Effect of a Combination of Lysolecithin, Synthetic Emulsifier and Monoglycerides on the Apparent Ileal Digestibility, Metabolizable Energy and Growth Performance of Growing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Digestibility Experiment
2.1.1. Experimental Design
2.1.2. Chemical Analysis
2.2. Growth Trial
2.2.1. Animals, Experimental Design, and Diets
2.2.2. Performance Measurements and Economic Calculations
2.2.3. Microbial Analysis of Faeces
2.3. Statistical Analysis
3. Results
3.1. Digestibility Experiment
3.2. Growth Study
3.3. Microbial Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vasanthakumari, B.L.; di Benedetto, M. Nutritional strategy to improve sow energy utilisation with bio-emulsifiers. In Proceedings of the Conference in Pig Feed Quality, Ho Chi Minh City, Vietnam, 9–10 April 2015. [Google Scholar]
- Wealleans, A.L.; Jansen, M.; di Benedetto, M. The addition of lysolecithin to broiler diets improves growth performance across fat levels and sources: A meta-analysis of 33 trials. Br. Poult. Sci. 2020, 61, 51–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, K.A.; Forsyth, D.M.; Cline, T.R. The effect of an adaptation period to soybean oil additions in the diets of young pigs. J. Anim. Sci. 1990, 68, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Li, D.F.; Thaler, R.C.; Nelssen, J.L.; Harmon, D.L.; Allee, G.L.; Weeden, T.L. Effect of fat sources and combinations on starter pig performance, nutrient digestibility and intestinal morphology. J. Anim. Sci. 1990, 68, 3694–3704. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.B.; Hancock, J.D.; Harmon, D.L.; Walker, C.E. Effects of exogenous emulsifiers and fat sources on nutrient digestibility, serum lipids, and growth performance in weanling pigs. J. Anim. Sci. 1992, 70, 3473–3482. [Google Scholar] [CrossRef]
- Zhang, B.; Haitao, L.; Zhao, D.; Guo, Y.; Barri, A. Effect of fat type and lysophosphatidylcholine addition to broiler diets on performance, apparent digestibility of fatty acids, and apparent metabolisable energy content. Anim. Feed Sci. Technol. 2011, 163, 177–184. [Google Scholar] [CrossRef]
- Sugumar, C.; Vasanthakumari, B.L.; Lee, H. Feeding bio-emulsifiers to young and old pigs for superior performance. In Proceedings of the Conference on Pig Feed Quality, Bangkok, Thailand, 31 March–1 April 2016. [Google Scholar]
- Wealleans, A.L.; Bierinckx, K.; di Benedetto, M. Fats and oils in pig nutrition: Factors affecting digestion and utilization. Anim. Feed Sci. Technol. 2021, 277, 114950. [Google Scholar] [CrossRef]
- Jansen, M.; Nuyens, F.; Buyse, J.; Leleu, S.; Van Campenhout, L. Interaction between fate type and lysophospholipids supplementation in broiler feeds. Poult. Sci. 2015, 94, 2506–2515. [Google Scholar] [CrossRef]
- Wealleans, A.L.; Buyse, J.; Scholey, D.; van Campenhout, L.; Burton, E.; Pritchard, S.; Di Benedetto, M.; Nuyens, F.; Jansen, M. Lysolecithin but not lecithin improves nutrient digestibility and growth rates in young broilers. Br. Poult. Sci. 2020, 61, 414–423. [Google Scholar] [CrossRef]
- Jansen, M.; Mast, I.; di Benedetto, M.; Nuyens, F. Lysophospholipids with monoglycerides and synthetic emulsifier enhance lipid digestion in broilers. In Proceedings of the 21st European Symposium on Poultry Nutrition, Vila-seca, Spain, 8–11 May 2017. [Google Scholar]
