Impact of Exogenous Xylanase and Phytase, Individually or in Combination, on Performance, Digesta Viscosity and Carcass Characteristics in Broiler Birds Fed Wheat-Based Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds Management and Experimental Treatments
2.2. Data Collection for Growth Performance
2.3. Digestibility Assay
2.4. Data Collection for Carcass Characteristics
2.5. Determination of Viscosity
2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Digestibility
3.3. Viscosity and Carcass Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choct, M. Feed non-starch polysaccharides: Chemical structures and nutritional significance. Feed Milling Int. 1997, 191, 13–26. [Google Scholar]
- Yi, Z.; Kornegay, E.; Ravindran, V.; Lindemann, M.; Wilson, J. Effectiveness of Natuphos® phytase in improving the bioavailabilities of phosphorus and other nutrients in soybean meal-based semipurified diets for young pigs. J. Anim. Sci. 1996, 74, 1601–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, S.P.; Gendley, M.K.; Pathak, A.K.; Gupta, R. Influence of an enzyme cocktail and phytase individually or in combination in Ven Cobb broiler chickens. Br. Poult. Sci. 2010, 51, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Cowieson, A.J.; Singh, D.N.; Adeola, O. Prediction of ingredient quality and the effect of a combination of xylanase, amylase, protease and phytase in the diets of broiler chicks. 2. Energy and nutrient utilisation. Br. Poult. Sci. 2006, 47, 490–500. [Google Scholar] [CrossRef]
- Beg, Q.; Kapoor, M.; Mahajan, L.; Hoondal, G. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 2001, 56, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Chesson, A. Non-starch polysaccharide degrading enzymes in poultry diets: Influence of ingredients on the selection of activities. World’s Poult. Sci. J. 2001, 57, 251–263. [Google Scholar] [CrossRef]
- Selle, P.; Cadogan, D.; Ru, Y.; Partridge, G. Impact of exogenous enzymes in sorghum-or wheat-based broiler diets on nutrient utilization and growth performance. Int. J. Poult. Sci. 2010, 9, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Gitoee, A.; Janmohammadi, H.; Taghizadeh, A.; Rafat, S. Effects of a multi-enzyme on performance and carcass characteristics of broiler chickens fed corn-soybean meal basal diets with different metabolizable energy levels. J. Appl. Anim. Res. 2015, 43, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Olukosi, O.; Cowieson, A.; Adeola, O. Influence of enzyme supplementation of maize–soyabean meal diets on carcase composition, whole-body nutrient accretion and total tract nutrient retention of broilers. Br. Poult. Sci. 2008, 49, 436–445. [Google Scholar] [CrossRef]
- Anwar, U.; Ahmad, S.; Abdelgayed, S.; Hussain, M.; Rehman, A.; Riaz, M.; Yousaf, M.; Bilal, M.; Bhatti, S.; Rahman, M. Influence of Phytase with Or without Organic Acid (Sodium Di-Formate) Supplementation on Growth Performance, Carcass Response, Protein and Mineral Digestibility in Starter Phase of Broilers. Braz. J. Poult. Sci. 2022, 24. [Google Scholar] [CrossRef]
- Iyayi, E.; Fru-Nji, F.; Adeola, O. True phosphorus digestibility of black-eyed pea and peanut flour without or with phytase supplementation in broiler chickens. Poult. Sci. 2013, 92, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Cowieson, A.; Bedford, M. The effect of phytase and carbohydrase on ileal amino acid digestibility in monogastric diets: Complimentary mode of action? World’s Poult. Sci. J. 2009, 65, 609–624. [Google Scholar] [CrossRef]
