Spray-Dried Animal Plasma as a Multifaceted Ingredient in Pet Food
Abstract
:Simple Summary
Abstract
1. Introduction
2. SDAP as a Sustainable Ingredient
3. Wet Pet Food
4. Nutritional Value for Dogs and Cats
5. Immunological Effects of SDAP
6. SDAP in Aging Animals
7. Limitations on the Use of SDAP in Pet Food Diets
8. Future Options Applying SDAP in Pet Food
9. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nestlé Purina. Better with Pets; Purina in Society Report 2020; Nestlé Purina: St. Louis, MO, USA, 2020. [Google Scholar]
- Polo, J.; Rodríguez, C.; Saborido, N.; Ródenas, J. Functional properties of spray-dried animal plasma in canned pet food. Anim. Feed. Sci. Tech. 2005, 122, 331–343. [Google Scholar] [CrossRef]
- Polo, J.; Rodríguez, C.; Ródenas, J.; Morera, S.; Saborido, N. Use of spray-dried animal plasma in canned chunk recipes containing excess of added water or poultry fat. Anim. Feed. Sci. Tech. 2007, 133, 309–319. [Google Scholar] [CrossRef]
- Polo, J.; Rodríguez, C.; Ródenas, J.; Morera, S.; Saborido, N. The use of spray-dried animal plasma in comparison with other binders in canned pet food recipes. Anim. Feed. Sci. Tech. 2009, 154, 241–247. [Google Scholar] [CrossRef]
- Miró, L.; Garcia-Just, A.; Amat, C.; Polo, J.; Moretó, M.; Pérez-Bosque, A. Dietary animal plasma proteins improve the intestinal immune response in senescent mice. Nutrients 2017, 9, 1346. [Google Scholar] [CrossRef] [PubMed]
- Balan, P.; Staincliffe, M.; Moughan, P.J. Effects of spray-dried animal plasma on the growth performance of weaned piglets—A review. J. Anim. Phys. Anim. Nutr. 2021, 105, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.M.; Crenshaw, J.D.; González-Esquerra, R.; Polo, J. Impact of spray-dried plasma on intestinal health and broiler performance. Microorganisms 2019, 7, 219. [Google Scholar] [CrossRef]
- Kanagaratham, C.; el Ansari, Y.S.; Lewis, O.L.; Oettgen, H.C. IgE and IgG Antibodies as Regulators of Mast Cell and Basophil Functions in Food Allergy. Front. Immunol. 2020, 11, 603050. [Google Scholar] [CrossRef]
- Moretó, M.; Miró, L.; Amat, C.; Polo, J.; Manichanh, C.; Pérez-Bosque, A. Dietary supplementation with spray-dried porcine plasma has prebiotic effects on gut microbiota in mice. Sci. Rep. 2020, 10, 1. [Google Scholar] [CrossRef]
- Pérez-Bosque, A.; Miró, L.; Maijó, M.; Polo, J.; Campbell, J.M.; Russell, L.; Crenshaw, J.D.; Weaver, E.; Moretó, M. Oral serum-derived bovine immunoglobulin/protein isolate has immunomodulatory effects on the colon of mice that spontaneously develop colitis. PLoS ONE 2016, 11, 5. [Google Scholar] [CrossRef]
- Pérez-Bosque, A.; Miró, L.; Amat, C.; Polo, J.; Moretó, M. The anti-inflammatory effect of spray-dried plasma is mediated by a reduction in mucosal lymphocyte activation and infiltration in a mouse model of intestinal inflammation. Nutrients 2016, 8, 657. [Google Scholar] [CrossRef]
- Garcia-Just, A.; Miró, L.; Pérez-Bosque, A.; Amat, C.; Polo, J.; Pallàs, M.; Griñán-Ferré, C.; Moretó, M. Dietary spray-dried porcine plasma prevents cognitive decline in senescent mice and reduces neuroinflammation and oxidative stress. J. Nutr. 2020, 150, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Rosell-Cardona, C.; Griñan-Ferré, C.; Pérez-Bosque, A.; Polo, J.; Pallàs, M.; Amat, C.; Moretó, M.; Miró, L. Dietary spray-dried porcine plasma reduces neuropathological Alzheimer’s disease hallmarks in SAMP8 mice. Nutrients 2021, 13, 2369. [Google Scholar] [CrossRef] [PubMed]
