heredity 1994, 73, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.T.; Pryce, J.E.; Baes, C.; Maltecca, C. Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. J. Dairy Sci. 2017, 100, 6009–6024. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, G.E. Inbreeding and heterosis in animals. J. Anim. Sci. 1973, 1973, 54–77. [Google Scholar] [CrossRef]
- de Cara, M.Á.R.; Villanueva, B.; Toro, M.Á.; Fernández, J. Purging deleterious mutations in conservation programmes: Combining optimal contributions with inbred matings. Heredity 2013, 110, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.; Luo, Z. Computing inbreeding coefficients in large populations. Genet. Sel. Evol. 1992, 24, 305–313. [Google Scholar] [CrossRef]
- Ballou, J. Ancestral inbreeding only minimally affects inbreeding depression in mammalian populations. Heredity 1997, 88, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, S.T.; Hedrick, P.W.; Miller, P.S. Inbreeding depression in the Speke’s gazelle captive breeding program. Conserv. Biol. 2000, 14, 1375–1384. [Google Scholar] [CrossRef]
- Baumung, R.; Farkas, J.; Boichard, D.; Mészáros, G.; Sölkner, J.; Curik, I. GRAIN: A computer program to calculate ancestral and partial inbreeding coefficients using a gene dropping approach. J. Anim. Breed. 2015, 132, 100–108. [Google Scholar] [CrossRef]
- Boichard, D. Pedig: A fortran package for pedigree analysis suited for large populations. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002. [Google Scholar]
- Doekes, H.P.; Curik, I.; Nagy, I.; Farkas, J.; Kövér, G.; Windig, J.J. Revised calculation of Kalinowski’s ancestral and new inbreeding coefficients. Diversity 2020, 12, 155. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Cervantes, I.; Goyache, F. Improving the estimation of realized effective population sizes in farm animals. J. Anim. Breed. Genet. 2009, 126, 327–332. [Google Scholar] [CrossRef]
- Groeneveld, E.; Kovac, M.; Mielenz, N. VCE 6.0.2. In Co-Variance Components Estimation Package; Institute of Farm Animal Genetics: Mariensee, Germany, 2008. [Google Scholar]
- Curik, I.; Sölkner, J.; Stipic, N. The influence of selection and epistasis on inbreeding depression estimates. J. Anim. Breed. Genet. 2001, 118, 247–262. [Google Scholar] [CrossRef]
- Croquet, C.; Mayeres, P.; Gillon, A.; Hammami, H.; Soyeurt, H.; Vanderick, S.; Gengler, N. Linear and curvilinear effects of inbreeding on production traits for Walloon Holstein cows. J. Dairy Sci. 2007, 90, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, J.; Siewerdt, F. Consequences of long-term inbreeding accumulation on preweaning traits in a closed nucleus Angus herd. J. Anim. Sci. 2010, 88, 87–95. [Google Scholar] [CrossRef]