- Bedford, M.; Cowieson, A. Exogenous enzymes and their effects on intestinal microbiology. Anim. Feed Sci. Technol. 2012, 173, 76–85. [Google Scholar] [CrossRef]
- Collett, S.R. Nutrition and wet litter problems in poultry. Anim. Feed Sci. Technol. 2012, 173, 65–75. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Rose, S.; Kettlewell, P. Effect of ambient storage of wheat samples on their nutritive value for chickens. Br. Poult. Sci. 2006, 47, 342–349. [Google Scholar] [CrossRef]
- Choct, M.; Hughes, R. The nutritive value of new season grains for poultry. Recent Adv. Anim. Nutr. Aust. 1997, 11, 146–150. [Google Scholar]
- Ravindran, V.; Johnston, S.; Camden, B.; Thomas, D. Influence of storage of New Zealand wheats on energy availability for poultry. Recent Adv. Anim. Nutr. Aust. Armidale 2001, 13, 30A. [Google Scholar]
- Kornegay, E. Digestion of phosphorus and other nutrients: The role of phytases and factors influencing their activity. Enzym. Farm Anim. Nutr. 2001, 237–271. [Google Scholar]
- Bedford, M.R. Exogenous enzymes in monogastric nutrition—Their current value and future benefits. Anim. Feed Sci. Technol. 2000, 86, 1–13. [Google Scholar] [CrossRef]
- Ockenden, I.; Dorsch, J.A.; Reid, M.M.; Lin, L.; Grant, L.K.; Raboy, V.; Lott, J.N. Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley (Hordeum vulgare L.) low phytic acid genotypes. Plant Sci. 2004, 167, 1131–1142. [Google Scholar] [CrossRef]
- Rostagno, H.; Albino, L.; Donzele, J.; Gomes, P.; Oliveira, R.; Lopes, D.; Ferreira, A.; Barreto, S.d.T.; Euclides, R. Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional Requirements; Animal Science Department UFV: Viçosa, Brazil, 2011. [Google Scholar]
- Chiang, C.-C.; Yu, B.; Chiou, P.W.-S. Effects of xylanase supplementation to wheat-based diet on the performance and nutrient availability of broiler chickens. Asian-Australas. J. Anim. Sci. 2005, 18, 1141–1146. [Google Scholar] [CrossRef]
- AOAC. Official Method 973. 18 fibre (acid detergent) and lignin in animal feed. In Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Arlington, VA, USA, 2005; Volume 222. [Google Scholar]
- Galmarini, M.; Baeza, R.; Sanchez, V.; Zamora, M.; Chirife, J. Comparison of the viscosity of trehalose and sucrose solutions at various temperatures: Effect of guar gum addition. LWT-Food Sci. Technol. 2011, 44, 186–190. [Google Scholar] [CrossRef]
- Minitab Inc. Minitab 16 Statistical Software; Minitab Inc.: State College, PA, USA, 2010. [Google Scholar]
- Lin, L.; Ockenden, I.; Lott, J.N. The concentrations and distribution of phytic acid-phosphorus and other mineral nutrients in wild-type and low phytic acid 1-1 (lpa 1-1) corn (Zea mays L.) grains and grain parts. Can. J. Bot. 2005, 83, 131–141. [Google Scholar] [CrossRef]
- Lenis, N.P.; Jongbloed, A.W. New technologies in low pollution swine diets: Diet manipulation and use of synthetic amino acids, phytase and phase feeding for reduction of nitrogen and phosphorus excretion and ammonia emission-Review. Asian-Australas. J. Anim. Sci. 1999, 12, 305–327. [Google Scholar] [CrossRef]
- Adeola, O.; Sands, J. Does supplemental dietary microbial phytase improve amino acid utilization? A perspective that it does not. J. Anim. Sci. 2003, 81, E78–E85. [Google Scholar]
- Bedford, M.A.; Schulze, H. Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 1998, 11, 91–114. [Google Scholar] [CrossRef]
- Kim, J.; Simmins, P.; Mullan, B.; Pluske, J. The digestible energy value of wheat for pigs, with special reference to the post-weaned animal. Anim. Feed Sci. Technol. 2005, 122, 257–287. [Google Scholar] [CrossRef]