- Meeker, D.L.; Meisinger, J.L. Rendered ingredients significantly influence sustainability, quality, and safety of pet food. J. Anim. Sci. 2015, 93, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Bellaver, C. Ingredientes de origem animal destinados à fabricação de rações. In Simpósio sobre Ingredientes na Alimentação Animal; CBNA—Colégio Brasileiro de Nutrição Anima: Campinas, Brasil, 2001; pp. 167–190.18. [Google Scholar]
- Campos, I.; Pinheiro Valente, L.M.; Matos, E.; Marques, P.; Freire, F. Life-cycle assessment of animal feed ingredients: Poultry fat, poultry by-product meal and hydrolyzed feather meal. J. Clean. Prod. 2020, 252, 119845. [Google Scholar] [CrossRef]
- Silva, C.B.; Valente, L.M.P.; Matos, E.; Brandão, M.; Neto, B. Life Cycle assessment of aquafeed ingredients. Int. J. Life Cycle Assess 2018, 23, 995–1017. [Google Scholar] [CrossRef]
- FEDIAF—The European Pet food Industry Federation. Nutritional Guidelines for Complete and Complementary Foods for Dogs and Cats; FEDIAF Press: Bruxeles, Belgium, 2021. [Google Scholar]
- Alexander, P.; Berri, A.; Moran, D.; Reay, D.; Rounsevell, M.D.A. The global environmental paw print of pet food. Glob. Environ. Chang. 2020, 65, 102153. [Google Scholar] [CrossRef]
- Aldrich, G. Plasma Thermoplastic Gel with Pet Health Benefits. Available online: https://www.petfoodindustry.com/articles/4545-plasma-thermoplastic-gel-with-pet-health-benefits (accessed on 21 December 2012).
- Patel, R.P.; Patel, M.P.; Suthar, A.M. Spray drying technology: An overview. Indian J. Sci. Technol. 2009, 2, 10. [Google Scholar] [CrossRef]
- Li, J.M.; Nie, S.P. The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocoll. 2016, 53, 46–61. [Google Scholar] [CrossRef]
- Dainton, A.N.; Dogan, H.; Aldrich, C.G. The effects of select hydrocolloids on the processing of pâté-style canned pet food. Foods 2021, 10, 2506. [Google Scholar] [CrossRef]
- Polo, J.; Rodríguez, C. Improving the juiciness of pet food chunks and pouches with plasma. Petfood Ind. 2013, 5, 36–40. [Google Scholar]
- Craig, J.M. Additives in pet food: Are they safe? J. Small Anim. Pract. 2021, 62, 624–635. [Google Scholar] [CrossRef] [PubMed]
- Harper, E.J.; Siever-Kelly, C. The effect of fibre on nutrient availability in cats of different ages. In Recent Advances in Animal Nutrition in Australia; Corbett, J.L., Choct, M., Nolan, J.V., Rowe, J.B., Eds.; University of New England: Armidale, Australia, 1997; pp. 110–116. Available online: http://www.livestocklibrary.com.au/handle/1234/19826?show=full (accessed on 24 May 2022).
- Karr-Lilienthal, L.K.; Merchen, N.R.; Grieshop, C.M.; Smeets-Peeters, M.J.; Fahey, G.C. Selected gelling agents in canned dog food affect nutrient digestibilities and fecal characteristics of ileal cannulated dogs. Arch. Tierernahr. 2002, 56, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Martino, J.V.; Van Limbergen, J.; Cahill, L.E. The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation. Front. Pediat. 2017, 5, 96. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Pan, L.; Tian, Q.; Piao, X. Comparative digestibility of energy and ileal amino acids in yeast extract and spray-dried porcine plasma fed to pigs. Arch. Anim. Nutr. 2018, 72, 76–84. [Google Scholar] [CrossRef]
- Crenshaw, J.D.; Campbell, J.M.; Quam, D. Evidence of gastric ulcer tissue repair in swine offered Solutein via the water. In Proceedings of the American Association of Swine Veterinarians, Orlando, FL, USA, 8–9 March 2003; Volume 3, pp. 105–109. [Google Scholar]
- McClure, S.; Campbell, J.; Polo, J.; Lognion, A. The effect of serum-based bioactive proteins for the prevention of squamous gastric ulcers in horses. J. Equine Vet. Sci. 2016, 43, 32–38. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Dietary Protein Quality Evaluation in Human Nutrition—Report of FAO Expert Consultation; FAO Fiat Panis: Rome, Italy, 2013; 79p.
