Anaesthesia in Veterinary Oncology: The Effects of Surgery, Volatile and Intravenous Anaesthetics on the Immune System and Tumour Spread
Abstract
:Simple Summary
Abstract
1. Introduction
2. Search Methodology
3. The Immune System as the Main Player in the Tumour’s Defence
4. Tumour Surgery as a “Starting Point” for Tumour Progression
5. The Impact of the General Anaesthetics on the Immune System and Their “Anti-” and “Pro-Tumoral” Effects
5.1. Volatile Anaesthetic Agents
5.2. Intravenous Anaesthetic Agents
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wemelsfelder, F.; Mullan, S. Applying Ethological and Health Indicators to Practical Animal Welfare Assessment. Rev. Sci. Tech. OIE 2014, 33, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.E.; Colyer, A.; Haydock, R.M.; Hayek, M.G.; Park, J. Understanding How Dogs Age: Longitudinal Analysis of Markers of Inflammation, Immune Function, and Oxidative Stress. J. Gerontol. Ser. A 2018, 73, 720–728. [Google Scholar] [CrossRef]
- Pinello, K.; Amorim, I.; Pires, I.; Canadas-Sousa, A.; Catarino, J.; Faísca, P.; Branco, S.; Peleteiro, M.C.; Silva, D.; Severo, M.; et al. Vet-OncoNet: Malignancy Analysis of Neoplasms in Dogs and Cats. Vet. Sci. 2022, 9, 535. [Google Scholar] [CrossRef] [PubMed]
- Rafalko, J.M.; Kruglyak, K.M.; McCleary-Wheeler, A.L.; Goyal, V.; Phelps-Dunn, A.; Wong, L.K.; Warren, C.D.; Brandstetter, G.; Rosentel, M.C.; DiMarzio, L.; et al. Age at Cancer Diagnosis by Breed, Weight, Sex, and Cancer Type in a Cohort of More than 3,000 Dogs: Determining the Optimal Age to Initiate Cancer Screening in Canine Patients. PLoS ONE 2023, 18, e0280795. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Wang, Q.; Li, J.; Liu, H.; Meng, X.; Zhang, H. Aging, Cancer and Immunity. J. Cancer 2019, 10, 3021–3027. [Google Scholar] [CrossRef]
- Schwartz, S.M.; Urfer, S.R.; White, M.; Megquier, K.; Shrager, S.; The Dog Aging Project Consortium; Ruple, A. Lifetime Prevalence of Malignant and Benign Tumours in Companion Dogs: Cross-sectional Analysis of Dog Aging Project Baseline Survey. Vet. Comp. Oncol. 2022, 20, 797–804. [Google Scholar] [CrossRef]
- Fleming, J.M.; Creevy, K.E.; Promislow, D.E.L. Mortality in North American Dogs from 1984 to 2004: An Investigation into Age-, Size-, and Breed-Related Causes of Death: Mortality of Dogs in North America. J. Vet. Intern. Med. 2011, 25, 187–198. [Google Scholar] [CrossRef]
- Smith, A.N. Advances in Veterinary Oncology. Vet. Clin. N. Am. Small Anim. Pract. 2014, 44, xi–xii. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Shibata, J.; Ishihara, S.; Tada, N.; Kawai, K.; Tsuno, N.H.; Yamaguchi, H.; Sunami, E.; Kitayama, J.; Watanabe, T. Surgical Stress Response after Colorectal Resection: A Comparison of Robotic, Laparoscopic, and Open Surgery. Tech. Coloproctol. 2015, 19, 275–280. [Google Scholar] [CrossRef]
- Hume, K.R.; Johnson, J.L.; Williams, L.E. Adverse Effects of Concurrent Carboplatin Chemotherapy and Radiation Therapy in Dogs. J. Vet. Intern. Med. 2009, 23, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Wendelburg, K.M.; Price, L.L.; Burgess, K.E.; Lyons, J.A.; Lew, F.H.; Berg, J. Survival Time of Dogs with Splenic Hemangiosarcoma Treated by Splenectomy with or without Adjuvant Chemotherapy: 208 Cases (2001–2012). J. Am. Vet. Med. Assoc. 2015, 247, 393–403. [Google Scholar] [CrossRef] [PubMed]
- McNally, A.; Rossanese, M.; Suárez-Bonnet, A.; Hardas, A.; Yale, A.D. Urinary Bladder Hemangiosarcoma in a Cat Treated with Partial Cystectomy and Adjuvant Metronomic Cyclophosphamide and Thalidomide. Vet. Intern. Med. 2023, 37, 1488–1492. [Google Scholar] [CrossRef] [PubMed]
- Riggs, J.; Adams, V.J.; Hermer, J.V.; Dobson, J.M.; Murphy, S.; Ladlow, J.F. Outcomes Following Surgical Excision or Surgical Excision Combined with Adjunctive, Hypofractionated Radiotherapy in Dogs with Oral Squamous Cell Carcinoma or Fibrosarcoma. J. Am. Vet. Med. Assoc. 2018, 253, 73–83. [Google Scholar] [CrossRef]
- Inbar, S.; Neeman, E.; Avraham, R.; Benish, M.; Rosenne, E.; Ben-Eliyahu, S. Do Stress Responses Promote Leukemia Progression? An Animal Study Suggesting a Role for Epinephrine and Prostaglandin-E2 through Reduced NK Activity. PLoS ONE 2011, 6, e19246. [Google Scholar] [CrossRef]
- Goldfarb, Y.; Sorski, L.; Benish, M.; Levi, B.; Melamed, R.; Ben-Eliyahu, S. Improving Postoperative Immune Status and Resistance to Cancer Metastasis: A Combined Perioperative Approach of Immunostimulation and Prevention of Excessive Surgical Stress Responses. Ann. Surg. 2011, 253, 798–810. [Google Scholar] [CrossRef]
- Lee, Y.N. Effect of Anesthesia and Surgery on Immunity. J. Surg. Oncol. 1977, 9, 425–430. [Google Scholar] [CrossRef]
- Ogawa, K.; Hirai, M.; Katsube, T.; Murayama, M.; Hamaguchi, K.; Shimakawa, T.; Naritake, Y.; Hosokawa, T.; Kajiwara, T. Suppression of Cellular Immunity by Surgical Stress. Surgery 2000, 127, 329–336. [Google Scholar] [CrossRef]
- Lin, L.; Liu, C.; Tan, H.; Ouyang, H.; Zhang, Y.; Zeng, W. Anaesthetic Technique May Affect Prognosis for Ovarian Serous Adenocarcinoma: A Retrospective Analysis. Br. J. Anaesth. 2011, 106, 814–822. [Google Scholar] [CrossRef]
- Desborough, J.P. The Stress Response to Trauma and Surgery. Br. J. Anaesth. 2000, 85, 109–117. [Google Scholar] [CrossRef]
- Novitsky, Y.W.; Litwin, D.E.M.; Callery, M.P. The Net Immunologic Advantage of Laparoscopic Surgery. Surg. Endosc. 2004, 18, 1411–1419. [Google Scholar] [CrossRef]
- Dourado, A.; Gomes, A.; Teixeira, P.; Lobo, L.; Azevedo, J.T.; Dias, I.R.; Pinelas, R. Antinociceptive Effect of a Sacro-Coccygeal Epidural of Morphine and Lidocaine in Cats Undergoing Ovariohysterectomy. Vet. Sci. 2022, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- White, D.M.; Mair, A.R.; Martinez-Taboada, F. Opioid-Free Anaesthesia in Three Dogs. Open Vet. J. 2017, 7, 104. [Google Scholar] [CrossRef]