- Wu, H.; Pratley, J.; Lemerle, D.; An, M.; Liu, D.L. Autotoxicity of wheat (Triticum aestivum L.) as determined by laboratory bioassays. Plant Soil 2007, 296, 85–93. [Google Scholar] [CrossRef]
- Joyce, C.; Deneau, A.; Peterson, K.; Ockenden, I.; Raboy, V.; Lott, J.N. The concentrations and distributions of phytic acid phosphorus and other mineral nutrients in wild-type and low phytic acid Js-12-LPA wheat (Triticum aestivum) grain parts. Botany 2005, 83, 1599–1607. [Google Scholar] [CrossRef]
- Guillon, F.; Tranquet, O.; Quillien, L.; Utille, J.-P.; Ortiz, J.J.O.; Saulnier, L. Generation of polyclonal and monoclonal antibodies against arabinoxylans and their use for immunocytochemical location of arabinoxylans in cell walls of endosperm of wheat. J. Cereal Sci. 2004, 40, 167–182. [Google Scholar] [CrossRef]
- Juanpere, J.; Perez-Vendrell, A.; Angulo, E.; Brufau, J. Assessment of potential interactions between phytase and glycosidase enzyme supplementation on nutrient digestibility in broilers. Poult. Sci. 2005, 84, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Selle, P.; Pittolo, P.; Gill, R.; Bryden, W. Xylanase plus phytase supplementation of broiler diets based on different wheats. In Proceedings of the Australian Poultry Science Symposum, Sydney, Australia, 11–13 February 2002. [Google Scholar]
- Yaghobfar, A.; Kalantar, M. Effect of non-starch polysaccharide (NSP) of wheat and barley supplemented with exogenous enzyme blend on growth performance, gut microbial, pancreatic enzyme activities, expression of glucose transporter (SGLT1) and mucin producer (MUC2) genes of broiler chickens. Braz. J. Poult. Sci. 2017, 19, 629–638. [Google Scholar]
- Ravindran, V.; Selle, P.; Bryden, W. Effects of phytase supplementation, individually and in combination, with glycanase, on the nutritive value of wheat and barley. Poult. Sci. 1999, 78, 1588–1595. [Google Scholar] [CrossRef]
- Bedford, M.R.; Classen, H.L. Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentration is effected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks. J. Nutr. 1992, 122, 560–569. [Google Scholar] [PubMed]
- Iji, P.A.; Saki, A.A.; Tivey, D.R. Intestinal structure and function of broiler chickens on diets supplemented with a mannan oligosaccharide. J. Sci. Food Agric. 2001, 81, 1186–1192. [Google Scholar] [CrossRef]
- Steenfeldt, S.; Pettersson, D. Improvements in nutrient digestibility and performance of broiler chickens fed a wheat-and-rye based diet supplemented with enzymes. J. Anim. Feed Sci. 2001, 10, 143–158. [Google Scholar] [CrossRef]
- Wu, Y.; Ravindran, V.; Hendriks, W. Effects of microbial phytase, produced by solid-state fermentation, on the performance and nutrient utilisation of broilers fed maize-and wheat-based diets. Br. Poult. Sci. 2003, 44, 710–718. [Google Scholar] [CrossRef]
- Choct, M.; Annison, G. The inhibition of nutrient digestion by wheat pentosans. Br. J. Nutr. 1992, 67, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Choct, M.; Hughes, R.; Trimble, R.; Annison, G. The use of enzymes in low-ME wheat broiler diets: Effects on AME and gut viscosity. In Proceedings of the Australian Poultry Science Symposium; University of Sydney: Sydney, Australia, 1994. [Google Scholar]
- Conchie, J.; Gelman, A.; Levvy, G. Inhibition of glycosidases by aldonolactones of corresponding configuration. The specificity of α-l-arabinosidase. Biochem. J. 1968, 106, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Ronalds, J. Glycosidases and glycanases of wheat flour doughs. J. Sci. Food Agric. 1972, 23, 199–205. [Google Scholar] [CrossRef]