- NRC. National Research Council. Nutrient Requirements of Dogs and Cats; The National Academies Press: Washington, DC, USA, 2006; 419p. [Google Scholar]
- Quigley, J.D.; Campbell, J.M.; Polo, J.; Russell, L.E. Effects of spray-dried animal plasma on intake and apparent digestibility in dogs. J. Anim. Sci. 2004, 82, 1685–1692. [Google Scholar] [CrossRef]
- Rodríguez, C.; Saborido, N.; Ródenas, J.; Polo, J. Effects of spray-dried animal plasma on food intake and apparent nutrient digestibility by cats when added to a wet pet food recipe. Anim. Feed. Sci. Tech. 2016, 216, 243–250. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Albino, L.F.T.; Donzele, J.L.; Gomes, P.C.; Oliveira, R.F.; Lopes, D.C.; Ferreira, A.S.; Barreto, S.L.T.; Euclides, R.F. Tabelas Brasileiras para Aves e Suínos—Composição de Alimentos e Exigências Nutricionais, 3rd ed.; Universidade Federal de Viçosa: Viçosa, Brazil, 2011; pp. 54–69. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Dietary Protein Quality Evaluation in Human Nutrition; Report of an FAO Expert Consultation; Food and Agriculture Organization of the United Nations (FAO): Auckland, New Zealand, 2011; 79p.
- Burns, R.A.; Lefaivre, M.H.; Milner, J.A. Effects of Dietary Protein Quantity and Quality on the Growth of Dogs and Rats. J. Nutr. 1982, 112, 1843–1853. [Google Scholar] [CrossRef]
- Norberg, S.E.; Dilger, R.N.; Dong, H.; Harmon, B.G.; Adeola, O.; Latour, M.A. Utilization of Energy and Amino Acids of Spray-Dried Egg, Plasma Protein, and Soybean Meal by Ducks. Poult. Sci. 2004, 83, 939–945. [Google Scholar] [CrossRef]
- Mateo, C.D.; Stein, H.H. Apparent and standardized ileal digestibility of amino acids in yeast extract and spray dried plasma protein by weanling pigs. Can. J. Anim. Sci. 2007, 87, 381–383. [Google Scholar] [CrossRef]
- Gottlob, R.O.; Derouchey, J.M.; Tokach, M.D.; Goodband, R.D.; Dritz, S.S.; Nelssen, J.L.; Hastad, C.W.; Knabe, D.A. Amino acid and energy digestibility of protein sources for growing pigs. J. Anim. Sci. 2006, 84, 1396–1402. [Google Scholar] [CrossRef]
- van Dijk, A.J.; Everts, H.; Nabuurs, M.J.A.; Margry, R.J.C.F.; Beynen, A.C. Growth performance of weanling pigs fed spray-dried animal plasma: A review. Livest. Prod. Sci. 2001, 68, 263–274. [Google Scholar] [CrossRef]
- Schaafsma, G. The Protein Digestibility-Corrected Amino Acid Score (PDCAAS)—A Concept for Describing Protein Quality in Foods and Food Ingredients: A Critical Review. J. AOAC Int. 2005, 88, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Bosque, A.; Polo, J.; Torrallardona, D. Spray dried plasma as an alternative to antibiotics in piglet feeds, mode of action and biosafety. Porc. Health Manag. 2016, 2, 16. [Google Scholar] [CrossRef]
- Tran, H.; Anderson, C.L.; Bundy, J.W.; Fernando, S.C.; Miller, P.S.; Burkey, T.E. Effects of spray-dried porcine plasma on fecal microbiota in nursery pigs. J. Anim. Sci. 2018, 96, 1017–1031. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Paniagua, S.T.; Balebona, M.C.; Firmino, J.P.; Rodríguez, C.; Polo, J.; Moriñogo, M.A.; Gisbert, E. The effect of spray-dried porcine plasma on gilthead seabream (Sparus aurata) intestinal microbiota. Aquac. Nutr. 2020, 26, 801–811. [Google Scholar] [CrossRef]