- Tomihari, M.; Nishihara, A.; Shimada, T.; Yanagawa, M.; Miyoshi, M.; Miyahara, K.; Oishi, A. A Comparison of the Immunological Effects of Propofol and Isoflurane for Maintenance of Anesthesia in Healthy Dogs. J. Vet. Med. Sci. 2015, 77, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Yeo, J.; Park, J.S.; Choi, G.-S.; Kim, H.J.; Kim, J.K.; Oh, J.; Park, S.Y. Comparison of the Analgesic Efficacy of Opioid-Sparing Multimodal Analgesia and Morphine-Based Patient-Controlled Analgesia in Minimally Invasive Surgery for Colorectal Cancer. World J. Surg. 2022, 46, 1788–1795. [Google Scholar] [CrossRef]
- Carvalho, M.I.; Pires, I.; Prada, J.; Ferreira, A.F.; Queiroga, F.L. Positive Interplay Between CD3+ T-Lymphocytes and Concurrent COX-2/EGFR Expression in Canine Malignant Mammary Tumors. Anticancer Res. 2015, 35, 2915–2920. [Google Scholar]
- Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of Natural Killer Cells. Nat. Immunol. 2008, 9, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Raskov, H.; Orhan, A.; Christensen, J.P.; Gögenur, I. Cytotoxic CD8+ T Cells in Cancer and Cancer Immunotherapy. Br. J. Cancer 2021, 124, 359–367. [Google Scholar] [CrossRef]
- Lee, Y.S.; Radford, K.J. The Role of Dendritic Cells in Cancer. In International Review of Cell and Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 348, pp. 123–178. ISBN 978-0-12-818351-9. [Google Scholar]
- Mittal, D.; Gubin, M.M.; Schreiber, R.D.; Smyth, M.J. New Insights into Cancer Immunoediting and Its Three Component Phases—Elimination, Equilibrium and Escape. Curr. Opin. Immunol. 2014, 27, 16–25. [Google Scholar] [CrossRef]
- Petrucci, G.N.; Lobo, L.; Queiroga, F.; Martins, J.; Prada, J.; Pires, I.; Henriques, J. Neutrophil-to-lymphocyte Ratio Is an Independent Prognostic Marker for Feline Mammary Carcinomas. Vet. Comp. Oncol. 2021, 19, 482–491. [Google Scholar] [CrossRef]
- Marconato, L.; Martini, V.; Stefanello, D.; Moretti, P.; Ferrari, R.; Comazzi, S.; Laganga, P.; Riondato, F.; Aresu, L. Peripheral Blood Lymphocyte/Monocyte Ratio as a Useful Prognostic Factor in Dogs with Diffuse Large B-Cell Lymphoma Receiving Chemoimmunotherapy. Vet. J. 2015, 206, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Conejo-Garcia, J.R.; Katsaros, D.; Gimotty, P.A.; Massobrio, M.; Regnani, G.; Makrigiannakis, A.; Gray, H.; Schlienger, K.; Liebman, M.N.; et al. Intratumoral T Cells, Recurrence, and Survival in Epithelial Ovarian Cancer. N. Engl. J. Med. 2003, 348, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Sato, E.; Olson, S.H.; Ahn, J.; Bundy, B.; Nishikawa, H.; Qian, F.; Jungbluth, A.A.; Frosina, D.; Gnjatic, S.; Ambrosone, C.; et al. Intraepithelial CD8 + Tumor-Infiltrating Lymphocytes and a High CD8+/Regulatory T Cell Ratio Are Associated with Favorable Prognosis in Ovarian Cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 18538–18543. [Google Scholar] [CrossRef]
- Macfarlane, M.J.; Macfarlane, L.L.; Scase, T.; Parkin, T.; Morris, J.S. Use of Neutrophil to Lymphocyte Ratio for Predicting Histopathological Grade of Canine Mast Cell Tumours. Vet. Rec. 2016, 179, 491. [Google Scholar] [CrossRef]
- Sottnik, J.L.; Rao, S.; Lafferty, M.H.; Thamm, D.H.; Morley, P.S.; Withrow, S.J.; Dow, S.W. Association of Blood Monocyte and Lymphocyte Count and Disease-Free Interval in Dogs with Osteosarcoma: CBC Is Prognostic in Osteosarcoma. J. Vet. Intern. Med. 2010, 24, 1439–1444. [Google Scholar] [CrossRef]
- Horiuchi, Y.; Hanazawa, A.; Nakajima, Y.; Nariai, Y.; Asanuma, H.; Kuwabara, M.; Yukawa, M.; Ito, H. T-Helper (Th) 1/Th2 Imbalance in the Peripheral Blood of Dogs with Malignant Tumor. Microbiol. Immunol. 2007, 51, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Chon, S.-K.; Im, K.-S.; Kim, N.-H.; Sur, J.-H. Correlation of Tumor-Infiltrating Lymphocytes to Histopathological Features and Molecular Phenotypes in Canine Mammary Carcinoma: A Morphologic and Immunohistochemical Morphometric Study. Can. J. Vet. Res. 2013, 77, 142–149. [Google Scholar]
- Carvalho, M.I.; Pires, I.; Prada, J.; Queiroga, F.L. A Role for T-Lymphocytes in Human Breast Cancer and in Canine Mammary Tumors. BioMed Res. Int. 2014, 2014, 130894. [Google Scholar] [CrossRef]
- Goswami, S.; Sahai, E.; Wyckoff, J.B.; Cammer, M.; Cox, D.; Pixley, F.J.; Stanley, E.R.; Segall, J.E.; Condeelis, J.S. Macrophages Promote the Invasion of Breast Carcinoma Cells via a Colony-Stimulating Factor-1/Epidermal Growth Factor Paracrine Loop. Cancer Res. 2005, 65, 5278–5283. [Google Scholar] [CrossRef]
- Biswas, S.K.; Mantovani, A. Macrophage Plasticity and Interaction with Lymphocyte Subsets: Cancer as a Paradigm. Nat. Immunol. 2010, 11, 889–896. [Google Scholar] [CrossRef]
- De Monte, L.; Reni, M.; Tassi, E.; Clavenna, D.; Papa, I.; Recalde, H.; Braga, M.; Di Carlo, V.; Doglioni, C.; Protti, M.P. Intratumor T Helper Type 2 Cell Infiltrate Correlates with Cancer-Associated Fibroblast Thymic Stromal Lymphopoietin Production and Reduced Survival in Pancreatic Cancer. J. Exp. Med. 2011, 208, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Tosolini, M.; Kirilovsky, A.; Mlecnik, B.; Fredriksen, T.; Mauger, S.; Bindea, G.; Berger, A.; Bruneval, P.; Fridman, W.-H.; Pagès, F.; et al. Clinical Impact of Different Classes of Infiltrating T Cytotoxic and Helper Cells (Th1, Th2, Treg, Th17) in Patients with Colorectal Cancer. Cancer Res. 2011, 71, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Gültekin, Ç. Comparison of the Analgesic Effects of Morphine and Tramadol after Tumor Surgery in Dogs. Open Vet. J. 2021, 11, 613. [Google Scholar] [CrossRef]