- Adeola, O.; Bedford, M.R. Exogenous dietary xylanase ameliorates viscosity-induced anti-nutritional effects in wheat-based diets for White Pekin ducks (Anas platyrinchos domesticus). Br. J. Nutr. 2004, 92, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choct, M.; Hughes, R.J.; Bedford, M. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. Br. Poult. Sci. 1999, 40, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Sinlae, M.; Choct, M. Xylanase supplementation affects the caecal microflora of broilers. In Proceedings of the Australian Poultry Science Symposium; University of Sydney: Sydney, Australia, 2000. [Google Scholar]
- Azhar, M.; Rose, S.; Mackenzie, A.; Mansbridge, S.; Bedford, M.; Lovegrove, A.; Pirgozliev, V. Wheat sample affects growth performance and the apparent metabolisable energy value for broiler chickens. Br. Poult. Sci. 2019, 60, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ravindran, V.; Thomas, D.; Birtles, M.; Hendriks, W. Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus. Br. Poult. Sci. 2004, 45, 76–84. [Google Scholar] [CrossRef]
- Van der Meulen, J.; Inborr, J.; Barker, J. Effects of cell wall degrading enzymes on carbohydrate fractions and metabolites in stomach and ileum of pigs fed wheat bran based diets. Arch. Anim. Nutr. 2001, 54, 101–115. [Google Scholar] [CrossRef]
- Graham, P.; Marriott, N. Value enhancement of turkey dark meat through restructuring techniques. Poult. Sci. 1986, 65, 2056–2064. [Google Scholar] [CrossRef]
- Nortey, T.; Patience, J.; Simmins, P.; Trottier, N.; Zijlstra, R. Effects of individual or combined xylanase and phytase supplementation on energy, amino acid, and phosphorus digestibility and growth performance of grower pigs fed wheat-based diets containing wheat millrun. J. Anim. Sci. 2007, 85, 1432–1443. [Google Scholar] [CrossRef] [Green Version]
- Svihus, B.; Herstad, O.; Newman, C.W. Effect of high-moisture storage of barley, oats, and wheat on chemical content and nutritional value for broiler chickens. Acta Agric. Scand. A Anim. Sci. 1997, 47, 39–47. [Google Scholar] [CrossRef]
- Svihus, B.; Selmer-Olsen, I.; Bråthen, E. Effect of different preservation methods for high-moisture barley on feeding value for broiler chickens. Acta Agric. Scand. A Anim. Sci. 1995, 45, 252–259. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Sands, J.; Guenter, W.; Nyachoti, C. Nutrient digestibility and performance responses of growing pigs fed phytase-and xylanase-supplemented wheat-based diets. J. Anim. Sci. 2008, 86, 848–857. [Google Scholar] [CrossRef] [Green Version]
- Barrera, M.; Cervantes, M.; Sauer, W.; Araiza, A.; Torrentera, N.; Cervantes, M. Ileal amino acid digestibility and performance of growing pigs fed wheat-based diets supplemented with xylanase. J. Anim. Sci. 2004, 82, 1997–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żyła, K.; Gogol, D.; Koreleski, J.; Światkiewicz, S.; Ledoux, D.R. Simultaneous application of phytase and xylanase to broiler feeds based on wheat: In vitro measurements of phosphorus and pentose release from wheats and wheat-based feeds. J. Sci. Food Agric. 1999, 79, 1832–1840. [Google Scholar] [CrossRef]
- Pettersson, D.; Åman, P. Enzyme supplementation of a poultry diet containing rye and wheat. Br. J. Nutr. 1989, 62, 139–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourreza, J.; Classen, H. Effects of supplemental phytase and xylanase on phytate phosphorus degradation, ileal protein and energy digestibility of a corn-soybean-wheat bran diets in broiler chicks. J. Agric. Sci. Technol. 2001, 3, 19–25. [Google Scholar]
