Shape, Microstructure, and Chemical Composition of Pearls from the Freshwater Clam Diplodon chilensis Native to South America
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ponder, W.; Hutchings, P.; Chapman, R. Overview of the conservation of Australian marine invertebrates. In Report for Environment Australia; Australian Museum: Sydney, Australia, 2002; pp. 1–588. [Google Scholar]
- Rosenberg, G. A new critical estimate of named species-level diversity of the recent Mollusca. Amer. Malac. Bull. 2014, 32, 308–322. [Google Scholar] [CrossRef]
- Ponder, W.F.; Lindberg, D.R.; Ponder, J.M. Shell, Body, and Muscles. In Biology and Evolution of the Mollusca; Ponder, W.F., Lindberg, D.R., Ponder, J.M., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 1–890. [Google Scholar]
- Erlandson, J.M.; Rick, T.C.; Braje, T.J.; Steinberg, A.; Vellanoweth, R.L. Human impacts on ancient shellfish: A 10,000 year record from San Miguel Island, California. J. Archaeol. Sci. 2008, 35, 2144–2152. [Google Scholar] [CrossRef]
- Klein, R.G.; Steele, T.E. Archaeological shellfish size and later human evolution in Africa. Proc. Natl. Acad. Sci. USA 2013, 110, 10910–10915. [Google Scholar] [CrossRef] [PubMed]
- Meehan, B. Shell Bed to Shell Midden; Australian Institute of Aboriginal Studies: Canberra, Australia, 1982; pp. 1–189. [Google Scholar]
- Burgos, A.; Younger, A.C.; Wolverton, S. Human mollusk interactions in a changing world. J. Ethnobiol. 2019, 39, 175–181. [Google Scholar] [CrossRef]
- Wells, S.M. International trade in ornamental corals and shells. In Proceedings of the Fourth International Coral Reef Symposium, Manila, Philippines, 18–22 May 1981; Volume 1, pp. 323–330. [Google Scholar]
- Léo Neto, N.A.; Voeks, R.A.; Días, T.L.P.; Alves, R.R.N. Mollusks of Candomblé: Symbolic and ritualistic importance. J. Ethnobiol. Ethnomed. 2012, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Alves, R.R.N.; Iol, T.L.P. Usos de invertebrados na medicina popular no Brasil e suas implicações para conservação. Trop. Conserv. Sci. 2010, 3, 159–174. [Google Scholar] [CrossRef]
- Codding, B.F.; Whitaker, A.R.; Bird, D.W. Global patterns in the exploitation of shellfish. J. Isl. Coast. Archaeol. 2014, 9, 145–149. [Google Scholar] [CrossRef]
- Clavijo, C. The pearl industry and pioneering research in biology and conservation of pearl mussels (Unionoida) in the río de La Plata Basin. Tentacle 2017, 25, 14–15. [Google Scholar]
- Alves, R.R.N.; Mota, E.L.S.; Dias, T.L.P. Use and commercialization of animals as decoration. In Ethnozoology: Animals in our Lives; Alves, R.R.N., Albuquerque, U.P., Eds.; Elsevier: London, UK, 2018; pp. 261–275. [Google Scholar]
- Viana, M.T. Abalone aquaculture, an overview. World Aquac. 2002, 33, 34–39. [Google Scholar]
- Ahmed, O.O.; Solomon, O.O. Ecological consequences of oysters culture. J. Fish. Livest. Prod. 2016, 4, 4. [Google Scholar] [CrossRef]
