Gene Expression of Aquaporins (AQPs) in Cumulus Oocytes Complex and Embryo of Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Follicular Aspiration of Donors
2.2. In Vitro Embryo Production
2.2.1. In Vitro Maturation
2.2.2. In Vitro Fertilization
2.2.3. Embryo Culture
2.3. RNA Extraction and cDNA Synthesis
2.4. RT-PCR and Quantitative Polymerase Chain Reaction (qPCR)
2.5. Statistical Analysis
3. Results
3.1. AQPs mRNA Level in COC
3.2. AQPs mRNA Level in Cattle Embryos
4. Discussion
4.1. AQPs mRNA Level in COC
4.2. AQPs’ mRNA Level in Embryos
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ishibashi, K.; Kondo, S.; Hara, S.; Morishita, Y. The evolutionary aspects of aquaporin family. Am. J. Physiol. Integr. Comp. Physiol. 2011, 300, R566–R576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verkman, A. Aquaporins. Curr. Biol. 2013, 23, R52–R55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laloux, T.; Junqueira, B.; Maistriaux, L.C.; Ahmed, J.; Jurkiewicz, A.; Chaumont, F. Plant and Mammal Aquaporins: Same but Different. Int. J. Mol. Sci. 2018, 19, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, I.; Soveral, G. Aquaporins in Immune Cells and Inflammation: New Targets for Drug Development. Int. J. Mol. Sci. 2021, 22, 1845. [Google Scholar] [CrossRef] [PubMed]
- Sales, A.; Lobo, C.; Carvalho, A.; Moura, A.; Rodrigues, A. Review Structure, function, and localization of aquaporins: Their possible implications on gamete cryopreservation. Genet. Mol. Res. 2013, 12, 6718–6732. [Google Scholar] [CrossRef] [PubMed]
- Erudaitius, D.; Huang, A.; Kazmi, S.; Buettner, G.R.; Rodgers, V.G.J. Peroxiporin Expression Is an Important Factor for Cancer Cell Susceptibility to Therapeutic H2O2: Implications for Pharmacological Ascorbate Therapy. PLoS ONE 2017, 12, e0170442. [Google Scholar] [CrossRef]
- Jablonski, E.M.; McConnell, N.A.; Hughes, F.; Huet-Hudson, Y.M. Estrogen Regulation of Aquaporins in the Mouse Uterus: Potential Roles in Uterine Water Movement. Biol. Reprod. 2003, 69, 1481–1487. [Google Scholar] [CrossRef]
- Barcroft, L.C.; Offenberg, H.; Thomsen, P.; Watson, A.J. Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation. Dev. Biol. 2003, 256, 342–354. [Google Scholar] [CrossRef] [Green Version]
- McConnell, N.A.; Yunus, R.S.; Gross, S.A.; Bost, K.L.; Clemens, M.G.; Hughes, F. Water Permeability of an Ovarian Antral Follicle Is Predominantly Transcellular and Mediated by Aquaporins. Endocrinology 2002, 143, 2905–2912. [Google Scholar] [CrossRef]
- Andrew, J.W.; Watson, A.J.; Barcroft, L.C. Regulation of blastocyst formation. Front. Biosci. 2001, 6, 708. [Google Scholar] [CrossRef]
- Camargo, L.S.A.; Boite, M.C.; Wohlres-Viana, S.; Mota, G.B.; Serapiao, R.V.; Sa, W.F.; Viana, J.H.M.; Nogueira, L.A.G. Osmotic challenge and expression of aquaporin 3 and Na/K ATPase genes in bovine embryos produced in vitro. Cryobiology 2011, 63, 256–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, B.; Kawai, Y.; Hara, T.; Takeda, S.; Seki, S.; Nakata, Y.-I.; Matsukawa, K.; Koshimoto, C.; Kasai, M.; Edashige, K. Pathway for the Movement of Water and Cryoprotectants in Bovine Oocytes and Embryos1. Biol. Reprod. 2011, 85, 834–847. [Google Scholar] [CrossRef] [PubMed]