- Haetinger, V.S.; Dalmoro, Y.K.; Godoy, G.L.; Lang, M.B.; de Souza, O.F.; Aristimunha, P.; Stefanello, C. Optimizing cost, growth performance, and nutrient absorption with a bio-emulsifier based on lysophospholipids for broiler chickens. Poult. Sci. 2021, 100, 101025. [Google Scholar] [CrossRef]
- Ghazalah, A.A.; Abd-Elsamee, M.O.; Ibrahim, M.I.; Gonzalez Sanchez, D.; Wealleans, A.L.; Abdelkader, M. Performance and cost-benefit improvements following addition of an absorption enhancer based on lysolecithin to diets without added fat for broiler chickens. J. World’s Poult. Res. 2021, 11, 168–173. [Google Scholar] [CrossRef]
- Ghazalah, A.A.; Abd-Elsamee, M.O.; Ibrahim, M.I.; Abdelgayed, S.S.; Abdelkader, M.; Gonzalez Sanchez, D.; Wealleans, A.L. Addition of an absorption enhancer based on lysolecithin on the improves growth performance, carcass portioning and intestinal morphology in broiler chickens fed energy-deficient diets. Animals 2021, 11, 3037. [Google Scholar] [CrossRef] [PubMed]
- Boontiam, W.; Jung, B.; Kim, Y.Y. Effects of lysophospholipid supplementation to lower nutrient diets on growth performance, intestinal morphology, and blood metabolites in broiler chickens. Poult. Sci. 2016, 96, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Brautigan, D.L.; Li, R.; Kubicka, E.; Turner, S.D.; Garcia, J.S.; Weintraut, M.L.; Wong, E.A. Lysophospholipids as Feed Additive Enhances Collagen Expression and Villus Length in the Jejunum of Broiler Chickens. Poult. Sci. 2017, 96, 2889–2898. [Google Scholar] [CrossRef] [PubMed]
- Moughan, P.J.; Smith, W.C.; Kies, A.K.; James, K.A.C. Comparison of the ileal digestibility of amino acids in ground barley for the growing rat and pig. N. Z. J. Agric. Res. 1987, 30, 59–66. [Google Scholar] [CrossRef]
- Tryptophan in Foods and Food & Feed Ingredients; Official Method 988.15; AOAC International: Rockville, MD, USA, 2006.
- Association of Analytical Communities. Official Methods of Analysis of AOAC International, 17th ed.; AOAC: Gaithersburg, MD, USA, 2002. [Google Scholar]
- BS EN ISO 9831:2003; Animal Feeding Stuffs, Animal Products, and Faeces or Urine—Determination of Gross Calorific Value—Bomb Calorimeter Method. International Organization for Standardization: Geneva, Switzerland, 2003.
- Sauer, W.C.; Ozimek, L. Digestibility of amino acids in swine: Results and their practical applications: A review. Livest. Prod. Sci. 1986, 15, 367–388. [Google Scholar] [CrossRef]
- Noblet, J.; Perez, J.M. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J. Anim. Sci. 1993, 71, 3389–3398. [Google Scholar] [CrossRef] [PubMed]
- Wealleans, A.L.; Li, W.; Romero, L.F.; Mathis, G.; Lumpkins, B. Performance and cost-benefit improvements following supplementation with a combination of direct-fed microbials and enzymes to broiler chickens raised with or without ionophores. J. Appl. Poult. Res. 2017, 27, 23–32. [Google Scholar] [CrossRef]
- ISO 4832:2006; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection and Enumeration of Coliforms—Most Probable Number Technique. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 8199:2005; Water Quality—General Guidance on the Enumeration of Micro-Organisms by Culture. International Organization for Standardization: Geneva, Switzerland, 2005.