- Marin, F.; Le Roy, N.; Marie, B. The formation and mineralization of mollusk shell. Front. Biosci. 2012, 4, 1099–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satitkune, S.; Monarumit, N.; Boonmee, C.; Phlayrahan, A.; Promdee, K.; Won-in, K. Combination of FTIR and SEM for identifying freshwater-cultured pearls from different quality. Opt. Spectrosc. 2016, 120, 500–504. [Google Scholar] [CrossRef]
- Ma, H.Y.; Lee, I.-S. Characterization of vaterite in low quality freshwater-cultured pearls. Mater. Sci. Eng. C 2006, 26, 721–723. [Google Scholar] [CrossRef]
- Ma, H.; Su, A.; Zhan, B.; Li, R.-K.; Zhou, L.; Wang, B. Vaterite or aragonite observed in the prismatic layer of freshwater-cultured pearls from South China. Progr. Nat. Sci. 2009, 19, 817–820. [Google Scholar] [CrossRef]
- Ma, Y.; Berland, S.; Andrieu, J.P.; Feng, Q.; Bédouet, L. What is the difference in organic matrix of aragonite vs. vaterite polymorph in natural shell and pearl? Study of the pearl-forming freshwater bivalve mollusc Hyriopsis cumingii. Mater. Sci. Eng. C 2013, 33, 1521–1529. [Google Scholar] [CrossRef]
- Pérez-Huerta, A.; Cuif, J.-P.; Dauphin, Y.; Cusack, M. Crystallography of calcite in pearls. Eur. J. Mineral. 2014, 26, 507–516. [Google Scholar] [CrossRef]
- Karampelas, S.; Fritsch, E.; Makhlooq, F.; Mohamed, F.; Al-Alawi, A. Raman spectroscopy of natural and cultured pearls and pearl producing mollusc shells. J. Raman Spectrosc. 2020, 51, 1813–1821. [Google Scholar] [CrossRef]
- Barros, M.R.F.; Chagas, R.A.; Santos, W.C.R.; Abreu, V.S.; Silva, R.E.O.; Herrmann, M. Capítulo 4. Bivalves límnicos da Hyriidae que um potencial para um cultivo de pérolas na região tropical do Brasil. In Aquicultura e pesca: Adversidades e resultados; Zuffo, A.M., Ed.; Ponta Grossa: Atena, Brazil, 2019; pp. 23–27. [Google Scholar] [CrossRef]
- Kanjanachatree, K.; Limsathapornkul, N.; Inthonjaroen, A.; Ritchie, R.J. Effects of mollusk size on growth and color of cultured half-pearls from Phuket, Thailand. Gems Gemol. 2019, 35, 167–175. [Google Scholar] [CrossRef]
- Taylor, J.J.; Strack, E. Pearl production. In The Pearl Oyster; Southgate, P.C., Lucas, J.S., Eds.; Elsevier: Oxford, UK, 2008; pp. 273–302. [Google Scholar]
- Walker, K.F.; Byrne, M.; Hickey, C.W.; Roper, D.S. Freshwater mussels (Hyriidae) of Australasia. In Ecology and Evolutionary Biology of the Freshwater Mussels (Unionoida); Bauer, G., Wächtler, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1–31. [Google Scholar]
- Parodiz, J.J. Annotated catalogue of the genus Diplodon (Unionacea-Hyriidae). Sterkiana 1968, 30, 1–22. [Google Scholar]
- Graf, D.L.; Cummings, K.S. The Freshwater Mussels (Unionoida) of the World (and Other Less Consequential Bivalves), MUSSEL Project Web Site. 2022. Available online: http://www.mussel-project.net/ (accessed on 22 September 2022).
- MolluscaBase. Diplodon Spix. 1827. Available online: http://www.molluscabase.org/aphia.php?p=taxdetails&id=850991 (accessed on 22 September 2022).