- Wohlres-Viana, S.; Pereira, M.M.; Viana, J.H.M.; Machado, M.A.; Camargo, L.S.D.A. Comparison of gene expression in Bos indicus and Bos taurus embryos produced in vivo or in vitro. Livest. Sci. 2011, 140, 62–67. [Google Scholar] [CrossRef]
- Moschini, G.A.D.L.; Gaitkoski, D.; de Almeida, A.B.M.; Hidalgo, M.M.T.; Martins, M.I.M.; Blaschi, W.; Barreiros, T.R.R. Comparison between in vitro embryo production in Bos indicus and Bos taurus cows. Res. Soc. Dev. 2021, 10, e38810716712. [Google Scholar] [CrossRef]
- Randel, R. Unique Reproductive Traits of Brahman and Brahman Based Cows. In Factors Affecting Calf Crop; CRC Press: Boca Raton, FL, USA, 2021; pp. 23–44. [Google Scholar] [CrossRef]
- Vásquez, R.; Martínez, R.; Ballesteros, H.; Grajales, H.; Pérez, G.J.E.; Abuabara, Y.; Barrera, C.G.P. El Ganado Romosinuano en la Producción de Carne en Colombia; CORPOICA: Bogotá, Colombia, 2006. [Google Scholar]
- Camargo, L.; Viana, J.; Ramos, A.; Serapião, R.; de Sa, W.; Ferreira, A.; Guimarães, M.; Filho, V.D.V. Developmental competence and expression of the Hsp 70.1 gene in oocytes obtained from Bos indicus and Bos taurus dairy cows in a tropical environment. Theriogenology 2007, 68, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.A.; Domiciano, L.F.; Borges, R.M.G.D.S.; Rondon, G.M.; Da Rocha, N.T.; De Souza, G.A.N.; Júnior, V.B.D.S.; Xavier, M.F.N. Qualitative aspects of oocytes from nelore and senepol breeds reared in a tropical region. Nucl. Anim. 2020, 12, 111–121. [Google Scholar] [CrossRef]
- Lozano-Villegas, K.J.; Rodríguez-Hernández, R.; Herrera-Sánchez, M.P.; Uribe-García, H.F.; Naranjo-Gómez, J.S.; Otero-Arroyo, R.J.; Rondón-Barragán, I.S. Identification of Reference Genes for Expression Studies in the Whole-Blood from Three Cattle Breeds under Two States of Livestock Weather Safety. Animals 2021, 11, 3073. [Google Scholar] [CrossRef]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2ˆ(–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinform. Biomath. 2013, 3, 71–85. [Google Scholar]
- Geyer, R.R.; Musa-Aziz, R.; Qin, X.; Boron, W.F. Relative CO2/NH3 selectivities of mammalian aquaporins 0–9. Am. J. Physiol. Cell. Physiol. 2013, 304, C985–C994. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, K.; Tanaka, Y.; Morishita, Y. The role of mammalian superaquaporins inside the cell. Biochim. Biophys. Acta 2014, 1840, 1507–1512. [Google Scholar] [CrossRef]
- Ishii, M.; Ohta, K.; Katano, T.; Urano, K.; Watanabe, J.; Miyamoto, A.; Inoue, K.; Yuasa, H. Cellular Physiology Biochemistry and Biochemistr y Dual Functional Characteristic of Human Aquaporin 10 for Solute Transport. Cell. Physiol. Biochem. 2011, 27, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-W.; Cheon, Y.-P. Temporal Aquaporin 11 Expression and Localization during Preimplantation Embryo Development. Dev. Reprod. 2015, 19, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Meng, J.; Liu, W.; Smith, G.W.; Yao, J.; Lyu, L. Transcriptome Analysis of Bovine Ovarian Follicles at Predeviation and Onset of Deviation Stages of a Follicular Wave. J. Genom. 2016, 2016, 3472748. [Google Scholar] [CrossRef] [Green Version]