- Thaker, P.H.; Han, L.Y.; Kamat, A.A.; Arevalo, J.M.; Takahashi, R.; Lu, C.; Jennings, N.B.; Armaiz-Pena, G.; Bankson, J.A.; Ravoori, M.; et al. Chronic Stress Promotes Tumor Growth and Angiogenesis in a Mouse Model of Ovarian Carcinoma. Nat. Med. 2006, 12, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Miyata, T.; Honma, R.; Sato, A.; Matsumoto, H.; Koyama, H.; Tagawa, M. Effect of rCaIFN-γ Pretreatment on Propofol–Isoflurane Suppression of NK Cytotoxic Activity in the Peripheral Blood of Dogs. Res. Vet. Sci. 2015, 98, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Miyata, T.; Ohkusa, T.; Teshima, T.; Koyama, H. Effects of Recombinant Canine Interferon-γ Injected before General Anesthesia with Propofol and Isoflurane on Natural Killer Cytotoxic Activity during Anesthesia in Dogs. Res. Vet. Sci. 2019, 125, 416–420. [Google Scholar] [CrossRef]
- Hashemi Goradel, N.; Najafi, M.; Salehi, E.; Farhood, B.; Mortezaee, K. Cyclooxygenase-2 in Cancer: A Review. J. Cell. Physiol. 2019, 234, 5683–5699. [Google Scholar] [CrossRef]
- Hashemi, V.; Maleki, L.A.; Esmaily, M.; Masjedi, A.; Ghalamfarsa, G.; Namdar, A.; Yousefi, M.; Yousefi, B.; Jadidi-Niaragh, F. Regulatory T Cells in Breast Cancer as a Potent Anti-Cancer Therapeutic Target. Int. Immunopharmacol. 2020, 78, 106087. [Google Scholar] [CrossRef]
- Terhune, J.; Berk, E.; Czerniecki, B. Dendritic Cell-Induced Th1 and Th17 Cell Differentiation for Cancer Therapy. Vaccines 2013, 1, 527–549. [Google Scholar] [CrossRef]
- Ma, Y.; Shurin, G.V.; Peiyuan, Z.; Shurin, M.R. Dendritic Cells in the Cancer Microenvironment. J. Cancer 2013, 4, 36–44. [Google Scholar] [CrossRef]
- Tvedskov, T.F.; Jensen, M.-B.; Kroman, N.; Balslev, E. Iatrogenic Displacement of Tumor Cells to the Sentinel Node after Surgical Excision in Primary Breast Cancer. Breast Cancer Res. Treat. 2012, 131, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Raven, R.W. Surgical Oncology-Theory and Practice. J. Surg. Oncol. 2006, 30, 145–148. [Google Scholar] [CrossRef]
- Curtin, J.; Thomson, P.; Wong, G.; Lam, A.; Choi, S.-W. The Impact of Surgery on Circulating Malignant Tumour Cells in Oral Squamous Cell Carcinoma. Cancers 2023, 15, 584. [Google Scholar] [CrossRef] [PubMed]
- Bogden, A.; Moreau, J.-P.; Eden, P. Proliferative Response of Human and Animal Tumours to Surgical Wounding of Normal Tissues: Onset, Duration and Inhibition. Br. J. Cancer 1997, 75, 1021–1027. [Google Scholar] [CrossRef]
- Demicheli, R.; Miceli, R.; Moliterni, A.; Zambetti, M.; Hrushesky, W.J.M.; Retsky, M.W.; Valagussa, P.; Bonadonna, G. Breast Cancer Recurrence Dynamics Following Adjuvant CMF Is Consistent with Tumor Dormancy and Mastectomy-Driven Acceleration of the Metastatic Process. Ann. Oncol. 2005, 16, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Li, T.-S.; Kaneda, Y.; Ueda, K.; Hamano, K.; Zempo, N.; Esato, K. The Influence of Tumour Resection on Angiostatin Levels and Tumour Growth—An Experimental Study in Tumour-Bearing Mice. Eur. J. Cancer 2001, 37, 2283–2288. [Google Scholar] [CrossRef]
- Shiozawa, Y.; Pedersen, E.A.; Havens, A.M.; Jung, Y.; Mishra, A.; Joseph, J.; Kim, J.K.; Patel, L.R.; Ying, C.; Ziegler, A.M.; et al. Human Prostate Cancer Metastases Target the Hematopoietic Stem Cell Niche to Establish Footholds in Mouse Bone Marrow. J. Clin. Investig. 2011, 121, 1298–1312. [Google Scholar] [CrossRef]
- Patel, H.; Le Marer, N.; Wharton, R.Q.; Khan, Z.A.J.; Araia, R.; Glover, C.; Henry, M.M.; Allen-Mersh, T.G. Clearance of Circulating Tumor Cells after Excision of Primary Colorectal Cancer. Ann. Surg. 2002, 235, 226–231. [Google Scholar] [CrossRef]
- Hüsemann, Y.; Geigl, J.B.; Schubert, F.; Musiani, P.; Meyer, M.; Burghart, E.; Forni, G.; Eils, R.; Fehm, T.; Riethmüller, G.; et al. Systemic Spread Is an Early Step in Breast Cancer. Cancer Cell 2008, 13, 58–68. [Google Scholar] [CrossRef]
- Tremblay, P.-L.; Huot, J.; Auger, F.A. Mechanisms by Which E-Selectin Regulates Diapedesis of Colon Cancer Cells under Flow Conditions. Cancer Res. 2008, 68, 5167–5176. [Google Scholar] [CrossRef]
- Rahbari, N.N.; Aigner, M.; Thorlund, K.; Mollberg, N.; Motschall, E.; Jensen, K.; Diener, M.K.; Büchler, M.W.; Koch, M.; Weitz, J. Meta-Analysis Shows That Detection of Circulating Tumor Cells Indicates Poor Prognosis in Patients with Colorectal Cancer. Gastroenterology 2010, 138, 1714–1726.e13. [Google Scholar] [CrossRef]
- Seth, R.; Tai, L.H.; Falls, T.; De Souza, C.T.; Bell, J.C.; Carrier, M.; Atkins, H.; Boushey, R.; Auer, R.A. Surgical Stress Promotes the Development of Cancer Metastases by a Coagulation-Dependent Mechanism Involving Natural Killer Cells in a Murine Model. Ann. Surg. 2013, 258, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Bachman, S.L.; Hanly, E.J.; Nwanko, J.I.; Lamb, J.; Herring, A.E.; Marohn, M.R.; De Maio, A.; Talamini, M.A. The Effect of Timing of Pneumoperitoneum on the Inflammatory Response. Surg. Endosc. Other Interv. Tech. 2004, 18, 1640–1644. [Google Scholar] [CrossRef] [PubMed]
- Cummings III, K.C.; Zimmerman, N.M.; Maheshwari, K.; Cooper, G.S.; Cummings, L.C. Epidural Compared with Non-Epidural Analgesia and Cardiopulmonary Complications after Colectomy: A Retrospective Cohort Study of 20,880 Patients Using a National Quality Database. J. Clin. Anesth. 2018, 47, 12–18. [Google Scholar] [CrossRef]
- Sakai, E.M.; Connolly, L.A.; Klauck, J.A. Inhalation Anesthesiology and Volatile Liquid Anesthetics: Focus on Isoflurane, Desflurane, and Sevoflurane. Pharmacotherapy 2005, 25, 1773–1788. [Google Scholar] [CrossRef]
- Park, Y.; Ha, J.W. Comparison of One-Level Posterior Lumbar Interbody Fusion Performed With a Minimally Invasive Approach or a Traditional Open Approach. Spine 2007, 32, 537–543. [Google Scholar] [CrossRef]