- Svihus, B.; Gullord, M. Effect of chemical content and physical characteristics on nutritional value of wheat, barley and oats for poultry. Anim. Feed Sci. Technol. 2002, 102, 71–92. [Google Scholar] [CrossRef]
- Meng, X.; Slominski, B. Nutritive values of corn, soybean meal, canola meal, and peas for broiler chickens as affected by a multicarbohydrase preparation of cell wall degrading enzymes. Poult. Sci. 2005, 84, 1242–1251. [Google Scholar] [CrossRef]
Ingredients% | 1.5 Years Old Wheat | 2.5 Years Old Wheat | ||||||
---|---|---|---|---|---|---|---|---|
0 Xyln 0 Phyt | 1 Xyln 0 Phyt | 0 Xyln 1 Phyt | 1 Xyln 1 phyt | 0 Xyln 0 Phyt | 1 Xyln 0 Phyt | 0 Xyln 1 Phyt | 1 Xyln 1 phyt | |
Wheat | 57.52 | 57.52 | 57.52 | 57.52 | 57.52 | 57.52 | 57.52 | 57.52 |
Soybean Meal 46% | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 |
Canola Meal | 3.49 | 3.49 | 3.49 | 3.49 | 3.49 | 3.49 | 3.49 | 3.49 |
Poultry By-product Meal | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 | 3.20 |
Limestone | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Rice Polish | 3.57 | 3.57 | 3.57 | 3.57 | 3.57 | 3.57 | 3.57 | 3.57 |
Monocalcium Phospahte | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 |
Lysine Sulfate 70% | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Methionine 99% | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 |
Sodium Chloride | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
Sodium Bicarbonate | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 |
Premix | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 |
L-Threonine 98% | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Nutrient composition (g/kg) of experimental diets for 1–21 days | ||||||||
Crude Protein | 23.07 | 23.07 | 23.07 | 23.07 | 23.07 | 23.07 | 23.07 | 23.07 |
Metabolizable energy (Kcal/kg) | 2987 | 2987 | 2987 | 2987 | 2987 | 2987 | 2987 | 2987 |
Calcium | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
Available Phosphorus | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 |
Sodium | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 |
Chloride | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 |
Methionine (D) | 0.51 | 0.51 | 0.51 | 0.51 | 0.51 | 0.51 | 0.51 | 0.51 |
Methionine plus cysteine | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
Lysine | 1.22 | 1.22 | 1.22 | 1.22 | 1.22 | 1.22 | 1.22 | 1.22 |
L-Threonine | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 |
Tryptophan | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Arginine | 1.38 | 1.38 | 1.38 | 1.38 | 1.38 | 1.38 | 1.38 | 1.38 |
L-Valine | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
Ingredients% | 1.5 Years Old Wheat | 2.5 Years Old Wheat | ||||||
---|---|---|---|---|---|---|---|---|
0 Xyln 0 Phyt | 1 Xyln 0 Phyt | 0 Xyln 1 Phyt | 1 Xyln 1 phyt | 0 Xyln 0 Phyt | 1 Xyln 0 Phyt | 0 Xyln 1 Phyt | 1 Xyln 1 phyt | |
Wheat | 62.04 | 62.04 | 62.04 | 62.04 | 62.04 | 62.04 | 62.04 | 62.04 |
Soybean Meal 46% | 23.24 | 23.24 | 23.24 | 23.24 | 23.24 | 23.24 | 23.24 | 23.24 |
Poultry By-product Meal | 1.55 | 1.55 | 1.55 | 1.55 | 1.55 | 1.55 | 1.55 | 1.55 |
Limestone | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 |
Rice Polish | 8.07 | 8.07 | 8.07 | 8.07 | 8.07 | 8.07 | 8.07 | 8.07 |
Poultry Oil | 2.82 | 2.82 | 2.82 | 2.82 | 2.82 | 2.82 | 2.82 | 2.82 |
Monocalcium Phospahte | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 |
Lysine Sulfate 70% | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 |