- Katz-Jaffe, M.; McCallie, B.; Preis, K.; Filipovits, J.; Gardner, D. Transcriptome analysis of in vivo and in vitro matured bovine MII oocytes. Theriogenology 2009, 71, 939–946. [Google Scholar] [CrossRef]
- Halstead, M.M.; Ma, X.; Zhou, C.; Schultz, R.M.; Ross, P.J. Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation. Nat. Commun. 2020, 11, 4654. [Google Scholar] [CrossRef]
- Martínez, T.; Vendrell-Flotats, M.; López-Béjar, M.; Mogas, T. Exposure to hyperosmotic solutions modifies expression of AQP3 and AQP7 on bovine oocytes. Cryobiology 2018, 85, 143. [Google Scholar] [CrossRef]
- Edashige, K.; Yamaji, Y.; Kleinhans, F.W.; Kasai, M. Artificial expression of aquaporin-3 improves the survival of mouse oocytes after cryopreservation. Biol. Reprod. 2003, 68, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.-J.; Zhang, X.-Y.; Ding, G.-L.; Li, R.; Wang, L.; Jin, L.; Lin, X.-H.; Gao, L.; Sheng, J.-Z.; Huang, H.-F. Aquaporin7 plays a crucial role in tolerance to hyperosmotic stress and in the survival of oocytes during cryopreservation. Sci. Rep. 2015, 5, 17741. [Google Scholar] [CrossRef] [Green Version]
- Williams, L. The Role of Aquaporins in the Developing Ovarian Follicle. Doctoral Dissertation, University of Nottingham, Nottingham, UK, 2012. [Google Scholar]
- Kim, C.-W.; Choi, E.-J.; Kim, E.-J.; Siregar, A.S.; Han, J.; Kang, J.H.A.D. Aquaporin 4 expression is downregulated in large bovine ovarian follicles. J. Anim. Reprod. Biotechnol. 2020, 35, 315–322. [Google Scholar] [CrossRef]
- Verkman, A. Applications of aquaporin inhibitors. Drug News Perspect. 2001, 14, 412–420. [Google Scholar] [CrossRef]
- Wang, D.; Di, X.; Wang, J.; Li, M.; Zhang, D.; Hou, Y.; Hu, J.; Zhang, G.; Zhang, H.; Sun, M.; et al. Increased Formation of Follicular Antrum in Aquaporin-8-Deficient Mice Is Due to Defective Proliferation and Migration, and Not Steroidogenesis of Granulosa Cells. Front. Physiol. 2018, 9, 1193. [Google Scholar] [CrossRef] [PubMed]
- Vanselow, J.; Vernunft, A.; Koczan, D.; Spitschak, M.; Kuhla, B. Exposure of Lactating Dairy Cows to Acute Pre-Ovulatory Heat Stress Affects Granulosa Cell-Specific Gene Expression Profiles in Dominant Follicles. PLoS ONE 2016, 11, e0160600. [Google Scholar] [CrossRef] [PubMed]
- Cooke, R.F.; Daigle, C.L.; Moriel, P.; Smith, S.B.; Tedeschi, L.O.; Vendramini, J.M.B. Cattle adapted to tropical and subtropical environments: Social, nutritional, and carcass quality considerations. J. Anim. Sci. 2020, 98, skaa014. [Google Scholar] [CrossRef]