- Zappalà, G.; McDonald, P.G.; Cole, S.W. Tumor Dormancy and the Neuroendocrine System: An Undisclosed Connection? Cancer Metastasis Rev. 2013, 32, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Ghiso, J.A. Models, Mechanisms and Clinical Evidence for Cancer Dormancy. Nat. Rev. Cancer 2007, 7, 834–846. [Google Scholar] [CrossRef]
- Schmidt-Kittler, O.; Ragg, T.; Daskalakis, A.; Granzow, M.; Ahr, A.; Blankenstein, T.J.F.; Kaufmann, M.; Diebold, J.; Arnholdt, H.; Müller, P.; et al. From Latent Disseminated Cells to Overt Metastasis: Genetic Analysis of Systemic Breast Cancer Progression. Proc. Natl. Acad. Sci. USA 2003, 100, 7737–7742. [Google Scholar] [CrossRef]
- O’Reilly, M.S.; Holmgren, L.; Shing, Y.; Chen, C.; Rosenthal, R.A.; Moses, M.; Lane, W.S.; Cao, Y.; Sage, E.H.; Folkman, J. Angiostatin: A Novel Angiogenesis Inhibitor That Mediates the Suppression of Metastases by a Lewis Lung Carcinoma. Cell 1994, 79, 315–328. [Google Scholar] [CrossRef]
- Varani, J.; Lovett, E.J.; Lundy, J. A Model of Tumor Cell Dormancy: Effects of Anesthesia and Surgery. J. Surg. Oncol. 1981, 17, 9–14. [Google Scholar] [CrossRef]
- Yang, H.; Lee, S.; Lee, S.; Kim, K.; Yang, Y.; Kim, J.H.; Adams, R.H.; Wells, J.M.; Morrison, S.J.; Koh, G.Y.; et al. Sox17 Promotes Tumor Angiogenesis and Destabilizes Tumor Vessels in Mice. J. Clin. Investig. 2013, 123, 418–431. [Google Scholar] [CrossRef]
- Queiroga, F.L.; Pires, I.; Parente, M.; Gregório, H.; Lopes, C.S. COX-2 over-Expression Correlates with VEGF and Tumour Angiogenesis in Canine Mammary Cancer. Vet. J. 2011, 189, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Sui, W.; Zhang, Y.; Wang, Z.; Wang, Z.; Jia, Q.; Wu, L.; Zhang, W. Antitumor Effect of a Selective COX-2 Inhibitor, Celecoxib, May Be Attributed to Angiogenesis Inhibition through Modulating the PTEN/PI3K/Akt/HIF-1 Pathway in an H22 Murine Hepatocarcinoma Model. Oncol. Rep. 2014, 31, 2252–2260. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Y.; Jia, W.; Deng, H.; Li, G.; Deng, W.; Chen, J.; Kim, B.Y.S.; Jiang, W.; Liu, Q.; et al. Low-Dose Anti-Angiogenic Therapy Sensitizes Breast Cancer to PD-1 Blockade. Clin. Cancer Res. 2020, 26, 1712–1724. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yuan, J.; Righi, E.; Kamoun, W.S.; Ancukiewicz, M.; Nezivar, J.; Santosuosso, M.; Martin, J.D.; Martin, M.R.; Vianello, F.; et al. Vascular Normalizing Doses of Antiangiogenic Treatment Reprogram the Immunosuppressive Tumor Microenvironment and Enhance Immunotherapy. Proc. Natl. Acad. Sci. USA 2012, 109, 17561–17566. [Google Scholar] [CrossRef] [PubMed]
- De Bonis, A.; Collivignarelli, F.; Paolini, A.; Falerno, I.; Rinaldi, V.; Tamburro, R.; Bianchi, A.; Terragni, R.; Gianfelici, J.; Frescura, P.; et al. Sentinel Lymph Node Mapping with Indirect Lymphangiography for Canine Mast Cell Tumour. Vet. Sci. 2022, 9, 484. [Google Scholar] [CrossRef] [PubMed]
- Karayannopoulou, M.; Anagnostou, T.; Margariti, A.; Kritsepi-Konstantinou, M.; Psalla, D.; Savvas, I.; Kazakos, G. Effect of Anaesthesia on Cell-Mediated Immunity in Dogs Undergoing Mastectomy for Mammary Cancer. Vet. Anaesth. Analg. 2022, 49, 265–274. [Google Scholar] [CrossRef]
- Gaynor, J.S. Control of Cancer Pain in Veterinary Patients. Vet. Clin. N. Am. Small Anim. Pract. 2008, 38, 1429–1448. [Google Scholar] [CrossRef]
- Te Boveldt, N.; Vernooij-Dassen, M.; Burger, N.; Vissers, K.; Engels, Y. Pain and Its Interference with Daily Activitiesin Medical Oncology Outpatients. Pain Phys. 2013, 16, 379–389. [Google Scholar] [CrossRef]
- Miyata, T.; Kodama, T.; Honma, R.; Nezu, Y.; Harada, Y.; Yogo, T.; Hara, Y.; Tagawa, M. Influence of General Anesthesia with Isoflurane Following Propofol-Induction on Natural Killer Cell Cytotoxic Activities of Peripheral Blood Lymphocytes in Dogs. J. Vet. Med. Sci. 2013, 75, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Jun, I.-J.; Jo, J.-Y.; Kim, J.-I.; Chin, J.-H.; Kim, W.-J.; Kim, H.R.; Lee, E.-H.; Choi, I.-C. Impact of Anesthetic Agents on Overall and Recurrence-Free Survival in Patients Undergoing Esophageal Cancer Surgery: A Retrospective Observational Study. Sci. Rep. 2017, 7, 14020. [Google Scholar] [CrossRef] [PubMed]
- Wigmore, T.J.; Jhanji, S. Long-Term Survival for Patients Undergoing Volatile versus IV Anesthesia for Cancer Surgery. Retrospective Analysis. Anesthesiology 2016, 124, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Lascelles, B.D.X.; Kirkby Shaw, K. An Extended Release Local Anaesthetic: Potential for Future Use in Veterinary Surgical Patients? Vet. Med. Sci. 2016, 2, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Romano, M.; Portela, D.A.; Breghi, G.; Otero, P.E. Stress-Related Biomarkers in Dogs Administered Regional Anaesthesia or Fentanyl for Analgesia during Stifle Surgery. Vet. Anaesth. Analg. 2016, 43, 44–54. [Google Scholar] [CrossRef]
- Grubb, T.; Lobprise, H. Local and Regional Anaesthesia in Dogs and Cats: Overview of Concepts and Drugs (Part 1). Vet. Med. Sci. 2020, 6, 209–217. [Google Scholar] [CrossRef]
- Gargiulo, S.; Greco, A.; Gramanzini, M.; Esposito, S.; Affuso, A.; Brunetti, A.; Vesce, G. Mice Anesthesia, Analgesia, and Care, Part I: Anesthetic Considerations in Preclinical Research. ILAR J. 2012, 53, E55–E69. [Google Scholar] [CrossRef]
- Mahmoud, K.; Ammar, A. Immunomodulatory Effects of Anesthetics during Thoracic Surgery. Anesthesiol. Res. Pract. 2011, 2011, 317410. [Google Scholar] [CrossRef]
- Mitsuhata, H.; Shimizu, R.; Yokoyama, M.M. Suppressive Effects of Volatile Anesthetics on Cytokine Release in Human Peripheral Blood Mononuclear Cells. Int. J. Immunopharmacol. 1995, 17, 529–534. [Google Scholar] [CrossRef]
- Melamed, R.; Bar-Yosef, S.; Shakhar, G.; Shakhar, K.; Ben-Eliyahu, S. Suppression of Natural Killer Cell Activity and Promotion of Tumor Metastasis by Ketamine, Thiopental, and Halothane, but Not by Propofol: Mediating Mechanisms and Prophylactic Measures. Anesth. Analg. 2003, 97, 1331–1339. [Google Scholar] [CrossRef]