- Ravindran, V.; Tancharoenrat, P.; Zaefarian, F.; Ravindran, G. Fats in poultry nutrition: Digestive physiology and factors influencing their utilisation. Anim. Feed Sci. Technol. 2016, 213, 1–21. [Google Scholar] [CrossRef]
- Kerr, B.J.; Kellner, T.A.; Shurson, G.C. Characteristics of lipids and their feeding value in swine diets. J. Anim. Sci. Biotechnol. 2015, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Cera, K.R.; Mahan, D.C.; Reinhart, G.A. Weekly digestibilities of diets supplemented with corn oil, lard or tallow by weanling swine. J. Anim. Sci. 1988, 66, 1430–1437. [Google Scholar] [CrossRef]
- Cera, K.R.; Mahan, D.C.; Reinhart, G.A. Effects of dietary dried whey and corn oil on weanling pig performance, fat digestibility and nitrogen utilization. J. Anim. Sci. 1988, 66, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
- Cera, K.R.; Mahan, D.C.; Reinhart, G.A. Apparent fat digestibilities and performance responses of postweaning swine fed diets supplemented with coconut oil, corn oil or tallow. J. Anim. Sci. 1989, 67, 2040–2047. [Google Scholar] [CrossRef]
- Wealleans, A.L.; Bierinckx, K.; Witters, E.; di Benedetto, M.; Wiseman, J. Assessment of the quality, oxidative status and dietary energy value of lipids used in non-ruminant animal nutrition. J. Sci. Food Agric. 2021, 101, 4266–4277. [Google Scholar] [CrossRef] [PubMed]
- Shurson, G.C.; Kerr, B.J.; Hanson, A.R. Evaluating the quality of feed fats and oils and their effects on pig growth performance. J. Anim. Sci. Biotechnol. 2015, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, P.Y.; Li, H.L.; Hossain, M.M.; Kim, I.H. Effect of emulsifier (lysophospholipids) on growth performance, nutrient digestibility and blood profile in weanling pigs. Anim. Feed Sci. Technol. 2015, 207, 190–195. [Google Scholar] [CrossRef]
- Zhao, P.Y.; Zhang, Z.F.; Lan, R.X.; Liu, W.C.; Kim, I.H. Effect of lysophospholipids in diets differing in fat contents on growth performance, nutrient digestibility, milk composition and litter performance of lactating sows. Animal 2017, 11, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Kamisoyama, H.; Isshiki, Y.; Hasegawa, S. Effects of dietary fat levels on nutrient digestibility at different sites of chicken intestines. J. Poult. Sci. 2009, 46, 291–295. [Google Scholar]
- Dierick, N.A.; Decuypere, J.A. Influence of lipase and/or emulsifier addition on the ileal and faecal nutrient digestibility in growing pigs fed diets containing 4% animal fat. J. Sci. Food Agric. 2004, 84, 1443–1450. [Google Scholar] [CrossRef]