- Maijó, M.; Miró, L.; Polo, J.; Campbell, J.; Russell, L.; Crenshaw, J.; Weaver, E.; Moretó, M.; Pérez-Bosque, A. Dietary plasma proteins attenuate the innate immunity response in a mouse model of acute lung injury. Brit. J. Nutr. 2012, 107, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Liu, Y.; Lee, J.J.; Che, T.M.; Soares-Almeida, J.A.; Chun, J.L.; Campbell, J.M.; Polo, J.; Crenshaw, J.D.; Seo, S.W.; et al. Spray-dried plasma attenuates inflammation and improves pregnancy rate of mated female mice. J. Anim. Sci. 2015, 93, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Blanch, F.; Romano, V.; Saborido, N.; Rodenas, J.; Polo, J. Porcine immunoglobulins survival in the intestinal tract of adult dogs and cats fed dry food kibbles containing spray-dried porcine plasma (SDPP) or porcine immunoglobulin concentrate (PIC). Anim. Feed Sci. Tech. 2007, 139, 201–211. [Google Scholar] [CrossRef]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotech. 2013, 4, 19. [Google Scholar] [CrossRef]
- Kuchibhatla, R.; Petschow, B.W.; Odle, J.; Weaver, E.M. Nutritional impact of dietary plasma proteins in animals undergoing experimental challenge and implications for patients with inflammatory bowel disorders: A meta-analysis. Advan. Nutr. 2015, 6, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Moretó, M.; Pérez-Bosque, A. Dietary plasma proteins, the intestinal immune system and the barrier functions of the intestinal mucosa. J. Anim. Sci. 2009, 87 (Suppl. E), E92–E100. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Bosque, A.; Miró, L.; Polo, J.; Russell, L.; Campbell, J.; Weaver, E.; Crenshaw, J.; Moretó, M. Oral plasma proteins attenuate gut inflammatory effects induced by S. aureus enterotoxin B challenge in rats. Livest. Sci. 2010, 133, 242–245. [Google Scholar] [CrossRef]
- Bosi, P.; Han, I.K.; Jung, H.J.; Heo, K.N.; Perini, S.; Castellazzi, A.M.; Casini, L.; Creston, D.; Gremokolini, C. Effect of different spray dried plasmas on growth, ileal digestibility, nutrient deposition, immunity and health of early-weaned pigs challenged with E. coli K88. Asian-Aust J. Anim. Sci. 2001, 14, 1138–1143. [Google Scholar] [CrossRef]
- Bosi, P.; Casini, L.; Finamore, A.; Cremokolini, C.; Merialdi, G.; Trevisi, P.; Nobili, F.; Mengheri, E. Spray-dried plasma improves growth performance and reduces inflammatory status in weaned pigs challenged with enterotoxigenic Escherichia coli K88. J. Anim. Sci. 2004, 82, 1764–1772. [Google Scholar] [CrossRef] [PubMed]
- Peace, R.M.; Campbell, J.; Polo, J.; Crenshaw, J.; Russell, L.; Moeser, A. Spray-dried porcine plasma influences intestinal barrier function, inflammation and diarrhea in weaned pigs. J. Nutr. 2011, 141, 1312–1317. [Google Scholar] [CrossRef]
- Maijó, M.; Miró, L.; Polo, J.; Campbell, J.; Russell, L.; Crenshaw, J.; Weaver, E.; Moretó, M.; Pérez-Bosque, A. Dietary plasma proteins modulate the adaptive immune response in mice with acute lung inflammation. J. Nutr. 2012, 142, 264–270. [Google Scholar] [CrossRef]
- Pérez-Bosque, A.; Miró, L.; Polo, J.; Russell, L.; Campbell, J.; Weaver, E.; Crenshaw, J.; Moretó, M. Dietary plasma proteins modulate the immune response of diffuse gut-associated lymphoid tissue in rats challenged with Staphylococcus aureus enterotoxin B. J. Nutr. 2008, 138, 533–537. [Google Scholar] [CrossRef]
- Campbell, J.M.; Quigley, J.D.; Russell, L.E.; Koehnk, L.D. Efficacy of spray-dried bovine serum on health and performance of turkeys challenged with Pasteurella multocida. J. Appl. Poult. Res. 2004, 13, 388–393. [Google Scholar] [CrossRef]