- Porto-Neto, L.; Reverter-Gomez, T.; Prayaga, K.C.; Chan, E.; Johnston, D.J.; Hawken, R.J.; Fordyce, G.; Garcia, J.F.; Sonstegard, T.S.; Bolormaa, S.; et al. The Genetic Architecture of Climatic Adaptation of Tropical Cattle. PLoS ONE 2014, 9, e113284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidtmann, C.; Schönherz, A.; Guldbrandtsen, B.; Marjanovic, J.; Calus, M.; Hinrichs, D.; Thaller, G. Assessing the genetic background and genomic relatedness of red cattle populations originating from Northern Europe. Genet. Sel. Evol. 2021, 53, 23. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Azevedo, A.; Verneque, R.; Gasparini, K.; Peixoto, M.; da Silva, M.; Lopes, P.; Guimarães, S.; Machado, M. Quantitative trait loci affecting milk production traits on bovine chromosome 6 in zebuine Gyr breed. J. Dairy Sci. 2011, 94, 971–980. [Google Scholar] [CrossRef] [Green Version]
- Paula-Lopes, F.F.; Lima, R.S.; Satrapa, R.A.; Barros, C.M. Physiology and endocrinology symposium: Influence of cattle genotype (Bos indicus vs. Bos taurus) on oocyte and preimplantation embryo resistance to increased temperature. J. Anim. Sci. 2013, 91, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Lopera-Vasquez, R.; Hamdi, M.; Maillo, V.; Lloreda, V.; Coy, P.; Gutierrez-Adan, A.; Bermejo-Alvarez, P.; Rizos, D. Effect of bovine oviductal fluid on development and quality of bovine embryos produced in vitro. Reprod. Fertil. Dev. 2017, 29, 621–629. [Google Scholar] [CrossRef]
- Ishibashi, K.; Morinaga, T.; Kuwahara, M.; Sasaki, S.; Imai, M. Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim. Biophys. Acta 2002, 1576, 335–340. [Google Scholar] [CrossRef]
- Graf, A.; Krebs, S.; Zakhartchenko, V.; Schwalb, B.; Blum, H.; Wolf, E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc. Natl. Acad. Sci. USA 2014, 111, 4139–4144. [Google Scholar] [CrossRef]
- Min, B.; Cho, S.; Park, J.S.; Lee, Y.-G.; Kim, N.; Kang, Y.-K. Transcriptomic Features of Bovine Blastocysts Derived by Somatic Cell Nuclear Transfer. G3 (Bethesda) 2015, 5, 2527–2538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, B.; Park, J.S.; Kang, Y.-K. Determination of Oocyte-Manipulation, Zygote-Manipulation, and Genome-Reprogramming Effects on the Transcriptomes of Bovine Blastocysts. Front. Genet. 2018, 9, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charpigny, G.; Guienne, B.M.-L.; Richard, C.; Adenot, P.; Dubois, O.; Gélin, V.; Peynot, N.; Daniel, N.; Brochard, V.; Nuttinck, F. PGE2 Supplementation of Oocyte Culture Media Improves the Developmental and Cryotolerance Performance of Bovine Blastocysts Derived From a Serum-Free in vitro Production System, Mirroring the Inner Cell Mass Transcriptome. Front. Cell Dev. Biol. 2021, 9, 672948. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wintour, E.M. Aquaporins in development—A review. Reprod. Biol. Endocrinol. 2005, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Liu, H.; Beall, M.; Ma, T.; Hao, R.; Ross, M.G. Role of aquaporin 1 in fetal fluid homeostasis. J. Matern. Neonatal Med. 2014, 27, 505–510. [Google Scholar] [CrossRef]
- Xiong, Y.; Tan, Y.-J.; Xiong, Y.-M.; Huang, Y.-T.; Hu, X.-L.; Lu, Y.-C.; Ye, Y.-H.; Wang, T.-T.; Zhang, D.; Jin, F.; et al. Expression of Aquaporins in Human Embryos and Potential Role of AQP3 and AQP7 in Preimplantation Mouse Embryo Development. Cell. Physiol. Biochem. 2013, 31, 649–658. [Google Scholar] [CrossRef]