- Huang, H.; Benzonana, L.L.; Zhao, H.; Watts, H.R.; Perry, N.J.S.; Bevan, C.; Brown, R.; Ma, D. Prostate Cancer Cell Malignancy via Modulation of HIF-1α Pathway with Isoflurane and Propofol Alone and in Combination. Br. J. Cancer 2014, 111, 1338–1349. [Google Scholar] [CrossRef]
- Deng, X.; Vipani, M.; Liang, G.; Gouda, D.; Wang, B.; Wei, H. Sevoflurane Modulates Breast Cancer Cell Survival via Modulation of Intracellular Calcium Homeostasis. BMC Anesth. 2020, 20, 253. [Google Scholar] [CrossRef]
- Zhang, W.; Shao, X. Isoflurane Promotes Non-Small Cell Lung Cancer Malignancy by Activating the Akt-Mammalian Target of Rapamycin (mTOR) Signaling Pathway. Med. Sci. Monit. 2016, 22, 4644–4650. [Google Scholar] [CrossRef]
- Boost, K.A.; Flondor, M.; Hofstetter, C.; Platacis, I.; Stegewerth, K.; Hoegl, S.; Nguyen, T.; Muhl, H.; Zwissler, B. The Beta-Adrenoceptor Antagonist Propranolol Counteracts Anti-Inflammatory Effects of Isoflurane in Rat Endotoxemia. Acta Anaesthesiol. Scand. 2007, 51, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.; Gleed, R.; British Small Animal Veterinary Association. BSAVA Manual of Small Animal Anaesthesia and Analgesia, 2nd ed.; BSAVA: Gloucester, UK, 1999. [Google Scholar]
- Brand, J.-M.; Kirchner, H.; Poppe, C.; Schmucker, P. The Effects of General Anesthesia on Human Peripheral Immune Cell Distribution and Cytokine Production. Clin. Immunol. Immunopathol. 1997, 83, 190–194. [Google Scholar] [CrossRef]
- Wei, H.; Sun, T.; Liu, J.; Wang, X.; Zhao, G.; Shi, J.; Chen, Y. Isoflurane Activates AMP-Activated Protein Kinase to Inhibit Proliferation, and Promote Apoptosis and Autophagy in Cervical Carcinoma Both in vitro and in vivo. J. Recept. Signal Transduct. 2021, 41, 538–545. [Google Scholar] [CrossRef]
- Markovic, S.N.; Murasko, D.M. Inhibition of Induction of Natural Killer Activity in Mice by General Anesthesia (Avertin): Role of Interferon. Clin. Immunol. Immunopathol. 1991, 60, 181–189. [Google Scholar] [CrossRef]
- Inada, T.; Yamanouchi, Y.; Jomura, S.; Sakamoto, S.; Takahashi, M.; Kambara, T.; Shingu, K. Effect of Propofol and Isoflurane Anaesthesia on the Immune Response to Surgery. Anaesthesia 2004, 59, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Faller, S.; Strosing, K.M.; Ryter, S.W.; Buerkle, H.; Loop, T.; Schmidt, R.; Hoetzel, A. The Volatile Anesthetic Isoflurane Prevents Ventilator-Induced Lung Injury via Phosphoinositide 3-Kinase/Akt Signaling in Mice. Anesth. Analg. 2012, 114, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Dolcet, X.; Llobet, D.; Pallares, J.; Matias-Guiu, X. NF-kB in Development and Progression of Human Cancer. Virchows Arch. 2005, 446, 475–482. [Google Scholar] [CrossRef]
- Kawaraguchi, Y.; Horikawa, Y.T.; Murphy, A.N.; Murray, F.; Miyanohara, A.; Ali, S.S.; Head, B.P.; Patel, P.M.; Roth, D.M.; Patel, H.H. Volatile Anesthetics Protect Cancer Cells against Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis via Caveolins. Anesthesiology 2011, 115, 499–508. [Google Scholar] [CrossRef]
- Benzonana, L.L.; Perry, N.J.S.; Watts, H.R.; Yang, B.; Perry, I.A.; Coombes, C.; Takata, M.; Ma, D. Isoflurane, a Commonly Used Volatile Anesthetic, Enhances Renal Cancer Growth and Malignant Potential via the Hypoxia-Inducible Factor Cellular Signaling Pathway in vitro. Anesthesiology 2013, 119, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, M.; Zhou, Y.; Dangelmajer, S.; Kahlert, U.D.; Xie, R.; Xi, Q.; Shahveranov, A.; Ye, D.; Lei, T. Isoflurane Enhances the Malignant Potential of Glioblastoma Stem Cells by Promoting Their Viability, Mobility in Vitro and Migratory Capacity in Vivo. Br. J. Anaesth. 2016, 116, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhao, H.; Hennah, L.; Ning, J.; Liu, J.; Tu, H.; Ma, D. Impact of Isoflurane on Malignant Capability of Ovarian Cancer in vitro. Br. J. Anaesth. 2015, 114, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Minguet, G.; Franck, T.; Joris, J.; Ceusters, J.; Mouithys-Mickalad, A.; Serteyn, D.; Sandersen, C. Effects of Isoflurane and Sevoflurane on the Neutrophil Myeloperoxidase System of Horses. Vet. Immunol. Immunopathol. 2015, 165, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Prokopowicz, Z.; Marcinkiewicz, J.; Katz, D.R.; Chain, B.M. Neutrophil Myeloperoxidase: Soldier and Statesman. Arch. Immunol. Ther. Exp. 2012, 60, 43–54. [Google Scholar] [CrossRef]
- Meier, A.; Gross, E.T.E.; Schilling, J.M.; Seelige, R.; Jung, Y.; Santosa, E.; Searles, S.; Lin, T.; Tu, X.M.; Patel, H.H.; et al. Isoflurane Impacts Murine Melanoma Growth in a Sex-Specific, Immune-Dependent Manner: A Brief Report. Anesth. Analg. 2018, 126, 1910–1913. [Google Scholar] [CrossRef]
- Tyther, R.; O’Brien, J.; Wang, J.; Redmond, H.P.; Shorten, G. Effect of Sevoflurane on Human Neutrophil Apoptosis. Eur. J. Anaesthesiol. 2005, 20, 111–115. [Google Scholar] [CrossRef]
- Tyther, R.; Fanning, N.; Halligan, M.; Wang, J.; Redmond, H.P.; Shorten, G. The Effect of the Anaesthetic Agent Isoflurane on the Rate of Neutrophil Apoptosis in vitro. Ir. J. Med. Sci. 2001, 170, 41. [Google Scholar] [CrossRef]
- Morisaki, H.; Aoyama, Y.; Shimada, M.; Ochiai, R.; Takeda, J. Leucocyte Distribution during Sevoflurane Anaesthesia. Br. J. Anaesth. 1998, 80, 502–503. [Google Scholar] [CrossRef]
- Loop, T.; Dovi-Akue, D.; Frick, M.; Roesslein, M.; Egger, L.; Humar, M.; Hoetzel, A.; Schmidt, R.; Borner, C.; Pahl, H.L.; et al. Volatile Anesthetics Induce Caspase-Dependent, Mitochondria-Mediated Apoptosis in Human T Lymphocytes in vitro. Anesthesiology 2005, 102, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Levins, K.J.; Prendeville, S.; Conlon, S.; Buggy, D.J. The Effect of Anesthetic Technique on Μ-Opioid Receptor Expression and Immune Cell Infiltration in Breast Cancer. J. Anesth. 2018, 32, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Elena, G.; Amerio, N.; Ferrero, P.; Bay, M.L.; Valenti, J.; Colucci, D.; Puig, N.R. Effects of Repetitive Sevoflurane Anaesthesia on Immune Response, Select Biochemical Parameters and Organ Histology in Mice. Lab. Anim. 2003, 37, 193–203. [Google Scholar] [CrossRef]