- Jacob, D.E.; Soldati, A.L.; Wirth, R.; Huth, J.M.; Wehrmeister, U.; Hofmeister, W. Nanostructure and composition of bivalve shells. Geophys. Res. Abstr. 2009, 11, 7721. [Google Scholar]
- Pereira, D.; Mansur, M.C.D.; Duarte, L.D.S.; de Oliveira, A.S.; Mansur Pimpão, D.; Callil, C.T.; Ituarte, C.; Parada, E.; Peredo, S.; Darrigran, G.; et al. Bivalve distribution in hydrographic regions in South America: Historical overview and conservation. Hydrobiologia 2014, 735, 15–44. [Google Scholar] [CrossRef]
- Valdovinos, C.; Pedreros, P. Geographic variations in shell growth rates of the mussel Diplodon chilensis from temperate lakes of Chile: Implications for biodiversity conservation. Limnologica 2007, 37, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Bonetto, A.; Tassara, M.P.; Rummi, A. Australis n. subgen. of Diplodon Spix (Bivalvia, Unionacea) and its possible relationships with Australian Hyriidae. Bol. Soc. Biol. Concepc. 1986, 57, 55–61. [Google Scholar]
- Parada, E.; Peredo, S. Estado de conocimiento de los bivalvos dulceacuícolas de Chile. Gayana 2006, 70, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Parada, E.; Peredo, S. Diplodon patagonicus (Bivalvia: Hyriidae): To be or not to be. Gayana 2008, 72, 266–267. [Google Scholar] [CrossRef] [Green Version]
- Miyahira, I.C.; Santos, S.B.; Mansur, M.C.D. Freshwater mussels from South America: State of the art of Unionida, especially Rhipidodontini. Biota Neotrop. 2017, 17, e20170341. [Google Scholar] [CrossRef] [Green Version]
- Dreher Mansur, M.C.; Miyahira, I.C.; Arruda, J.O.; Antoniazzi, T.N.; Pimpão, D.M. Key to Unionida. In Thorp and Covich’s Freshwater Invertebrates: Volume 5: Keys to Neotropical and Antarctic Fauna, 4th ed.; Damborenea, C., Rogers, D.C., Thorp, J.H., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 409–430. [Google Scholar]
- Soldati, A.L.; Jacob, D.E.; Bianchi, M.M.; Hajduk, A. Microstructure and polymorphism of Diplodon chilensis patagonicus (d’Orbigny 1835) recent shells. Gayana 2010, 74, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Wehrmeister, U.; Jacob, D.E.; Soldati, A.L.; Häger, T.; Hofmeister, W. Vaterite in freshwater cultured pearls from China and Japan. J. Gemm. 2007, 31, 269–276. [Google Scholar] [CrossRef]
- Alves, T.; Lima, P.; Lima, G.M.; Cunha, M.C.; Ferreira, S.; Domingues, B.; Machado, J. Phytoplankton composition of the water and gastrointestinal tract of the mussel Diplodon enno (Ortmann, 1921) from São Francisco river (Bahia, Brazil). Braz. J. Biol. 2016, 76, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Alves, R. Biologia de Pteria hirundo, ostra perlífera nativa do Brasil. Ph.D. Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2010. [Google Scholar]
- Hohn, H.; Costa, M.L. Ocorrência de ostras perlíferas no Marajó, rio Pará. Rev. Esc. Minas. 2002, 55, 61–64. [Google Scholar] [CrossRef]
- Peredo, S.; Parada, E. Gonadal organization and gametogenesis in the fresh-water mussel Diplodon chilensis chilensis. Veliger 1984, 27, 126–133. [Google Scholar]
- Peredo, S.; Parada, E. Reproductive cycle in the freshwater mussel Diplodon chilensis chilensis (Mollusca: Bivalvia). Veliger 1986, 28, 418–425. [Google Scholar]
- Parada, E.; Peredo, S.; Lara, G.; Valdebenito, I. Growth, age and life span of the freshwater mussel Diplodon chilensis (Gray 1828). Arch. Hydrobiol. 1989, 115, 563–573. [Google Scholar] [CrossRef]