- Campbell, J.; Crenshaw, J.; Polo, J. Impact of feeding spray-dried plasma to pigs challenged with swine influenza virus. In Proceedings of the 6th International Symposium on Emerging and Re-emerging Pig Diseases, Barcelona, Spain, 12–15 June 2011. [Google Scholar]
- Liu, Y.; Choe, J.; Lee, J.J.; Kim, K.; Campbell, J.M.; Polo, J.; Crenshaw, J.D.; Pettigrew, J.E.; Song, M. Spray-dried plasma attenuates inflammation and lethargic behaviors of pregnant mice caused by lipopolysaccharide. PLoS ONE 2018, 13, e0203427. [Google Scholar] [CrossRef]
- Liu, Y.; Choe, J.; Kim, S.; Kim, B.; Campbell, J.M.; Polo, J.; Crenshaw, J.D.; Pettigrew, J.E.; Song, M. Dietary spray-dried plasma improves intestinal morphology of mated female mice under stress condition. J. Anim. Sci. Technol. 2018, 60, 10. [Google Scholar] [CrossRef] [PubMed]
- Crenshaw, J.D.; Boyd, D.; Campbell, J.M.; Russell, L.E.; Moser, R.L.; Wilson, M.E. Lactation feed disappearance and weaning to estrus interval for sows fed spray-dried plasma. J. Anim. Sci. 2007, 85, 3442–3453. [Google Scholar] [CrossRef] [PubMed]
- Crenshaw, J.D.; Lafoz del Rio, L.; Sanjoaquin, L.; Tibble, S.; González-Solé, F.; Solà-Oriol, D.; Rodriguez, C.; Campbell, J.; Polo, J. Effect of spray-dried porcine plasma in peripartum sow feed on subsequent litter size. Porc. Health Manag. 2021, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, B.; Kyoung, H.; Liu, Y.; Campbell, J.M.; Song, M.; Ji, P. Dietary spray-dried plasma supplementation in late-gestation and lactation enhanced productive performance and immune responses of lactating sows and their litters. J. Anim. Sci. Technol 2021, 65, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Coffey, R.D.; Cromwell, G.L. Use of spray-dried animal plasma in diets of weanling pigs. Pig News Inf. 2001, 22, 39N–48N. [Google Scholar]
- Torrallardona, D. Spray dried animal plasma as an alternative to antibiotics in weanling pigs—A Review. Asian-Aust. J. Anim. Sci. 2010, 23, 131–148. [Google Scholar] [CrossRef]
- Miró, L.; Amat, C.; Rosell-Cardona, C.; Campbell, J.M.; Polo, J.; Pérez-Bosque, A.; Moretó, M. Dietary supplementation with spray-dried porcine plasma-attenuates colon inflammation in a genetic mouse model of inflammatory bowel disease. Int. J. Mol. Sci. 2020, 21, 6760. [Google Scholar] [CrossRef]
- Henrichs, B.S.; Brost, K.N.; Hayes, C.A.; Campbell, J.M.; Drackley, J.K. Effects of spray-dried bovine plasma protein in milk replacers fed at a high plane of nutrition on performance, intestinal permeability, and morbidity of Holstein calves. J. Dairy Sci. 2020, 104, 7856. [Google Scholar] [CrossRef]
- Ruff, J.; Barros, T.L.; Campbell, J.; Gonzalez-Esquerra, R.; Vuong, C.N.; Dridi, S.; Greene, E.S.; Hernandex-Valasco, X.; Hargis, B.M.; Tellez-Isaias, G. Spray-dried plasma improves body weight, intestinal barrier function, and tibia strength during experimental constant heat stress conditions. Animals 2021, 11, 2213. [Google Scholar] [CrossRef]
- Lee, M.; Chang, E.B. Inflammatory Bowel Diseases (IBD) and the Microbiome—Searching the Crime Scene for Clues. Gastroenterology 2021, 160, 524–537. [Google Scholar] [CrossRef]
- Garriga, C.; Pérez-Bosque, A.; Amat, C.; Campbell, J.M.; Russell, L.; Polo, J.; Planas, J.M.; Moretó, M. Spray-dried porcine plasma reduces the effects of staphylococcal enterotoxin B on glucose transport. J. Nutr. 2005, 135, 1653–1658. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Bosque, A.; Pelegri, C.; Vicario, M.; Castell, M.; Russell, L.; Campbell, J.M.; Quigley, J.D.; Polo, J.; Amat, C.; Moretó, M. Effects of dietary plasma protein on the immune response of weaned rats challenged with S. aureus superantigen B. J. Nutr. 2004, 134, 2667–2672. [Google Scholar] [PubMed]