- Richard, C.; Gao, J.; Brown, N.; Reese, J. Aquaporin Water Channel Genes Are Differentially Expressed and Regulated by Ovarian Steroids during the Periimplantation Period in the Mouse. Endocrinology 2003, 144, 1533–1541. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Su, Y.; Fang, R.; Ramierez, B.; Ross, M.G. Cloning and expression of aquaporin 8 water channel in ovine and human chorioamniotic membranes: Molecular mechanism of intramembranous pathway for amniotic fluid reabsorption. J. Soc. Gynecol. Investig. 2000, 7, 183A. [Google Scholar]
- Offenberg, H.; Thomsen, P.D. Functional challenge affects aquaporin mRNA abundance in mouse blastocysts. Mol. Reprod. Dev. 2005, 71, 422–430. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Carrageta, D.F.; Bernardino, R.L.; Alves, M.G.; Oliveira, P.F. Aquaporins and Animal Gamete Cryopreservation: Advances and Future Challenges. Animals 2022, 12, 359. [Google Scholar] [CrossRef]
- Edashige, K.; Ohta, S.; Tanaka, M.; Kuwano, T.; Valdez, D.M., Jr.; Hara, T.; Jin, B.; Takahashi, S.-I.; Seki, S.; Koshimoto, C.; et al. The Role of Aquaporin 3 in the Movement of Water and Cryoprotectants in Mouse Morulae. Biol. Reprod. 2007, 77, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Sponchiado, M.; Gomes, N.S.; Fontes, P.K.; Martins, T.; del Collado, M.; Pastore, A.D.A.; Pugliesi, G.; Nogueira, M.F.G.; Binelli, M. Pre-hatching embryo-dependent and -independent programming of endometrial function in cattle. PLoS ONE 2017, 12, e0175954. [Google Scholar] [CrossRef] [Green Version]
- Passaro, C.; Tutt, D.; Mathew, D.J.; Sanchez, J.M.; Browne, J.A.; Boe-Hansen, G.B.; Fair, T.; Lonergan, P. Blastocyst-induced changes in the bovine endometrial transcriptome. Reproduction 2018, 156, 219–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Offenberg, H.; Barcroft, L.C.; Caveney, A.; Viuff, D.; Thomsen, P.D.; Watson, A.J. mRNAs encoding aquaporins are present during murine preimplantation development. Mol. Reprod. Dev. 2000, 57, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cui, Y.; Fan, Z.; Cook, G.A.; Nishimura, H. Two distinct aquaporin-4 cDNAs isolated from medullary cone of quail kidney. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 147, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-W.; Shin, Y.K.; Choen, Y.-P. Adaptive Transition of Aquaporin 5 Expression and Localization during Preimplantation Embryo Development by In Vitro Culture. Dev. Reprod. 2014, 18, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, M.; Beitz, E.; Kozono, D.; Guggino, W.B.; Agre, P.; Yasui, M. Characterization of Aquaporin-6 as a Nitrate Channel in Mammalian Cells. Requirement of pore-lining residue threonine 63. J. Biol. Chem. 2002, 277, 39873–39879. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.C.; Nielsen, M.K.; Schacht, W.H.; Clark, R.T. Designing and conducting experiments for range beef cows. J. Anim. Sci. 2000, 77, 510–528. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.D.; Gebhart, G.F.; Gonder, J.C.; Keeling, M.E.; Kohn, D.F. The 1996 Guide for the Care and Use of Laboratory Animals. ILAR J. 1997, 38, 41–48. [Google Scholar] [CrossRef]
Gene | Primer sequence (5´-3´) | Primer Length (nt) | Tm (°C) | GC% | Amplicon Size (bp) | N° Accession/ Reference | |