- Parada, E.; Peredo, S.; Gallardo, C. Tácticas reproductivas y dinámica poblacional de Diplodon chilensis (Gray, 1828) (Bivalvia: Hyriidae). Rev. Chil. Hist. Nat. 1990, 63, 23–35. [Google Scholar]
- Lara, G.; Parada, E. Seasonal changes in the condition index of Diplodon chilensis chilensis (Gray, 1828) in Sandy and muddy substrata, Villarrica Lake, Chile (39°18′ S; 72°05′ W). Bol. Soc. Biol. Concepc. 1991, 62, 99–106. [Google Scholar]
- Semenas, L.; Brugni, N.; Negro, R. Características poblacionales y ciclo de vida de Diplodon chilensis (d’Orbigny, 1835) (Hyriidae, Bivalvia) en el lago Gutiérrez (Patagonia, Argentina). Ecol. Austral. 2002, 12, 29–40. [Google Scholar]
- Parada, E.; Peredo, S. Un enfoque ecológico evolutivo de las estrategias de historia de vida de los Hyriidos chilenos (Mollusca, Bivalvia). Bol. Soc. Biol. Concepc. 1994, 65, 71–80. [Google Scholar]
- Peredo, S.; Jara-Seguel, P.; Parada, E.; Palma-Rojas, C. Comparative karyology of lentic and lotic populations of Diplodon chilensis chilensis (Bivalvia: Hyriidae). Veliger 2003, 46, 314–319. [Google Scholar]
- Fuentealba, C.; Figueroa, R.; González, F.; Palma, M. Variabilidad genética local del bivalvo dulceacuícola Diplodon chilensis (Gray 1828) proveniente de tres lagos Nahuelbutanos. Gayana 2010, 74, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Campos, H. Limnological study of Araucanian lakes (Chile). Verh. lnternat. Verein. Limnol. 1984, 22, 1319–1327. [Google Scholar] [CrossRef]
- Valenzuela Moure, A. Las aguas del lago Villarrica: Calidad y procesos fisicoquímicos de los recursos hídricos que lo alimentan. Bachelor’s thesis of Geologist, Universidad de Chile, Santiago, Chile, 2019. [Google Scholar]
- Rahman, M.A.; Parvej, M.R.; Rashid, M.H.; Hoq, E. Availability of pearl producing marine bivalves in south-eastern coast of Bangladesh and culture potentialities. J. Fish. 2015, 3, 293–296. [Google Scholar] [CrossRef]
- Karampelas, S.; Fritsch, E.; Notari, F. Natural pearls of the Veneridae family. Gems Gemol. 2008, 44, 374–375. [Google Scholar]
- Karampelas, S.; Fritsch, E.; Gauthier, J.P.; Hainschwang, T. UV-Vis-NIR reflectance spectroscopy of natural-color saltwater cultured pearls from Pinctada margaritifera. Gems Gemol. 2011, 47, 31–35. [Google Scholar] [CrossRef]
- Al-Hosney, H.A.; Grassian, V.H. Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: A transmission and ATR-FTIR study. Phys. Chem. Chem. Phys. 2005, 7, 1266–1276. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Williams, C.T.; Ebner, A.D.; Ritter, J.A. In situ FTIR spectroscopic analysis of carbonate transformations during adsorption and desorption of CO2 in K-promoted HTlc. Chem. Mater. 2010, 22, 3519–3526. [Google Scholar] [CrossRef]
- Agbaje, O.B.A.; Thomas, D.E.; Mclnerney, B.V.; Molloy, M.P.; Jacob, D.E. Organic macromolecules in shells of Arctica islandica: Comparison with nacro-prismatic bivalve shells. Mar. Biol. 2017, 164, 208–220. [Google Scholar] [CrossRef]
- Wehrmeister, U.; Jacob, D.E.; Soldati, A.L.; Loges, N.; Häger, T.; Hofmeister, W. Amorphous, nanocrystalline and crystalline calcium carbonates in biological materials. J. Raman Spectrosc. 2011, 42, 926–935. [Google Scholar] [CrossRef]
- Gutmannsbauer, W.; Hänni, H.A. Structural and chemical investigations on shells and pearls of nacre forming salt- and fresh-water bivalve molluscs. J. Gemmol. 1994, 24, 241–252. [Google Scholar] [CrossRef]