- Pérez-Bosque, A.; Amat, C.; Polo, J.; Campbell, J.; Crenshaw, J.; Russell, L.; Moretó, M. Spray-dried animal plasma prevents the effects of Staphylococcus aureus Enterotoxin B on intestinal barrier function in weaned rats. J. Nutr. 2006, 136, 2838–2843. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.M.; Polo, J.; Russell, L.E.; Crenshaw, J.D. Review of spray-dried plasma’s impact on intestinal barrier function. Livest. Sci. 2010, 133, 239–241. [Google Scholar] [CrossRef]
- Bah, C.S.F.; El-Din, A.; Bekhit, A.; Carne, A.; McConnell, M.A. Production of bioactive peptide hydrolysates from deer, sheep and pig plasma using plant and fungal protease preparations. Food Chem. 2015, 176, 54–63. [Google Scholar] [CrossRef]
- Bah, C.S.F.; El-Din, A.; Bekhit, A.; Carne, A.; McConnell, M.A. Slaughterhouse Blood: An Emerging Source of Bioactive Compounds. Compr. Rev. Food Sci. Food Saf. 2013, 12, 314–331. [Google Scholar] [CrossRef]
- Kim, S. A multi-omics approach to assess production of the valuable peptides and amino acids in porcine blood protein hydrolysate. LWT Food Sci. Technol. 2022, 163, 113593. [Google Scholar] [CrossRef]
- Verma, A.K.; Chatli, M.K.; Kumar, P.; Mehta, N. Antioxidant and Antimicrobial Efficacy of Peptidic Hydrolysate Obtained from Porcine Blood. Agric. Res. 2019, 8, 116–124. [Google Scholar] [CrossRef]
- Aiemratchanee, P.; Panyawechamontri, K.; Phaophu, P.; Reamtong, O.; Panbangred, W. In vitro antihypertensive activity of bioactive peptides derived from porcine blood corpuscle and plasma proteins. Int. J. Food Sci. Technol. 2021, 56, 2315–2324. [Google Scholar] [CrossRef]
- Zhan, J.; Li, G.; Dang, Y.; Pan, D. Identification of a novel hypotensive peptide from porcine plasma hydrolysate by in vitro digestion and rat model. Food Chem. Mol. Sci. 2022, 4, 100101. [Google Scholar] [CrossRef]
- Zhan, J.; Li, G.; Dang, Y.; Pan, D. Study on the antioxidant activity of peptide isolated from porcine plasma during in vitro digestion. Food Biosci. 2021, 42, 101069. [Google Scholar] [CrossRef]
- Miró, L.; Moretó, M.; Amat, C.; Polo, J.; Pérez-Bosque, A. Aging Effects on Gut Microbiota in SAMP8 Mice. Proceedings 2020, 61, 25. [Google Scholar] [CrossRef]
- Rosell-Cardona, C.; Amat, C.; Griñán-Ferré, C.; Polo, J.; Pallàs, M.; Pérez-Bosque, A.; Moretó, M.; Miró, L. The neuroprotective effects of spray-dried porcine plasma supplementation involve the microbiota−gut−brain axis. Nutrients 2022, 14, 2211. [Google Scholar] [CrossRef] [PubMed]
- Han, K.S.; Boland, M.; Singh, H.; Moughan, P.J. The in vitro anti-pathogenic activity of immunoglobulin concentrates extracted from ovine blood. Appl. Biochem. Biotechnol. 2009, 157, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Balan, P.; Han, K.S.; Rutherfurd-Markwick, K.; Singh, H.; Moughan, P.J. Ovine serum immunoglobulin has immunomodulatory effects in growing rats gavaged with Salmonella enteritidis. J. Nutr. 2011, 141, 950–956. [Google Scholar] [CrossRef]
- Rezende, R.M.; Cox, L.M.; Weiner, H.L.; Rafael Rezende, C.M. Mucosal tolerance therapy in humans: Past and future. Clinic. Exper. Neuro. 2019, 10, 20–31. [Google Scholar] [CrossRef]
- Hall, E.J. Inflammatory Bowel Diseases in Dogs and Cats. Available online: https://protrain.hs.llnwd.net/e1/sitefiles/642/Documents/GI%20technical%20booklet.pdf (accessed on 21 March 2022).