- Xing, J.J.; van Heugten, E.; Li, D.F.; Touchette, K.J.; Coalson, J.A.; Odgaard, R.L.; Odle, J. Effects of emulsification, fat encapsulation, and pelleting on weanling pig performance and nutrient digestibility. J. Anim. Sci. 2004, 82, 2601–2609. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, T.; Kushiro, M.; Zhang, H.; Nara, E.; Ono, H.; Nagao, A. Lysophosphatidylcholine enhances carotenoid uptake from mixed micelles by Caco-2 human intestinal cells. J. Nutr. 2001, 131, 2921–2927. [Google Scholar] [CrossRef] [Green Version]
- Lundbaek, J.A.; Andersen, O.S. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol. 1994, 104, 645–673. [Google Scholar] [CrossRef]
- Maingret, F.; Patel, A.J.; Lesage, F.; Lazdunski, M.; Honoré, E. Lysophospholipids Open the Two-pore Domain Mechanogated K(+) Channels TREK-1 and TRAAK. J. Biol. Chem. 2000, 275, 10128–10133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendel, A. Lecithin. In Kirk-Othmer Encyclopedia of Chemical Technology, 14th ed.; Howe-Grant, M., Ed.; Wiley: New York, NY, USA, 1995; Volume 15, pp. 192–209. [Google Scholar]
- Mandalari, G.; Adel-Patient, K.; Barkholt, V.; Baro, C.; Bennett, L.; Bublin, M.; Mills, E.N.C. In Vitro Digestibility of Betacasein and Beta-lactoglobulin under Simulated Human Gastric and Duodenal Conditions: A Multi-laboratory Evaluation. Reg. Toxicol. Pharmacol. 2009, 55, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Khonyoung, D.; Yamauchi, K.; Suzuki, K. Influence of Dietary Fat Sources and Lysophospholipids on Growth Performance, Visceral Organ Size, and Histological Intestinal Alteration in Broiler Chickens. Livest. Sci. 2015, 176, 111–120. [Google Scholar] [CrossRef]
- Mitchaothai, J.; Yuangklang, C.; Vasupen, K.; Wongsuthavas, S.; Beynen, A.C. Effect of dietary calciuma and lecithin on growth performance and small intestinal morphology of young wild pigs. Livest. Sci. 2010, 134, 106–108. [Google Scholar] [CrossRef]
- Polycarpo, G.V.; Burbarelli, M.F.C.; Carao, A.C.P.; Merseguel, C.E.B.; Dadalt, J.C.; Maganha, S.R.L.; Sousa, R.L.M.; Cruz-Polycarpo, V.C.; Albuquerque, R.D. Effects of lipid sources, lysophospholipids and organic acids in maize-based broiler diets on nutrient balance, liver concentration of fat-soluble vitamins, jejunal microbiota and performance. Br. Poult. Sci. 2016, 57, 788–798. [Google Scholar] [CrossRef] [Green Version]
- Arouri, A.; Mouritsen, O.G. Membrane-perturbing effect of fatty acids and lysolipids. Prog. Lipid Res. 2013, 52, 130–140. [Google Scholar] [CrossRef]
Raw Materials, % | Starter 28–56 Days | Grower 56–112 Days | Finisher 112–168 Days | |||
---|---|---|---|---|---|---|
PC | NC | PC | NC | PC | NC | |
Corn | 45.73 | 41.43 | 44.54 | 41.2 | 35.84 | 29.38 |
Wheat | 15 | 15 | 20 | 20 | 25 | 25 |
Full fat soybean | 6 | 6 | - | - | - | - |
Soybean meal (47% CP) | 12.7 | 10.5 | 19.77 | 17.44 | 17.07 | 14.46 |
Soytide (Fermented soy) | 5 | 5 | - | - | - | |
Whey powder (11% CP) | 3 | 3 | - | - | - | - |
Fish meal (60% CP) | 3 | 3 | 2 | 2 | - | - |
Rice bran | - | - | 10 | 6.27 | 15 | 15 |