- Liping, L.; Zhonghui, C. Cultured Pearls and colour-changed cultured pearls: Raman spectra. J. Gemmol. 2001, 27, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Fengming, H.; Xinqiang, Y.; Mingxing, Y.; Zhonghui, C. Pearl cultivation in Donggou, Ezhou, Hubai, and cathodoluminescence of cultured pearls. J. Gemmol. 2003, 28, 449–462. [Google Scholar] [CrossRef]
- Sturman, N. Observations on pearls reportedly from the Pinnidae family (Pen Pearls). Gems Gemol. 2014, 50, 202–215. [Google Scholar] [CrossRef]
- Scarratt, K.; Hänni, H. Pearls from the lion’s paw scallop. J. Gemmol. 2004, 29, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Kiefert, L.; McLaurin, D.; Arizmendi, E.; Hänni, H.A.; Elen, S. Cultured pearls from the Gulf of California, Mexico. Gems Gemol. 2004, 40, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Carteret, C.; Dandeu, A.; Moussaoui, S.; Muhr, H.; Humbert, B.; Plasa, E. Polymorphism studied by lattice phonon Raman spectroscopy and statistical mixture analysis method. Application to calcium carbonate polymorphs during batch crystallization. Cryst. Growth Des. 2009, 9, 807–812. [Google Scholar] [CrossRef]
- Ma, Y.F.; Gao, Y.H.; Feng, Q.L. Effects of pH and temperature on CaCO3 crystallization in aqueous solution with water soluble matrix of pearls. J. Cryst. Growth 2010, 312, 3165–3170. [Google Scholar] [CrossRef]
- Otter, L.M.; Agbaje, O.B.A.; Huong, L.T.T.; Hanger, T.; Jacob, D.E. Akoya cultured pearl farming in eastern Australia. Gems Gemol. 2017, 53, 423–437. [Google Scholar] [CrossRef]
- Gabrielli, C.; Jaouhari, R.; Joiret, S.; Maurin, G. In situ Raman spectroscopy applied to electrochemical scaling. Determination of the structure of vaterite. J. Raman Spectrosc. 2000, 31, 497–501. [Google Scholar] [CrossRef]
- Karampelas, S.; Fritsch, E.; Mevellec, J.-Y.; Gauthier, J.-P.; Sklavounos, S.; Soldatos, T. Determination by Raman scattering of the nature of pigments in cultured freshwater pearls from the mollusk Hyriopsis cumingi. J. Raman Spectrosc. 2007, 38, 217–230. [Google Scholar] [CrossRef]
- Cartier, L.; Krzemnicki, M. Golden South Sea cultured pearls: Cultivation steps & gemmological investigations. J. Gemmol. Assoc. Hong Kong 2016, 37, 16–21. [Google Scholar]
- Gauthier, J.-P.; Caseiro, J.; Lasnier, B. The red pearls of Pinna nobilis. Aust. Gemmol. 1997, 19, 422–426. [Google Scholar]
- Elen, S. Spectral reflectance and fluorescence characteristics of natural-color and heat-treated “golden” South Seas cultured pearls. Gems Gemol. 2001, 37, 114–123. [Google Scholar] [CrossRef]
- Snow, M.R.; Pring, A.; Self, P.; Losic, D. The origin of the color of pearls in iridescence from nano-composite structures of the nacre. Am. Mineral. 2004, 89, 1353–1358. [Google Scholar] [CrossRef]
- Elen, S. Identification of yellow cultured pearls from the black-lipped oyster Pinctada margaritifera. Gems Gemol. 2002, 38, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Shor, R. From single source to global free market: The transformation of the cultured pearl industry. Gems Gemol. 2007, 43, 200–226. [Google Scholar] [CrossRef]
- Ky, C.L.; Blay, C.; Sham-Koua, M.; Vanaa, V.; Lo, C.; Cabral, P. Family effect on cultured pearl quality in black-lipped pearl oyster Pinctada margaritifera and insights for genetic improvement. Aquat. Living Resour. 2013, 26, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Ky, C.L.; Molinari, N.; Moe, E.; Pommier, S. Impact of season and grafter skill on nucleus retention and pearl oyster mortality rate in Pinctada margaritifera aquaculture. Aquac. Int. 2014, 22, 1689–1701. [Google Scholar] [CrossRef]