- Wilson, D.; Evans, M.; Weaver, E.; Shaw, A.L.; Klein, G.L. Evaluation of serum-derived bovine immunoglobulin protein isolate in subjects with diarrhea-predominant irritable bowel syndrome. Clin. Med. Insights Gastroenterol. 2013, 5, 49–60. [Google Scholar] [CrossRef]
- Petschow, B.W.; Blikslager, A.T.; Weaver, E.M.; Campbell, J.M.; Polo, J.; Shaw, A.L.; Burnett, B.P.; Klein, G.L.; Rhoads, J.M. Bovine immunoglobulin protein isolates for the nutritional management of enteropathy. World J. Gastroenterol. 2014, 20, 11713–11726. [Google Scholar] [CrossRef]
- Pérez-Bosque, A.; Miró, L.; Polo, J.; Russell, L.; Campbell, J.; Weaver, E.; Crenshaw, J.; Moretó, M. Dietary plasma protein supplements prevent the release of mucosal proinflammatory mediators in intestinal inflammation in rats. J. Nutr. 2010, 140, 25–30. [Google Scholar] [CrossRef]
- Remus, A.; Andretta, I.; Kipper, M.; Lehnen, C.R.; Klein, C.C.; Lovatto, P.A.; Hauschild, L. A meta-analytical study about the relation of blood plasma addition in diets for piglets in the post-weaning and productive performance variables. Livest. Sci. 2013, 155, 294–300. [Google Scholar] [CrossRef]
- Alexander, J.E.; Colyer, A.; Haydock, R.M.; Hayek, M.G.; Park, J. Understanding How Dogs Age: Longitudinal Analysis of Markers of Inflammation, Immune Function, and Oxidative Stress. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2018, 73, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Day, M.J. Ageing, Immunosenescence and Inflammageing in the Dog and Cat. J. Comp. Pathol. 2010, 142, 1. [Google Scholar] [CrossRef] [PubMed]
- May, K.A.; Laflamme, D.P. Nutrition and the aging brain of dogs and cats. J. Vet. Med. Assoc. 2019, 255, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Bosco, N.; Bourdet-Sicard, R.; Capuron, L.; Delzenne, N.; Doré, J.; Franceschi, C.; Lehtinen, M.J.; Recker, T.; Salvioli, S.; et al. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res. Rev. 2017, 40, 95–119. [Google Scholar] [CrossRef] [PubMed]
Item | FEDIAF 1 Dogs | FEDIAF 1 Cats | SDAP | PBM | MBM | EGG | SM | SPC | MG | WG |
---|---|---|---|---|---|---|---|---|---|---|
Crude Protein, % | 21.0 | 33.3 | 78.0 | 65.0 | 44.0 | 47.2 | 46.5 | 63.1 | 61.1 | 79.8 |
Arginine, % | 0.60 | 1.30 | 4.70 | 3.90 | 3.20 | 2.84 | 3.35 | 5.21 | 1.96 | 3.65 |
Histidine, % | 0.27 | 0.35 | 2.80 | 1.07 | 0.67 | 1.12 | 1.21 | 1.72 | 1.28 | 1.95 |
Isoleucine, % | 0.53 | 0.57 | 2.90 | 2.07 | 1.06 | 2.58 | 2.29 | 3.00 | 2.54 | 4.24 |
Leucine, % | 0.95 | 1.36 | 7.80 | 3.89 | 2.29 | 4.05 | 3.56 | 5.07 | 10.6 | 7.29 |