- Wei, H.; Liang, G.; Yang, H.; Wang, Q.; Hawkins, B.; Madesh, M.; Wang, S.; Eckenhoff, R.G. The Common Inhalational Anesthetic Isoflurane Induces Apoptosis via Activation of Inositol 1,4,5-Trisphosphate Receptors. Anesthesiology 2008, 108, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Beck-Schimmer, B.; Baumann, L.; Restin, T.; Eugster, P.; Hasler, M.; Booy, C.; Schläpfer, M. Sevoflurane Attenuates Systemic Inflammation Compared with Propofol, but Does Not Modulate Neuro-Inflammation: A Laboratory Rat Study. Eur. J. Anaesthesiol. 2017, 34, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Tavare, A.N.; Perry, N.J.S.; Benzonana, L.L.; Takata, M.; Ma, D. Cancer Recurrence after Surgery: Direct and Indirect Effects of Anesthetic Agents*. Int. J. Cancer 2012, 130, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Su, Z.; Liu, H.; Liu, Y. Retraction Notice to “Anti-Proliferation and Anti-Metastatic Effects of Sevoflurane on Human Osteosarcoma U2OS and Saos-2 Cells” [Experimental and Molecular Pathology 108 (2019) 121–130]. Exp. Mol. Pathol. 2022, 127, 104784. [Google Scholar] [CrossRef] [PubMed]
- Kurosawa, S. Anesthesia in Patients with Cancer Disorders. Curr. Opin. Anaesthesiol. 2012, 25, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Seki, S.; Takahashi, T.; Kawarabayashi, N.; Higuchi, H.; Habu, Y.; Sugahara, S.; Kazama, T. Combined Spinal and General Anesthesia Attenuates Liver Metastasis by Preserving Th1/Th2 Cytokine Balance. Anesthesiology 2007, 106, 499–506. [Google Scholar] [CrossRef]
- Ishikawa, M.; Tanaka, S.; Arai, M.; Genda, Y.; Sakamoto, A. Differences in microRNA Changes of Healthy Rat Liver between Sevoflurane and Propofol Anesthesia. Anesthesiology 2012, 117, 1245–1252. [Google Scholar] [CrossRef]
- Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 2020, 21, 1723. [Google Scholar] [CrossRef] [PubMed]
- Nesek Adam, V.; Marin, D.; Popović, M.; Berić Lerotić, S.; Gudan Kurilj, A.; Matičić, D.; Vnuk, D. The Effect of Repeated Sevoflurane and Nitrous Oxide Exposure on Immunity in Rabbits. Vet. Arh. 2018, 88, 37–48. [Google Scholar] [CrossRef]
- Argano, M.; De Maria, R.; Vogl, C.; Rodlsberger, K.; Buracco, P.; Larenza Menzies, M.P. Canine Mammary Tumour Cells Exposure to Sevoflurane: Effects on Cell Proliferation and Neuroepithelial Transforming Gene 1 Expression. Vet. Anaesth. Analg. 2019, 46, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Cattai, A.; Rabozzi, R.; Ferasin, H.; Isola, M.; Franci, P. Haemodynamic Changes during Propofol Induction in Dogs: New Findings and Approach of Monitoring. BMC Vet. Res. 2018, 14, 282. [Google Scholar] [CrossRef]
- Kato, K.; Itami, T.; Nomoto, K.; Endo, Y.; Tamura, J.; Oyama, N.; Sano, T.; Yamashita, K. The Anesthetic Effects of Intramuscular Alfaxalone in Dogs Premedicated with Low-Dose Medetomidine and/or Butorphanol. J. Vet. Med. Sci. 2021, 83, 53–61. [Google Scholar] [CrossRef]
- Lee, M.; Kim, S.; Moon, C.; Park, J.; Lee, H.; Jeong, S.M. Anesthetic Effect of Different Ratio of Ketamine and Propofol in Dogs. J. Vet. Clin. 2017, 34, 234–240. [Google Scholar] [CrossRef]
- Ilkiw, J.E. Balanced Anesthetic Techniques in Dogs and Cats. Clin. Tech. Small Anim. Pract. 1999, 14, 27–37. [Google Scholar] [CrossRef]
- Eden, C.; Esses, G.; Katz, D.; DeMaria, S. Effects of Anesthetic Interventions on Breast Cancer Behavior, Cancer-Related Patient Outcomes, and Postoperative Recovery. Surg. Oncol. 2018, 27, 266–274. [Google Scholar] [CrossRef]
- Barr, C.A.; Alvarado, F.; Chang, Y.-M.; Luo, J.; Garden, O.A. The Impact of Alfaxalone, Propofol and Ketamine on Canine Peripheral Blood Lymphocyte Cytotoxicity in vitro. Res. Vet. Sci. 2021, 136, 182–184. [Google Scholar] [CrossRef]
- Li, C.; Xia, M.; Wang, H.; Li, W.; Peng, J.; Jiang, H. Propofol Facilitates Migration and Invasion of Oral Squamous Cell Carcinoma Cells by Upregulating SNAI1 Expression. Life Sci. 2020, 241, 117143. [Google Scholar] [CrossRef]
- Meng, C.; Song, L.; Wang, J.; Li, D.; Liu, Y.; Cui, X. Propofol Induces Proliferation Partially via Downregulation of P53 Protein and Promotes Migration via Activation of the Nrf2 Pathway in Human Breast Cancer Cell Line MDA-MB-231. Oncol. Rep. 2017, 37, 841–848. [Google Scholar] [CrossRef]
- Feng, C.; Qian, D.; Chen, C. A Meta-Analysis and Systematic Review of Propofol on Liver Ischemia-Reperfusion Injury Protection during Hepatocellular Carcinoma Anesthesia Surgery. Ann. Palliat. Med. 2021, 10, 6726–6735. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Hu, Y.; Li, W.; Li, L.; Li, S.; Zhang, M.; Li, Q. The Neuroprotective Effect of Propofol against Brain Ischemia Mediated by the Glutamatergic Signaling Pathway in Rats. Neurochem. Res. 2011, 36, 1724–1731. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, G.; Yu, Y.; Wang, Y. The Role of Phosphoinositide-3-Kinase/Akt Pathway in Propofol-Induced Postconditioning against Focal Cerebral Ischemia-Reperfusion Injury in Rats. Brain Res. 2009, 1297, 177–184. [Google Scholar] [CrossRef]
- Kubo, K.; Inada, T.; Shingu, K. Possible Role of Propofol’s Cyclooxygenase-Inhibiting Property in Alleviating Dopaminergic Neuronal Loss in the Substantia Nigra in an MPTP-Induced Murine Model of Parkinson’s Disease. Brain Res. 2011, 1387, 125–133. [Google Scholar] [CrossRef]