- Hamadani, A.; Ganai, N.A.; Khan, N.N.; Shanaz, S.; Ahmad, T. Estimation of genetic, heritability, and phenotypic trends for weight and wool traits in Rambouillet sheep. Small Rumin. Res. 2019, 177, 133–140. [Google Scholar] [CrossRef]
- Miraei-Ashtiani, S.R.; Seyedalian, S.A.R.; Shahrbabak, M.M. Variance components and heritabilities for body weight traits in Sangsari sheep, using univariate and multivariate animal models. Small Rumin. Res. 2007, 73, 109–114. [Google Scholar] [CrossRef]
- Safari, E.; Fogarty, N.; Gilmour, A.R. A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livest. Prod. Sci. 2005, 92, 271–289. [Google Scholar] [CrossRef]
- Snyman, M.; Erasmus, G.; Van Wyk, J.; Olivier, J. Direct and maternal (co) variance components and heritability estimates for body weight at different ages and fleece traits in Afrino sheep. Livest. Prod. Sci. 1995, 44, 229–235. [Google Scholar] [CrossRef]
- Van Wyk, J.; Konstantinov, K.; Erasmus, G. Variance component and heritability estimates of early growth traits in the Elsenburg Dormer sheep stud. S. Afr. J. Anim. Sci. 1993, 23, 72–76. [Google Scholar]
- Vatankhah, M.; Talebi, M. Heritability estimates and correlations between production and reproductive traits in Lori-Bakhtiari sheep in Iran. S. Afr. J. Anim. Sci. 2008, 38, 110–118. [Google Scholar]
- DeRose, M.A.; Roff, D.A. A comparison of inbreeding depression in life-history and morphological traits in animals. Evolution 1999, 53, 1288–1292. [Google Scholar] [CrossRef]
- Chapman, J.; Nakagawa, S.; Coltman, D.; Slate, J.; Sheldon, B. A quantitative review of heterozygosity–fitness correlations in animal populations. Mol. Ecol. 2009, 18, 2746–2765. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.G.; Mackay, T.F.D.S. Falconer and Introduction to quantitative genetics. J. Genet. 2004, 167, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
Code | BD | Breed | Nped | GE | Daily Weight Gain (g/Day) | ||
---|---|---|---|---|---|---|---|
n | Mean ± SD | h2 ± SE | |||||
AST | MON | Alpine Steinschaf | 10,420 | 4.94 | 1047 | 233.51 ± 67.01 | 0.41 ± 0.05 |
BBS | MON | Brown Mountain | 22,961 | 6.22 | 1269 | 286.86 ± 63.75 | 0.51 ± 0.04 |
BDC | EXO | Berrichon du Cher | 4680 | 3.69 | 454 | 359.23 ± 75.24 | 0.66 ± 0.06 |
BLS | CON | Bentheim | 46,173 | 8.91 | 442 | 262.79 ± 63.97 | 0.73 ± 0.07 |
BRI | CON | Carinthian | 10,669 | 4.26 | 800 | 267.93 ± 70.83 | 0.46 ± 0.08 |
CHA | MEA | Charollais | 11,237 | 3.25 | 380 | 339.66 ± 69.03 | 0.62 ± 0.08 |
COF | CON | Coburg | 70,156 | 8.15 | 1544 | 267.4 ± 76.39 | 0.66 ± 0.01 |
DOS | MEA | Dorper | 36,057 | 6.13 | 359 | 272.97 ± 54.84 | 0.34 ± 0.09 |
GGH | HEA | German Grey Heath | 69,369 | 8.57 | 919 | 210.72 ± 42.99 | 0.61 ± 0.06 |
IDF | MEA | Ile-de-France | 14,021 | 4.07 | 673 | 343.39 ± 89.43 | 0.56 ± 0.04 |
KST | MON | Krainer Steinschaf | 9671 | 5.54 | 1023 | 243.06 ± 71.11 | 0.52 ± 0.04 |