Methionine 99% | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 |
Sodium Chloride | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
Sodium Bicarbonate | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 |
Premix | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 |
L-Threonine 98% | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Nutrient composition (g/kg) of experimental diets for 22–35 days | ||||||||
Crude Protein | 18.40 | 18.40 | 18.40 | 18.40 | 18.90 | 18.90 | 18.90 | 18.90 |
Metabolizable energy (Kcal/kg) | 3205 | 3205 | 3205 | 3205 | 3197 | 3197 | 3197 | 3197 |
Calcium | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 |
Available. Phosphorus | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 |
Sodium | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Chloride | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 |
Methionine (D) | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 |
Methionine plus cystine | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 |
Lysine | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 |
L-Threonine | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 |
Tryptophan | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
Arginine | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 |
Isoleucine | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 |
L-Valine | 0.78 | 0.78 | 0.78 | 0.78 | 0.78 | 0.78 | 0.78 | 0.78 |
Items | 1.5 Years Old Wheat | 2.5 Years Old Wheat | SEM | p-Values | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 Xyln 0 Phyt | 1 Xyln 0 Phyt | 0 Xyln 1 Phyt | 1 Xyln 1 phyt | 0 Xyln 0 Phyt | 1 Xyln 0 Phyt | 0 Xyln 1 Phyt | 1 Xyln 1 Phyt | Wheat | Xylanase | Phytase | Wheat × Xylanase | Wheat × Phytase | Xylanase × Phytase | Wheat × Xylanase × Phytase | ||
0–21 day Feed intake (g) | 1255.1 | 1274.8 | 1268.5 | 1284.8 | 1254.1 | 1272.3 | 1264.0 | 1287.3 | 8.70 | 0.753 | 0.031 | 0.037 | 0.753 | 0.931 | 0.920 | 0.627 |
Weight gain (g) | 895.36 | 908.40 | 910.86 | 933.85 | 910.47 | 921.02 | 903.81 | 921.71 | 8.50 | 0.7531 | 0.027 | 0.045 | 0.7531 | 0.9316 | 0.920 | 0.879 |
Feed conversion ratio | 1.41 | 1.40 | 1.39 | 1.37 | 1.37 | 1.38 | 1.40 | 1.40 | 0.004 | 0.544 | 0.685 | 0.981 | 0.587 | 0.027 | 0.477 | 0.697 |
22–35 day Feed intake (g) | 2160.3 | 2181.1 | 2176.6 | 2199.0 | 2160.1 | 2179.3 | 2172.8 | 2195.1 | 4.13 | 0.243 | 0.019 | 0.041 | 0.833 | 0.489 | 0.567 | 0.833 |
Weight gain (g) | 1216.5 | 1251.5 | 1246.4 | 1271.0 | 1216.4 | 1248.7 | 1243.0 | 1268.3 | 3.99 | 0.2430 | 0.001 | 0.015 | 0.8330 | 0.4894 | 0.5677 | 0.685 |
Feed conversion ratio | 1.77 | 1.74 | 1.74 | 1.73 | 1.77 | 1.75 | 1.75 | 1.73 | 0.007 | 0.372 | 0.011 | 0.021 | 0.801 | 0.994 | 0.001 | 0.546 |
Items | 1.5 Years Old Wheat | 2.5 Years Old Wheat | SEM | p-Values | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 Xyln 0 Phyt | 1 Xyln 0 Phyt | 0 Xyln 1 Phyt | 1 Xyln 1 phyt | 0 Xyln 0 Phyt | 1 Xyln 0 Phyt | 0 Xyln 1 Phyt | 1 Xyln 1 Phyt | Wheat | Xylanase | Phytase | Wheat × Xylanase | Wheat× Phytase | Xylanase × Phytase | Wheat × Xylanase × Phytase | ||
Dry matter digestibility | 61.15 | 65.57 | 66.46 | 67.39 | 60.87 | 65.97 | 67.36 | 68.070 | 1.21 | 0.501 | 0.001 | 0.013 | 0.854 | 0.560 | 0.011 | 0.720 |
Crude protein digestibility | 64.71 | 71.50 | 71.63 | 75.60 | 65.99 | 71.43 | 73.610 | 77.325 | 1.19 | 0.074 | 0.021 | 0.033 | 0.520 | 0.326 | 0.092 | 0.655 |
Crude fiber digestibility | 62.265 | 71.525 | 69.850 | 77.510 | 62.09 | 71.59 | 70.14 | 77.18 | 1.37 | 0.963 | 0.044 | 0.049 | 0.893 | 0.980 | 0.177 | 0.761 |