Wheat bran | - | 7.56 | - | 10 | 3.78 | 12.89 |
Dicalcium phosphate(DCP), 17% P | 1.02 | 0.98 | 0.98 | 0.91 | 0.86 | 0.73 |
Limestone | 1.07 | 1.11 | 1.06 | 1.12 | 1.48 | 1.56 |
Lactose | 5 | 5 | - | - | - | |
L-Lysine 98% | 0.37 | 0.37 | 0.26 | 0.27 | 0.17 | 0.18 |
DL-Methionine | 0.13 | 0.13 | 0.04 | 0.03 | 0.01 | 0.01 |
L-Threonine | 0.18 | 0.18 | 0.08 | 0.08 | 0.06 | 0.07 |
L-Tryptophan | 0.06 | 0.06 | - | - | - | - |
Soybean oil | 1.05 | - | 0.58 | - | - | - |
Salt | 0.32 | 0.31 | 0.32 | 0.31 | 0.36 | 0.35 |
Premix | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 |
Total | 100 | 100 | 100 | 100 | 100 | 100 |
Calculated Chemical Composition, % | ||||||
DM | 90.54 | 90.34 | 88 | 87.96 | 87.99 | 88.05 |
ME (kcal/kg) | 3400 | 3300 | 3200 | 3100 | 3100 | 3000 |
Crude protein | 19 | 18.35 | 17.5 | 17.06 | 16 | 15.6 |
Crude fat | 4.81 | 4.62 | 4.9 | 4.36 | 4.23 | 4.63 |
Crude fibre | 2.85 | 3.17 | 3.66 | 4.12 | 4.64 | 5 |
Ca | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | 0.8 |
P | 0.4 | 0.4 | 0.36 | 0.36 | 0.3 | 0.3 |
Lysine | 1.35 | 1.32 | 1.1 | 1.07 | 0.9 | 0.88 |
Methionine | 0.43 | 0.42 | 0.33 | 0.32 | 0.28 | 0.27 |
M + C | 0.76 | 0.74 | 0.65 | 0.63 | 0.58 | 0.57 |
Threonine | 0.87 | 0.85 | 0.72 | 0.7 | 0.64 | 0.62 |
Tryptophan | 0.25 | 0.24 | 0.21 | 0.2 | 0.19 | 0.19 |
Parameter | PC | NC + 500 | SEM | p-Value |
---|---|---|---|---|
Dry Matter Intake (g/day) | 803.5 | 817.6 | 10.12 | 0.512 |
Crude Protein Intake (g/day) | 140.7 | 139.3 | 1.82 | 0.696 |
Gross Energy Intake (kcal/day) | 3180 | 3178 | 38.93 | 0.980 |
ME (kcal/kg feed) | 3021 b | 3207 a | 46.09 | 0.037 |
ME Intake (kcal/day) | 2427 b | 2622 a | 50.28 | 0.046 |
Parameter | PC | NC + 500 | SEM | p-Value |
---|---|---|---|---|
CP | 84.36 | 85.11 | 0.310 | 0.238 |
Lysine | 82.39 b | 85.27 a | 0.730 | 0.040 |
Methionine | 84.6 b | 87.3 a | 0.680 | 0.041 |
Tryptophan | 90.39 | 92.34 | 0.736 | 0.155 |
Threonine | 82.51 b | 85.8 a | 0.610 | 0.001 |
Aspartic acid | 80.51 | 81.53 | 0.571 | 0.401 |
Serine | 79.65 | 80.47 | 0.494 | 0.428 |
Glutamic acid | 85.80 | 85.88 | 0.286 | 0.902 |
Glycine | 81.31 | 82.46 | 0.542 | 0.309 |
Histidine | 84.19 b | 87.74 a | 0.680 | 0.002 |
Arginine | 83.93 | 84.56 | 0.353 | 0.403 |
Alanine | 84.48 | 85.45 | 0.584 | 0.432 |
Proline | 81.78 | 82.21 | 0.359 | 0.556 |
Cystine | 86.30 | 88.2 | 1.679 | 0.596 |
Tyrosine | 81.70 | 83.29 | 0.437 | 0.067 |
Valine | 82.52 | 83.68 | 0.360 | 0.107 |
Isoleucine | 80.62 | 82.22 | 0.479 | 0.096 |
Leucine | 84.48 | 85.26 | 0.244 | 0.116 |
Phenylalanine | 81.08 | 82.81 | 0.575 | 0.139 |
Parameter | PC | NC | NC + 250 | NC + 500 | SEM | p-Value |
---|---|---|---|---|---|---|
Body weight (kg) | ||||||
d28 | 7.21 | 7.14 | 7.20 | 7.14 | 0.055 | 0.842 |
d56 | 17.99 | 17.58 | 17.97 | 18.36 | 0.33 | 0.250 |
d112 | 53.81 b | 52.19 c | 54.12 ab | 55.20 a | 0.30 | <0.001 |