LES | CON | Leine | 42,949 | 8.70 | 1617 | 281.12 ± 78.79 | 0.62 ± 0.03 |
MFS | MER | German Mutton Merino | 132,413 | 7.33 | 3387 | 312.51 ± 70.18 | 0.51 ± 0.02 |
MLS | MER | German Merino | 204,494 | 8.52 | 6746 | 388.41 ± 69.79 | 0.53 ± 0.02 |
MLW | MER | Merino Longwool | 61,216 | 6.66 | 569 | 387.61 ± 46.16 | 0.55 ± 0.05 |
OMS | MIL | East Friesian | 71,159 | 9.06 | 1447 | 351.62 ± 78.18 | 0.63 ± 0.03 |
RHO | CON | Rhön | 78,095 | 7.19 | 508 | 273.93 ± 65.49 | 0.72 ± 0.07 |
SKF | MEA | German Blackhead Mutton | 128,839 | 7.91 | 9224 | 399.17 ± 91.19 | 0.39 ± 0.01 |
SUF | MEA | Suffolk | 68,136 | 5.27 | 5759 | 389.82 ± 88.96 | 0.40 ± 0.02 |
TEX | MEA | Texel | 58,223 | 5.79 | 4251 | 371.90 ± 75.77 | 0.36 ± 0.02 |
WAD | CON | Wald | 17,172 | 5.77 | 673 | 212.33 ± 70.97 | 0.59 ± 0.06 |
WBS | MON | White Mountain | 30,188 | 8.20 | 2119 | 303.42 ± 74.93 | 0.49 ± 0.03 |
WGH | HEA | German White Heath | 18,158 | 8.27 | 377 | 188.47 ± 59.45 | 0.75 ± 0.09 |
WHH | HEA | White Polled Heath | 41,306 | 9.94 | 709 | 189.44 ± 43.83 | 0.52 ± 0.06 |
WKF | MEA | German Whitehead Mutton | 38,390 | 7.49 | 1442 | 344.26 ± 72.38 | 0.49 ± 0.03 |
Breed | Meatiness Score (1–9) | Ultrasound Muscle Thickness (mm) | Ultrasound Fat Thickness (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
N | Mean ± SD | h2 ± SE | N | Mean ± SD | h2 ± SE | N | Mean ± SD | h2 ± SE | |
BDC | 333 | 7.76 ± 0.53 | 0.37 ± 0.06 | 343 | 32.13 ± 3.96 | 0.61 ± 0.07 | 343 | 7.26 ± 1.83 | 0.71 ± 0.07 |
CHA | 296 | 7.86 ± 0.74 | 0.42 ± 0.10 | 400 | 32.20 ± 5.53 | 0.54 ± 0.06 | 402 | 6.85 ± 2.60 | 0.68 ± 0.06 |
DOS | 180 | 7.66 ± 0.64 | 0.26 ± 0.10 | 218 | 30.07 ± 3.59 | 0.66 ± 0.08 | 218 | 5.15 ± 1.38 | 0.79 ± 0.08 |
IDF | 349 | 7.78 ± 0.72 | 0.41 ± 0.07 | 379 | 30.97 ± 3.97 | 0.63 ± 0.07 | 377 | 5.95 ± 1.61 | 0.47 ± 0.04 |
LES | 384 | 7.49 ± 0.69 | 0.35 ± 0.05 | 249 | 27.52 ± 3.11 | 0.37 ± 0.06 | 249 | 5.92 ± 1.12 | 0.52 ± 0.05 |
MFS | 2579 | 7.31 ± 0.85 | 0.28 ± 0.02 | 1998 | 27.99 ± 3.60 | 0.43 ± 0.02 | 2022 | 5.82 ± 1.48 | 0.56 ± 0.02 |
MLS | 1178 | 7.72 ± 0.66 | 0.28 ± 0.03 | 1204 | 31.75 ± 6.54 | 0.87 ± 0.02 | 1205 | 7.13 ± 3.15 | 0.86 ± 0.02 |
MLW | 262 | 7.56 ± 0.76 | 0.21 ± 0.05 | 197 | 30.18 ± 3.40 | 0.15 ± 0.05 | 197 | 5.75 ± 1.46 | 0.47 ± 0.05 |
SKF | 6162 | 7.72 ± 0.62 | 0.31 ± 0.01 | 3598 | 29.93 ± 3.80 | 0.68 ± 0.01 | 3612 | 6.66 ± 1.73 | 0.82 ± 0.01 |
SUF | 3766 | 7.80 ± 0.66 | 0.30 ± 0.02 | 4031 | 32.30 ± 4.90 | 0.55 ± 0.02 | 4035 | 6.89 ± 2.35 | 0.38 ± 0.02 |
TEX | 3395 | 7.92 ± 0.57 | 0.27 ± 0.02 | 3945 | 32.65 ± 4.51 | 0.42 ± 0.02 | 3949 | 6.93 ± 2.04 | 0.45 ± 0.02 |
WKF | 1018 | 7.63 ± 0.54 | 0.32 ± 0.05 | 1123 | 31.45 ± 3.95 | 0.46 ± 0.04 | 1127 | 8.01 ± 2.27 | 0.66 ± 0.03 |
Breed | Daily Weight Gain | SE | Meatiness Score | SE | Ultrasound Muscle Thickness | SE | Ultrasound Fat Thickness | SE |