Lysine, % | 0.46 | 0.45 | 6.80 | 3.09 | 2.14 | 3.40 | 2.95 | 4.07 | 1.00 | 1.67 |
Methionine, % | 0.46 | 0.23 | 0.60 | 1.06 | 0.56 | 1.48 | 0.61 | 0.92 | 1.38 | 1.75 |
Methionine + Cysteine, % | 0.88 | 0.45 | 3.10 | 1.84 | 0.92 | 2.58 | 1.28 | 1.88 | 2.45 | 5.02 |
Phenylalanine, % | 0.63 | 0.53 | 4.60 | 2.24 | 1.29 | 2.52 | 2.42 | 3.37 | 3.93 | 3.28 |
Phenylalanine + Tyrosine, % | 1.03 | 2.04 | 8.20 | 3.71 | 2.05 | 4.45 | 3.81 | 5.73 | 7.16 | 6.56 |
Threonine, % | 0.60 | 0.69 | 5.30 | 2.16 | 1.34 | 2.27 | 1.79 | 2.59 | 2.09 | 2.74 |
Tryptophan, % | 0.20 | 0.17 | 1.40 | 0.52 | 0.20 | 0.58 | 0.65 | 0.87 | 0.31 | 0.65 |
Valine, % | 0.68 | 0.68 | 5.30 | 2.67 | 1.62 | 2.89 | 2.14 | 3.16 | 2.86 | 4.05 |
Mitigation of Innate and Acquired Immune Response |
Reduction in activated lymphocytes and neutrophils Reduction in intestinal TNF-α and IL-1β expression Increased expression of IL-10 and TGF-β Reduction in Th17/Treg ratio Reduced expression of VCAM-1 and ICAM-1 A direct effect of IgG from SDAP in the elimination of microorganisms |
Effects Observed Due to Immunological Modifications |
Reduction in local inflammation Elimination of pathogens Modulation of the intestinal microbiota Improvement in mucosal integrity |
Known Effect of SDAP in Different Animal Species | References Supporting These Effects |
---|---|
| |
| [51] 2, [52] 2, [53] 2, [54] 3, [55] 3, [56] 3; |
| [47] 2, [57] 2, [58] 2, [59] 3, [60] 3; |
| [48] 2, [61] 2, [62] 2, [63] 3, [64] 3, [65] 3 |
| |
| [42] 3, [66] 3, [67] 3; |
| [34] 1, [35] 1 |
| [68] 2; [69] 3; |
| [70] 3; |
| [31] 3 |
| [34] 1, [49] 1, [58] 2, [71] 2, [52] 2, [53] 2, [72] 2, [73] 2, [74] 2, [75] 2, [54] 3, [55] 3, [56] 3; |
| [34] 1 |
| [76] 2, [77] 2, [78] 2, [79] 2, [80] 2, [81] 2, [82] 2. |
| [5] 2, [83] 2, [68] 2 [12] 2, [13] 2. |
| [9] 2, [45] 3, [46] 3, [84] 2. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcellos, R.S.; Henríquez, L.B.F.; Lourenço, P.d.S. Spray-Dried Animal Plasma as a Multifaceted Ingredient in Pet Food. Animals 2023, 13, 1773. https://doi.org/10.3390/ani13111773
Vasconcellos RS, Henríquez LBF, Lourenço PdS. Spray-Dried Animal Plasma as a Multifaceted Ingredient in Pet Food. Animals. 2023; 13(11):1773. https://doi.org/10.3390/ani13111773
Chicago/Turabian StyleVasconcellos, Ricardo Souza, Lucas Ben Fiuza Henríquez, and Patrick dos Santos Lourenço. 2023. "Spray-Dried Animal Plasma as a Multifaceted Ingredient in Pet Food" Animals 13, no. 11: 1773. https://doi.org/10.3390/ani13111773