---|---|---|---|---|---|---|---|
AQP1 | F | TCCTTCGGCTCCTCGGTGATTAC | 23 | 66.4 | 57.0 | 174 | NM_174702.3 |
R | ATACTCCTCCACCTGACCGCTG | 22 | 65.9 | 59.0 | |||
AQP2 | F | ACTCCGGTCCATAGCCTTCT | 20 | 60.5 | 55.0 | 150 | NM_001101199 |
R | CCGATAGCCAGACCGAAG | 18 | 58.4 | 61.0 | |||
AQP3 | F | CCTTATTGCTGGCCAGGTCTC | 21 | 63.3 | 57.0 | 206 | NM_001079794 |
R | GGCCCGAAACAATAAGCTGGT | 21 | 61.3 | 52.0 | |||
AQP4 | F | GGACTCAGCATCGCGACTATG | 21 | 63.3 | 57.0 | 223 | XM_027525836 |
R | CGTGAACCGTGGTGACTCC | 19 | 61.7 | 63.0 | |||
AQP5 | F | CATATGAACCCCGCCATCACG | 21 | 63.3 | 57.0 | 165 | XM_024992303 |
R | CGCATTGACAGCCAGATTGC | 20 | 60.5 | 55.0 | |||
AQP6 | F | GCTCTGTTTGCCGAGTTCCT | 20 | 60.5 | 55.0 | 182 | XM_002687279 |
R | GTCACTGCAGGGTTGACGTG | 20 | 62.5 | 60.0 | |||
AQP7 | F | GTCATATGGCAGAACGAGAA | 20 | 56.4 | 45.0 | 151 | NM_001076378 |
R | CGAAGCCAAAACCCAAATTG | 20 | 56.4 | 45.0 | |||
AQP8 | F | CAGAGGCAGCTGTATCCATG | 20 | 60.5 | 55.0 | 157 | NM_001206607 |
R | CAGCCGATGAAGATGAACAG | 20 | 58.4 | 50.0 | |||
AQP9 | F | GGACACTTTGGAGGAATCAT | 20 | 56.4 | 45.0 | 143 | NM_001205833 |
R | CACTTCATCCGTCCAAAAAG | 20 | 56.4 | 45.0 | |||
AQP10 | F | GGGCCAGGTTTCTCAGTTAC | 20 | 60.5 | 55.0 | 162 | XM_024989821 |
R | CAGGGTAGGTGGCAAAGATG | 20 | 60.5 | 55.0 | |||
AQP11 | F | AGACGGGTGCGATTAGACT | 19 | 57.3 | 53.0 | 173 | NM_001110069 |
R | GACAGCCTCTATGATGACCG | 20 | 60.5 | 55.0 | |||
AQP12b | F | CTGACGTCTGCCTTCCTGAA | 20 | 60.5 | 55.0 | 198 | XM_005205063 |
R | CCGGTACTTGCTCTTCTGAC | 20 | 60.5 | 55.5 | |||
ACTB | F | GGGATGAGGCTCAGAGCAAGAGA | 23 | 63.6 | 56.5 | 118 | [19] |
R | AGCTCGTTGTAGAAGGTGTGGTGCC | 25 | 66.9 | 56.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petano-Duque, J.M.; Castro-Vargas, R.E.; Cruz-Mendez, J.S.; Lozano-Villegas, K.J.; Herrera-Sánchez, M.P.; Uribe-García, H.F.; Naranjo-Gómez, J.S.; Otero-Arroyo, R.J.; Rondón-Barragán, I.S. Gene Expression of Aquaporins (AQPs) in Cumulus Oocytes Complex and Embryo of Cattle. Animals 2023, 13, 98. https://doi.org/10.3390/ani13010098
Petano-Duque JM, Castro-Vargas RE, Cruz-Mendez JS, Lozano-Villegas KJ, Herrera-Sánchez MP, Uribe-García HF, Naranjo-Gómez JS, Otero-Arroyo RJ, Rondón-Barragán IS. Gene Expression of Aquaporins (AQPs) in Cumulus Oocytes Complex and Embryo of Cattle. Animals. 2023; 13(1):98. https://doi.org/10.3390/ani13010098
Chicago/Turabian StylePetano-Duque, Julieth M., Rafael E. Castro-Vargas, Juan S. Cruz-Mendez, Kelly J. Lozano-Villegas, María P. Herrera-Sánchez, Heinner F. Uribe-García, Juan S. Naranjo-Gómez, Rafael J. Otero-Arroyo, and Iang S. Rondón-Barragán. 2023. "Gene Expression of Aquaporins (AQPs) in Cumulus Oocytes Complex and Embryo of Cattle" Animals 13, no. 1: 98. https://doi.org/10.3390/ani13010098
APA StylePetano-Duque, J. M., Castro-Vargas, R. E., Cruz-Mendez, J. S., Lozano-Villegas, K. J., Herrera-Sánchez, M. P., Uribe-García, H. F., Naranjo-Gómez, J. S., Otero-Arroyo, R. J., & Rondón-Barragán, I. S. (2023). Gene Expression of Aquaporins (AQPs) in Cumulus Oocytes Complex and Embryo of Cattle. Animals, 13(1), 98. https://doi.org/10.3390/ani13010098