---|---|---|---|---|---|---|---|---|
AST | −219.376 | 176.184 | ||||||
BBS | −158.9950 | 165.840 | ||||||
BDC | −319.017 | 240.206 | 2.332 | 2.926 | −15.580 | 16.799 | −6.048 | 7.851 |
BLS | 539.066 | 971.206 | ||||||
BRI | 139.508 | 164.613 | ||||||
CHA | 231.749 | 190.606 | −2.839 | 2.335 | −11.899 | 16.399 | 5.734 | 7.467 |
COF | −37.209 | 272.417 | ||||||
DOS | 3.339 | 362.405 | 6.766 | 6.501 | 20.845 | 32.880 | 19.039 | 13.786 |
GGH | −382.008 | 427.587 | ||||||
IDF | 22.494 | 115.652 | −0.551 | 2.426 | −5.107 | 6.291 | −3.184 | 2.891 |
KST | −66.466 | 212.277 | ||||||
LES | −69.414 | 228.218 | 7.896 | 7.700 | −20.193 | 41.245 | −4.084 | 16.561 |
MFS | −377.216 * | 163.948 | −4.794 | 2.586 | −4.411 | 12.438 | −7.657 | 4.814 |
MLS | −227.299 | 131.720 | 1.049 | 4.981 | 2.747 | 18.627 | 7.640 | 8.410 |
MLW | −103.540 | 428.835 | −1.217 | 27.450 | 15.815 | 99.626 | 52.397 | 42.627 |
OMS | 192.300 | 318.730 | ||||||
RHO | −446.622 | 367.132 | ||||||
SKF | −386.916 * | 144.517 | −2.881 | 1.791 | −6.310 | 12.242 | −9.162 | 5.699 |
SUF | 6.156 | 85.791 | 1.761 | 1.140 | −2.979 | 6.027 | 3.372 | 2.650 |
TEX | −169.506 | 116.667 | −1.652 | 1.666 | −7.008 | 9.174 | 4.096 | 3.719 |
WAD | −29.694 | 174.123 | ||||||
WBS | −169.948 | 353.251 | ||||||
WGH | −1384.466 | 1051.883 | ||||||
WHH | −178.101 | 681.530 | ||||||
WKF | −83.477 | 220.721 | −5.723 * | 2.484 | −10.765 | 18.547 | −12.346 | 12.341 |
Model | Daily Weight Gain | Meatiness Score | Ultrasound Muscle Thickness | Ultrasound Fat Thickness | ||
---|---|---|---|---|---|---|
Number of breeds | 25 | 12 | 12 | 12 | ||
3 | ΔFi | Mean | −146.9863 | 0.0122 | −3.7372 | 4.1497 |
SD | 339.1584 | 4.2035 | 11.9692 | 17.5269 | ||
SE | 67.8317 | 1.2135 | 3.4552 | 5.0596 | ||
95% CI | 231.7485 | 7.8960 | 20.8445 | 52.3974 | ||
5% CI | −446.6217 | −5.7226 | −20.1934 | −12.3457 | ||
p-Value | 0.0404 | 0.9921 | 0.3026 | 0.4295 | ||
4 | Fa_Kal | Mean | 81.5307 | −1.1107 | −3.5346 | 12.2960 |
SD | 884.5720 | 4.9456 | 74.4273 | 39.3548 | ||
SE | 176.9144 | 1.4277 | 21.4853 | 11.3607 | ||
95% CI | 1298.9443 | 9.6708 | 192.4876 | 135.1629 | ||
5% CI | −1119.8257 | −9.4966 | −138.4772 | −16.3338 | ||
p-Value | 0.6491 | 0.4530 | 0.8723 | 0.3023 | ||
4 | Fa_New | Mean | −45.7366 | −0.2796 | −2.2528 | −0.6576 |
SD | 154.9961 | 1.5670 | 6.7777 | 2.9451 | ||
SE | 30.9992 | 0.4524 | 1.9565 | 0.8502 | ||
95% CI | 163.3335 | 3.7482 | 6.8386 | 4.1681 | ||
5% CI | −374.8156 | −2.3767 | −19.5289 | −6.4020 | ||
p-Value | 0.1531 | 0.5491 | 0.2740 | 0.4556 | ||
5 | F | Mean | −28.9572 | −0.2056 | −1.7407 | 0.6327 |
SD | 58.1952 | 1.0825 | 4.2869 | 3.4869 | ||
SE | 11.6390 | 0.3125 | 1.2375 | 1.0066 | ||
95% CI | 59.0253 | 1.3965 | 5.6505 | 9.9859 | ||