- Ky, C.L.; Blay, C.; Aiho, V.; Cabral, P.; Le Moullac, G.; Lo, C. Macro-geographical differences influenced by family-based expression on cultured pearl grade, shape and colour in the black-lip pearl oyster Pinctada margaritifera: A preliminary case study in French Polynesia. Aquac. Res. 2015, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kanjanachatree, K.; Piyathamrongrut, K.; Inthonjaroen, N. Effects of sea depths and sizes of winged pearl oysters (Pteria penguin) on pearl culture. Warasan Songkhla Nakharin Sakha Witthayasat Lae Technol. 2003, 25, 659–671. [Google Scholar]
- McDougall, C.; Aguilera, F.; Moase, P.; Lucas, J.S.; Degnan, B.M. Pearls. Curr. Biol. 2013, 23, R671–R673. [Google Scholar] [CrossRef] [Green Version]
- McDougall, C.; Aguilera, F.; Shokoohmand, A.; Moase, P.; Degnan, B.M. Pearl sac gene expression profiles associated with pearl attributes in the silver-lip pearl oyster, Pinctada maxima. Front. Genet. 2021, 11, 597459. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Wu, W. Transcriptome analysis of the freshwater pearl mussel (Cristaria plicata) mantle unravels genes involved in the formation of shell and pearl. Mol. Genet. Genom. 2017, 292, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Blay, C.; Planes, S.; Ky, C.-L. Cultured pearl surface quality profiling by the shell matrix protein gene expression in the biomineralised pearl sac tissue of Pinctada margaritifera. Mar. Biotechnol. 2018, 20, 490–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariom; Take, S.; Igarashi, Y.; Yoshitake, K.; Asakawa, S.; Maeyama, K.; Nagai, K.; Watabe, S.; Kinoshita, S. Gene expression profiles at different stages for formation of pearl sac and pearl in the pearl oyster Pinctada fucata. BMC Genom. 2019, 20, 240. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Gu, Z.; Luo, S.; Deng, Y. Evolutionary and functional analysis of MyD88 genes in pearl oyster Pinctada fucata martensii. Fish Shellfish Immunol. 2020, 99, 322–330. [Google Scholar] [CrossRef]
- Takeuchi, T.; Kawashima, T.; Koyanagi, R.; Gyoja, F.; Tanaka, M.; Ikuta, T.; Shoguchi, E.; Fujiwara, M.; Shinzato, C.; Hisata, K.; et al. Draft genome of the pearl oyster Pinctada fucata: A platform for understanding bivalve biology. DNA Res. 2012, 19, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Yu, C.; Gu, Z.; Zhan, X.; Wang, Y.; Wang, A. Characterization of the pearl oyster (Pinctada martensii) mantle transcriptome unravels biomineralization genes. Mar. Biotechnol. 2013, 15, 175–187. [Google Scholar] [CrossRef]
- Song, H.; Guo, X.; Sun, L.; Wang, Q.; Han, F.; Wang, H.; Wray, G.A.; Davidson, P.; Wang, Q.; Hu, Z.; et al. The hard clam genome reveals massive expansion and diversification of inhibitors of apoptosis in Bivalvia. BMC Biol. 2021, 19, 15. [Google Scholar] [CrossRef]
- Valdovinos, C.; Cuevas, R. Tasas de aclarancia de Diplodon chilensis (Bivalvia, Hyriidae): Un suspensívoro bentónico dulceacuícola de Chile Central. Medio Ambiente 1996, 13, 114–118. [Google Scholar]
- Soto, D.; Mena, G. Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication. Aquaculture 1999, 171, 65–81. [Google Scholar] [CrossRef]