- Nyssen, P.; Franck, T.; Serteyn, D.; Mouithys-Mickalad, A.; Hoebeke, M. Propofol Metabolites and Derivatives Inhibit the Oxidant Activities of Neutrophils and Myeloperoxidase. Free Radic. Biol. Med. 2022, 191, 164–175. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, Y.; Huang, L.; Zhang, F.; Kang, R. Effects of Propofol on Cancer Development and Chemotherapy: Potential Mechanisms. Eur. J. Pharmacol. 2018, 831, 46–51. [Google Scholar] [CrossRef]
- Ma, X.; Wang, T.; Zhao, Z.-L.; Jiang, Y.; Ye, S. Propofol Suppresses Proinflammatory Cytokine Production by Increasing ABCA1 Expression via Mediation by the Long Noncoding RNA LOC286367. Mediat. Inflamm. 2018, 2018, 8907143. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Liang, F.; Liu, G.; Zhao, G. Anesthetic Drug Propofol Inhibits the Expression of Interleukin-6, Interleukin-8 and Cyclooxygenase-2, a Potential Mechanism for Propofol in Suppressing Tumor Development and Metastasis. Oncol. Lett. 2018, 15, 9523–9528. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, W.; Xie, S.; Xue, F.; Zhu, X. The Role of Inhaled Anesthetics in Tumorigenesis and Tumor Immunity. Cancer Manag. Res. 2020, 12, 1601–1609. [Google Scholar] [CrossRef]
- Sen, Y.; Xiyang, H.; Yu, H. Effect of Thoracic Paraspinal Block-Propofol Intravenous General Anesthesia on VEGF and TGF-β in Patients Receiving Radical Resection of Lung Cancer. Medicine 2019, 98, e18088. [Google Scholar] [CrossRef] [PubMed]
- Pirttikangas, C.-O.; Salo, M.; Mansikka, M.; Grönroos, J.; Pulkki, K.; Peltola, O. The Influence of Anaesthetic Technique upon the Immune Response to Hysterectomy: A Comparison of Propofol Infusion and Isoflurane. Anaesthesia 1995, 50, 1056–1061. [Google Scholar] [CrossRef]
- Yamada, R.; Tsuchida, S.; Hara, Y.; Tagawa, M.; Ogawa, R. Apoptotic Lymphocytes Induced by Surgical Trauma in Dogs. J. Anesth. 2002, 16, 131–137. [Google Scholar] [CrossRef]
- Faroni, E.; Sabattini, S.; Lenzi, J.; Guerra, D.; Comazzi, S.; Aresu, L.; Mazzanti, A.; Zanardi, S.; Cola, V.; Lotito, E.; et al. Sleeping Beauty: Anesthesia May Promote Relapse in Dogs with Diffuse Large B-Cell Lymphoma in Complete Remission After Chemo-Immunotherapy. Front. Vet. Sci. 2021, 8, 760603. [Google Scholar] [CrossRef]
- Inada, T.; Kubo, K.; Shingu, K. Promotion of Interferon-Gamma Production by Natural Killer Cells via Suppression of Murine Peritoneal Macrophage Prostaglandin E2 Production Using Intravenous Anesthetic Propofol. Int. Immunopharmacol. 2010, 10, 1200–1208. [Google Scholar] [CrossRef]
- Kambara, T.; Inada, T.; Kubo, K.; Shingu, K. Propofol Suppresses Prostaglandin E2 Production in Human Peripheral Monocytes. Immunopharmacol. Immunotoxicol. 2009, 31, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Kushida, A.; Inada, T.; Shingu, K. Enhancement of Antitumor Immunity after Propofol Treatment in Mice. Immunopharmacol. Immunotoxicol. 2007, 29, 477–486. [Google Scholar] [CrossRef]
- Hiller, J.G.; Perry, N.J.; Poulogiannis, G.; Riedel, B.; Sloan, E.K. Perioperative Events Influence Cancer Recurrence Risk after Surgery. Nat. Rev. Clin. Oncol. 2018, 15, 205–218. [Google Scholar] [CrossRef]
- Mao, L.; Lin, S.; Lin, J. The Effects of Anesthetics on Tumor Progression. Int. J. Physiol. Pathophysiol. Pharmacol. 2013, 5, 1–10. [Google Scholar]
- Cui, C.; Zhang, D.; Sun, K.; Zhu, Y.; Xu, J.; Kang, Y.; Zhang, G.; Cai, Y.; Mao, S.; Long, R.; et al. Propofol Maintains Th17/Treg Cell Balance in Elderly Patients Undergoing Lung Cancer Surgery through GABAA Receptor. BMC Immunol. 2022, 23, 58. [Google Scholar] [CrossRef] [PubMed]
- Knochelmann, H.M.; Dwyer, C.J.; Bailey, S.R.; Amaya, S.M.; Elston, D.M.; Mazza-McCrann, J.M.; Paulos, C.M. When Worlds Collide: Th17 and Treg Cells in Cancer and Autoimmunity. Cell Mol. Immunol. 2018, 15, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.J.; Moreno-Bueno, G.; Sarrio, D.; Locascio, A.; Cano, A.; Palacios, J.; Nieto, M.A. Correlation of Snail Expression with Histological Grade and Lymph Node Status in Breast Carcinomas. Oncogene 2002, 21, 3241–3246. [Google Scholar] [CrossRef]
- Nimmo, A.F.; Absalom, A.R.; Bagshaw, O.; Biswas, A.; Cook, T.M.; Costello, A.; Grimes, S.; Mulvey, D.; Shinde, S.; Whitehouse, T.; et al. Guidelines for the Safe Practice of Total Intravenous Anaesthesia (TIVA): Joint Guidelines from the Association of Anaesthetists and the Society for Intravenous Anaesthesia. Anaesthesia 2019, 74, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, R.; Canfrán, S.; Gómez de Segura, I.A.; Aguado, D. Intraoperative Effect of Low Doses of Ketamine or Dexmedetomidine Continuous Rate Infusions in Healthy Dogs Receiving Propofol Total Intravenous Anaesthesia and Epidural Anaesthesia: A Prospective, Randomised Clinical Study. Res. Vet. Sci. 2022, 143, 4–12. [Google Scholar] [CrossRef]
- Nolan, A.; Reid, J. Pharmacokinetics of Propofol Administered by Infusion in Dogs Undergoing Surgery. Br. J. Anaesth. 1993, 70, 546–551. [Google Scholar] [CrossRef]
- Guzel, O.; Sevim, G.; Aydin Kaya, D.; Sezer, D.; Erek, M.; Esen Gursel, F.; Atmaca, G.; Demirtas, B.; Matur, E. Ketamine or Propofol Anesthesia in Dogs: How Do They Affect Cytokines, Antioxidants and Neutrophil Functions? J. Hell. Vet. Med. Soc. 2022, 73, 3783–3792. [Google Scholar] [CrossRef]
- Schneemilch, C.E.; Ittenson, A.; Ansorge, S.; Hachenberg, T.; Bank, U. Effect of 2 Anesthetic Techniques on the Postoperative Proinflammatory and Anti-Inflammatory Cytokine Response and Cellular Immune Function to Minor Surgery. J. Clin. Anesth. 2005, 17, 517–527. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Wu, M.-Y.; Chien, Y.-J.; Su, I.-M.; Wang, S.-C.; Kao, M.-C. Anesthesia and Long-Term Oncological Outcomes: A Systematic Review and Meta-Analysis. Anesth. Analg. 2021, 132, 623–634. [Google Scholar] [CrossRef]