Ether extract digestibility | 77.300 | 81.525 | 82.71 | 87.33 | 75.26 | 82.06 | 83.48 | 87.50 | 1.29 | 0.826 | 0.011 | 0.017 | 0.449 | 0.353 | 0.364 | 0.236 |
Ash digestibility | 60.335 | 67.360 | 71.285 | 74.180 | 63.730 | 71.600 | 68.170 | 75.810 | 1.36 | 0.054 | 0.020 | 0.031 | 0.075 | 0.010 | 0.149 | 0.191 |
Items | 1.5 Years Old Wheat | 2.5 Years Old Wheat | SEM | p-Values | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 Xyln 0 Phyt | 1 Xyln 0 Phyt | 0 Xyln 1 Phyt | 1 Xyln 1 phyt | 0 Xyln 0 Phyt | 1 Xyln 0 Phyt | 0 Xyln 1 Phyt | 1 Xyln 1 Phyt | Wheat | Xylanase | Phytase | Wheat × Xylanase | Wheat × Phytase | Xylanase × Phytase | Wheat × Xylanase × Phytase | ||
Viscosity (cps) | 15.61 | 9.77 | 9.71 | 6.68 | 14.25 | 9.09 | 9.19 | 6.30 | 1.72 | 0.962 | 0.031 | 0.039 | 0.675 | 0.891 | 0.049 | 0.654 |
Carcass Characteristics | 1.5 Years Old Wheat | 2.5 Years Old Wheat | SEM | p-Values | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 Xyln 0 Phyt | 1 Xyln 0 Phyt | 0 Xyln 1 Phyt | 1 Xyln 1 phyt | 0 Xyln 0 Phyt | 1 Xyln 0 Phyt | 0 Xyln 1 Phyt | 1 Xyln 1 Phyt | Wheat | Xylanase | Phytase | Wheat × Xylanase | Wheat × Phytase | Xylanase × Phytase | Wheat × Xylanase × Phytase | ||
Dressing% | 53 | 57 | 55 | 60 | 51 | 55 | 57 | 61 | 5.69 | 0.501 | 0.052 | 0.131 | 0.854 | 0.560 | 0.110 | 0.720 |
Breast% | 20 | 21 | 22 | 25 | 21 | 22 | 23 | 25 | 3.71 | 0.071 | 0.087 | 0.081 | 0.769 | 0.661 | 0.442 | 0.320 |
Thigh% | 9 | 10 | 10 | 12 | 11 | 10 | 11 | 13 | 2.16 | 0.063 | 0.077 | 0.213 | 0.601 | 0.061 | 0.052 | 0.205 |
Liver% | 2.0 | 2.1 | 2.1 | 2.4 | 2.1 | 2.2 | 2.3 | 2.4 | 0.03 | 0.061 | 0.152 | 0.231 | 0.844 | 0.601 | 0.190 | 0.420 |
Heart% | 0.42 | 0.44 | 0.43 | 0.50 | 0.44 | 0.48 | 0.46 | 0.56 | 0.07 | 0.812 | 0.770 | 0.513 | 0.051 | 0.081 | 0.073 | 0.201 |
Gizzard% | 1.20 | 1.21 | 1.22 | 1.26 | 1.21 | 1.22 | 1.24 | 1.30 | 0.16 | 0.061 | 0.067 | 0.342 | 0.569 | 0.061 | 0.053 | 0.320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, U.; Riaz, M.; Farooq Khalid, M.; Mustafa, R.; Farooq, U.; Ashraf, M.; Munir, H.; Auon, M.; Hussain, M.; Hussain, M.; et al. Impact of Exogenous Xylanase and Phytase, Individually or in Combination, on Performance, Digesta Viscosity and Carcass Characteristics in Broiler Birds Fed Wheat-Based Diets. Animals 2023, 13, 278. https://doi.org/10.3390/ani13020278
Anwar U, Riaz M, Farooq Khalid M, Mustafa R, Farooq U, Ashraf M, Munir H, Auon M, Hussain M, Hussain M, et al. Impact of Exogenous Xylanase and Phytase, Individually or in Combination, on Performance, Digesta Viscosity and Carcass Characteristics in Broiler Birds Fed Wheat-Based Diets. Animals. 2023; 13(2):278. https://doi.org/10.3390/ani13020278
Chicago/Turabian StyleAnwar, Urooj, Muhammad Riaz, Muhammad Farooq Khalid, Riaz Mustafa, Umar Farooq, Muhammad Ashraf, Hassan Munir, Muhammad Auon, Mubasher Hussain, Munawar Hussain, and et al. 2023. "Impact of Exogenous Xylanase and Phytase, Individually or in Combination, on Performance, Digesta Viscosity and Carcass Characteristics in Broiler Birds Fed Wheat-Based Diets" Animals 13, no. 2: 278. https://doi.org/10.3390/ani13020278
APA StyleAnwar, U., Riaz, M., Farooq Khalid, M., Mustafa, R., Farooq, U., Ashraf, M., Munir, H., Auon, M., Hussain, M., Hussain, M., Ayaz Chisti, M. F., Bilal, M. Q., Rehman, A. u., & Rahman, M. A. u. (2023). Impact of Exogenous Xylanase and Phytase, Individually or in Combination, on Performance, Digesta Viscosity and Carcass Characteristics in Broiler Birds Fed Wheat-Based Diets. Animals, 13(2), 278. https://doi.org/10.3390/ani13020278