5% CI | −141.7366 | −2.1999 | −8.7675 | −2.5614 | ||
p-Value | 0.0202 | 0.5241 | 0.1872 | 0.5425 | ||
5 | F×Fa_Bal | Mean | 801.0222 | −7.6659 | 102.9336 | 21.4346 |
SD | 4148.0000 | 23.6919 | 347.1661 | 112.0924 | ||
SE | 829.6284 | 6.8393 | 100.2182 | 32.3583 | ||
95% CI | 3549.2470 | 34.8358 | 1182.0997 | 373.6340 | ||
5% CI | −2919.4690 | −64.9516 | −121.5639 | −47.3431 | ||
p-Value | 0.3439 | 0.2862 | 0.3264 | 0.5213 |
Model | Daily Weight Gain | Meatiness Score | Ultrasound Muscle Thickness | Ultrasound Fat Thickness | ||
---|---|---|---|---|---|---|
Number of breeds | 25 | 12 | 12 | 12 | ||
3 | ΔFi/mean | Mean | −0.6121 | 0.0016 | −0.1222 | 0.7929 |
Median | −0.2735 | −0.1158 | −0.1879 | −0.0227 | ||
SD | 1.6100 | 0.5549 | 0.4002 | 3.002 | ||
SE | 0.3220 | 0.1602 | 0.1155 | 0.8666 | ||
95% CI | 0.6823 | 1.0539 | 0.6933 | 9.1162 | ||
5% CI | −1.8128 | −0.7502 | −0.7338 | −1.5407 | ||
Skewness | −3.0729 | 0.6818 | 0.8809 | 2.2538 | ||
Kurtosis | 13.4433 | −0.0660 | 0.7707 | 5.5839 | ||
p-Value | 0.0694 | 0.9923 | 0.3126 | 0.3798 | ||
3 | ΔFi/σP | Mean | −2.9855 | −0.0348 | −1.2018 | 2.7371 |
Median | −2.3955 | −1.2395 | −1.9737 | 0.1399 | ||
SD | 6.6259 | 6.6269 | 3.7540 | 12.7208 | ||
SE | 1.3252 | 1.9130 | 1.0837 | 3.6722 | ||
95% CI | 4.2630 | 11.5175 | 6.0817 | 38.3887 | ||
5% CI | −11.2270 | −10.6266 | −7.1350 | −7.5415 | ||
Skewness | −1.7125 | 0.4588 | 0.8607 | 2.2837 | ||
Kurtosis | 6.5279 | −0.2610 | 0.8097 | 5.9547 | ||
p-Value | 0.0337 | 0.9858 | 0.2911 | 0.4717 | ||
3 | ΔFi/σA | Mean | −3.9845 | −0.1044 | −1.3419 | 4.0202 |
Median | −3.2324 | −2.5247 | −2.7402 | −0.0684 | ||
SD | 8.0286 | 11.9353 | 6.5320 | 17.8301 | ||
SE | 1.6057 | 3.4454 | 1.8856 | 5.1471 | ||
95% CI | 5.3994 | 20.7801 | 13.9784 | 55.8558 | ||
5% CI | −14.3202 | −19.0753 | −11.7174 | −9.5718 | ||
Skewness | −1.3538 | 0.4687 | 1.1816 | 2.5572 | ||
Kurtosis | 4.6147 | −0.2423 | 2.3159 | 7.3876 | ||
p-Value | 0.0205 | 0.9764 | 0.4915 | 0.4512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justinski, C.; Wilkens, J.; Distl, O. Inbreeding Depression and Purging for Meat Performance Traits in German Sheep Breeds. Animals 2023, 13, 3547. https://doi.org/10.3390/ani13223547
Justinski C, Wilkens J, Distl O. Inbreeding Depression and Purging for Meat Performance Traits in German Sheep Breeds. Animals. 2023; 13(22):3547. https://doi.org/10.3390/ani13223547
Chicago/Turabian StyleJustinski, Cathrin, Jens Wilkens, and Ottmar Distl. 2023. "Inbreeding Depression and Purging for Meat Performance Traits in German Sheep Breeds" Animals 13, no. 22: 3547. https://doi.org/10.3390/ani13223547
APA StyleJustinski, C., Wilkens, J., & Distl, O. (2023). Inbreeding Depression and Purging for Meat Performance Traits in German Sheep Breeds. Animals, 13(22), 3547. https://doi.org/10.3390/ani13223547