- Ferré, P.J.; Pasloske, K.; Whittem, T.; Ranasinghe, M.G.; Li, Q.; Lefebvre, H.P. Plasma Pharmacokinetics of Alfaxalone in Dogs after an Intravenous Bolus of Alfaxan-CD RTU. Vet. Anaesth. Analg. 2006, 33, 229–236. [Google Scholar] [CrossRef]
- Murison, P.J.; Taboada, F.M. Effect of Propofol and Alfaxalone on Pain after Ovariohysterectomy in Cats. Vet. Rec. 2010, 166, 334–335. [Google Scholar] [CrossRef]
- Mathis, A.; Pinelas, R.; Brodbelt, D.C.; Alibhai, H.I. Comparison of Quality of Recovery from Anaesthesia in Cats Induced with Propofol or Alfaxalone. Vet. Anaesth. Analg. 2012, 39, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, C.P.; Mathis, A.; Mora, S.S.; Brodbelt, D.; Alibhai, H. Evaluation of the Quality of the Recovery after Administration of Propofol or Alfaxalone for Induction of Anaesthesia in Dogs Anaesthetized for Magnetic Resonance Imaging. Vet. Anaesth. Analg. 2012, 39, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zheng, X.; Zhou, Y.; Zhu, W.; Ou, Y.; Shu, M.; Gao, X.; Leng, T.; Qiu, P.; Yan, G. Alphaxalone Inhibits Growth, Migration and Invasion of Rat C6 Malignant Glioma Cells. Steroids 2013, 78, 1041–1045. [Google Scholar] [CrossRef]
- Suzuki, T.; Tomioka, M.; Uchida, M.K. Inhibitory Effects of Steroidal Anesthetics on Histamine Release from Rat Mast Cells Stimulated by Concanavalin A, Compound 48/80 and A23187. Gen. Pharmacol. Vasc. Syst. 1988, 19, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Sheehy, K.A.; Lippold, C.; Rice, A.L.; Nobrega, R.; Finkel, J.C.; Quezado, Z.M. Subanesthetic Ketamine for Pain Management in Hospitalized Children, Adolescents, and Young Adults: A Single-Center Cohort Study. J. Pain Res. 2017, 10, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Lilius, T.O.; Jokinen, V.; Neuvonen, M.S.; Niemi, M.; Kalso, E.A.; Rauhala, P.V. Ketamine Coadministration Attenuates Morphine Tolerance and Leads to Increased Brain Concentrations of Both Drugs in the Rat. Br. J. Pharmacol. 2015, 172, 2799–2813. [Google Scholar] [CrossRef] [PubMed]
- Loix, S.; De Kock, M.; Henin, P. The Anti-Inflammatory Effects of Ketamine: State of the Art. Acta Anaesthesiol. Belg. 2011, 62, 47–58. [Google Scholar]
- Spencer, H.F.; Berman, R.Y.; Boese, M.; Zhang, M.; Kim, S.Y.; Radford, K.D.; Choi, K.H. Effects of an Intravenous Ketamine Infusion on Inflammatory Cytokine Levels in Male and Female Sprague–Dawley Rats. J. Neuroinflamm. 2022, 19, 75. [Google Scholar] [CrossRef]
- Lu, W.; Wang, L.; Wo, C.; Yao, J. Ketamine Attenuates Osteoarthritis of the Knee via Modulation of Inflammatory Responses in a Rabbit Model. Mol. Med. Rep. 2016, 13, 5013–5020. [Google Scholar] [CrossRef]
- Brinck, E.; Tiippana, E.; Heesen, M.; Bell, R.F.; Straube, S.; Moore, R.A.; Kontinen, V. Perioperative Intravenous Ketamine for Acute Postoperative Pain in Adults. Cochrane Database Syst. Rev. 2018, 68, 110071. [Google Scholar] [CrossRef]
- Plein, L.M.; Rittner, H.L. Opioids and the Immune System—Friend or Foe. Br. J. Pharmacol. 2018, 175, 2717–2725. [Google Scholar] [CrossRef]
- Hardy, J.; Quinn, S.; Fazekas, B.; Plummer, J.; Eckermann, S.; Agar, M.; Spruyt, O.; Rowett, D.; Currow, D.C. Randomized, Double-Blind, Placebo-Controlled Study to Assess the Efficacy and Toxicity of Subcutaneous Ketamine in the Management of Cancer Pain. J. Clin. Oncol. 2012, 30, 3611–3617. [Google Scholar] [CrossRef] [PubMed]
- Lankveld, D.P.K.; Bull, S.; Van Dijk, P.; Fink-Gremmels, J.; Hellebrekers, L.J. Ketamine Inhibits LPS-Induced Tumour Necrosis Factor-Alpha and Interleukin-6 in an Equine Macrophage Cell Line. Vet. Res. 2005, 36, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Ohta, N.; Ohashi, Y.; Fujino, Y. Ketamine Inhibits Maturation of Bone Marrow-Derived Dendritic Cells and Priming of the Th1-Type Immune Response. Anesth. Analg. 2009, 109, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Beilin, B.; Rusabrov, Y.; Shapira, Y.; Roytblat, L.; Greemberg, L.; Yardeni, I.Z.; Bessler, H. Low-Dose Ketamine Affects Immune Responses in Humans during the Early Postoperative Period. Br. J. Anaesth. 2007, 99, 522–527. [Google Scholar] [CrossRef]
- Braun, S.; Gaza, N.; Werdehausen, R.; Hermanns, H.; Bauer, I.; Durieux, M.E.; Hollmann, M.W.; Stevens, M.F. Ketamine Induces Apoptosis via the Mitochondrial Pathway in Human Lymphocytes and Neuronal Cells. Br. J. Anaesth. 2010, 105, 347–354. [Google Scholar] [CrossRef]
- Hirota, K.; Lambert, D.G. Ketamine: New Uses for an Old Drug? Br. J. Anaesth. 2011, 107, 123–126. [Google Scholar] [CrossRef]
- Laudanski, K.; Qing, M.; Oszkiel, H.; Zawadka, M.; Lapko, N.; Nowak, Z.; Worthen, G.S. Ketamine Affects In Vitro Differentiation of Monocyte into Immature Dendritic Cells. Anesthesiology 2015, 123, 628–641. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro, A.V.; Petrucci, G.N.; Dourado, A.; Pires, I. Anaesthesia in Veterinary Oncology: The Effects of Surgery, Volatile and Intravenous Anaesthetics on the Immune System and Tumour Spread. Animals 2023, 13, 3392. https://doi.org/10.3390/ani13213392
Pinheiro AV, Petrucci GN, Dourado A, Pires I. Anaesthesia in Veterinary Oncology: The Effects of Surgery, Volatile and Intravenous Anaesthetics on the Immune System and Tumour Spread. Animals. 2023; 13(21):3392. https://doi.org/10.3390/ani13213392
Chicago/Turabian StylePinheiro, Ana Vidal, Gonçalo N. Petrucci, Amândio Dourado, and Isabel Pires. 2023. "Anaesthesia in Veterinary Oncology: The Effects of Surgery, Volatile and Intravenous Anaesthetics on the Immune System and Tumour Spread" Animals 13, no. 21: 3392. https://doi.org/10.3390/ani13213392
APA StylePinheiro, A. V., Petrucci, G. N., Dourado, A., & Pires, I. (2023). Anaesthesia in Veterinary Oncology: The Effects of Surgery, Volatile and Intravenous Anaesthetics on the Immune System and Tumour Spread. Animals, 13(21), 3392. https://doi.org/10.3390/ani13213392