- Lara, G.; Contreras, A.; Encina, F. La almeja de agua dulce Diplodon chilensis (Bivalvia, Hyriidae) potencial biofiltro para disminuir los niveles de coliformes en pozos. Experimentos de laboratorio. Gayana 2002, 66, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Torres, S.; Cao, L.; Gutiérrez Gregoric, D.E.; de Lucía, M.; Brea, F.; Darrigran, G. Distribution of the Unionida (Bivalvia, Paleoheterodonta) from Argentina and its conservation in the Southern Neotropical Region. PLoS ONE 2018, 13, e0203616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, S.; Darrigran, G.; Damborenea, C. Distribución del género Diplodon (Mollusca: Bivalvia: Hyriidae) en la cuenca del Plata (Argentina) mediante el uso de colecciones biológicas. Número Especial I: Aguas. AUGMDOMUS 2013, 5, 90–99. [Google Scholar]
- Bonetto, A.A. Náyades de la Patagonia. Rev. Asoc. Cienc. Nat. Litoral 1973, 4, 177–185. [Google Scholar] [CrossRef]
- Peredo, S.; Parada, E.; Valdebenito, I.; Peredo, M. Relocation of the freshwater mussel Diplodon chilensis (Hyriidae) as a strategy for its conservation and management. J. Molluscan Stud. 2005, 71, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Rocchetta, I.; Lomovasky, B.J.; Yusseppone, M.S.; Sabatini, S.E.; Bieczynski, F.; Molina, M.D.; Luquet, C.M. Growth, abundance, morphometric and metabolic parameters of three populations of Diplodon chilensis subject to different levels of natural and anthropogenic organic matter input in a glaciar lake of North Patagonia. Limnologica 2014, 44, 72–80. [Google Scholar] [CrossRef]
- Bogan, A.E.; Cummings, K. Diplodon chilensis. The IUCN Red List of Threatened Species. 2011. Available online: https://www.iucnredlist.org/species/189076/8675023 (accessed on 22 September 2022).
- Lara, G.; Parada, E.; Peredo, S.; Inostroza, J.; Mora, H. La almeja de agua dulce Diplodon chilensis (Gray, 1828), un recurso potencial. Bol. Mus. Reg. Araucanía 1988, 3, 33–40. [Google Scholar]
- Prates, L.; Marsans, N. The use of freshwater mollusks (Diplodon chilensis patagonicus) at Angostura 1 site (General Conesa District, Río Negro province, Argentina). Intersecc. Antropol. 2007, 8, 355–359. [Google Scholar]
- Jackson, D.; Jackson, D. Antecedentes arqueológicos del género Diplodon (Spix, 1827) (Bivalvia, Hyriidae) en Chile. Gayana 2008, 72, 188–195. [Google Scholar] [CrossRef] [Green Version]
Element | Pearl | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Oxygen | 38.2 | 39.4 | 40.6 | 39.9 | 38.4 | 39.7 | 40.0 | 44.5 | 42.9 |
Carbon | 36.4 | 36.5 | 30.8 | 33.6 | 32.3 | 34.8 | 30.6 | 35.0 | 29.8 |
Calcium | 23.1 | 24.1 | 27.4 | 24.8 | 27.7 | 24.3 | 28.9 | 19.2 | 27.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collado, G.A.; Valladares, M.A.; Suárez, C.; Seguel, M.; Cabello-Guzmán, G. Shape, Microstructure, and Chemical Composition of Pearls from the Freshwater Clam Diplodon chilensis Native to South America. Animals 2023, 13, 2231. https://doi.org/10.3390/ani13132231
Collado GA, Valladares MA, Suárez C, Seguel M, Cabello-Guzmán G. Shape, Microstructure, and Chemical Composition of Pearls from the Freshwater Clam Diplodon chilensis Native to South America. Animals. 2023; 13(13):2231. https://doi.org/10.3390/ani13132231
Chicago/Turabian StyleCollado, Gonzalo A., Moisés A. Valladares, Cristian Suárez, Mathias Seguel, and Gerardo Cabello-Guzmán. 2023. "Shape, Microstructure, and Chemical Composition of Pearls from the Freshwater Clam Diplodon chilensis Native to South America" Animals 13, no. 13: 2231. https://doi.org/10.3390/ani13132231
APA StyleCollado, G. A., Valladares, M. A., Suárez, C., Seguel, M., & Cabello-Guzmán, G. (2023). Shape, Microstructure, and Chemical Composition of Pearls from the Freshwater Clam Diplodon chilensis Native to South America. Animals, 13(13), 2231. https://doi.org/10.3390/ani13132231