d168 | 97.41 b | 94.93 c | 97.88 ab | 99.97 a | 0.43 | <0.001 |
Average daily gain (g) | ||||||
d28–56 | 359 | 347 | 358 | 373 | 4.05 | 0.170 |
d56–112 | 639 a | 618 b | 645 a | 657 a | 4.40 | 0.005 |
d112–168 | 778 ab | 754 b | 781 ab | 799 ab | 4.82 | 0.056 |
Dry matter intake (g/day) | ||||||
d28–56 | 589 | 590 | 602 | 597 | 2.35 | 0.134 |
d56–112 | 1560 | 1555 | 1570 | 1562 | 4.01 | 0.617 |
d112–168 | 2444 | 2436 | 2430 | 2435 | 4.32 | 0.702 |
Feed conversion ratios (FCR) | ||||||
d28–56 | 1.64 | 1.70 | 1.68 | 1.60 | 0.018 | 0.274 |
d56–112 | 2.44 ab | 2.52 a | 2.43 ab | 2.38 b | 0.017 | 0.020 |
d112–168 | 3.14 ab | 3.19 a | 3.11 ab | 3.05 b | 0.019 | 0.046 |
Parameter | PC | NC | NC + 250 | NC + 500 | SEM | P |
---|---|---|---|---|---|---|
Initial BW (kg) | 7.21 | 7.14 | 7.20 | 7.14 | 0.055 | 0.842 |
Final BW (kg) | 97.41 b | 94.93 c | 97.88 ab | 99.97 a | 0.43 | <0.001 |
ADG (g) | 709 ab | 686 b | 713 ab | 728 a | 3.44 | <0.001 |
DMI (g/day) | 2003 | 1995 | 2000 | 1998 | 2.72 | 0.872 |
FCR | 2.82 b | 2.89 a | 2.80 b | 2.74 c | 0.013 | <0.001 |
Back fat thickness (mm) | 12.60 | 12.17 | 11.80 | 11.32 | 0.20 | 0.122 |
Parameter | PC | NC | NC + 250 | NC + 500 |
---|---|---|---|---|
Feed Costs/tonne, $ USD | ||||
Day 28–56 | 345.27 | 333.059 | 334.51 | 335.96 |
Day 56–112 | 300.07 | 289.39 | 290.84 | 292.29 |
Day 112–168 | 261.44 | 255.28 | 256.73 | 258.18 |
Total BWG (kg) | 90.20 | 87.78 | 90.68 | 92.83 |
Total FI (kg) | 305.87 | 302.83 | 304.41 | 304.91 |
FCR | 3.14 | 3.19 | 3.11 | 3.05 |
Income per pig @ 1.88$/kg live weight | 183.48 | 178.81 | 184.37 | 188.30 |
Average total feed cost/pig ($) | 105.61 | 100.86 | 101.83 | 102.44 |
Average feed cost savings/pig ($) | - | 4.75 | −0.97 | −0.61 |
Average profit/pig ($) | 77.87 | 77.95 | 82.54 | 85.87 |
Net benefit per pig ($) | 0.08 | 4.67 | 7.99 | |
Net profit/t of feed ($) | 0.26 | 15.33 | 26.22 |
Parameter | cfu/g | ||||
---|---|---|---|---|---|
Treatment | N | Average | Min | Max | |
Total bacterial count | PC | 6 | 9.4 × 107 | 3.35 × 107 | 14.7 × 107 |
NC | 6 | 7.8 × 107 | 4.38 × 106 | 151 × 107 | |
NC + 250 | 6 | 5.03 × 107 | 1.28 × 107 | 13.3 × 107 | |
NC + 500 | 6 | 3.8 × 107 | 1.37 × 106 | 6.57 × 107 | |
Coliforms count | PC | 6 | 8.02 × 109 | 1.37 × 109 | 4.88 × 1010 |
NC | 6 | 6.8 × 109 | 24.3 × 108 | 9.86 × 109 | |
NC + 250 | 6 | 5.13 × 109 | 1.69 × 109 | 2.17 × 1010 | |
NC + 500 | 6 | 4.03 × 109 | 4.63 × 108 | 7.86 × 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinh, L.V.; Vasanthakumari, B.L.; Sugumar, C.; Thanh, H.L.T.; Thanh, N.V.; Wealleans, A.L.; Ngoan, L.D.; Loan, N.V.T.H. Effect of a Combination of Lysolecithin, Synthetic Emulsifier and Monoglycerides on the Apparent Ileal Digestibility, Metabolizable Energy and Growth Performance of Growing Pigs. Animals 2023, 13, 88. https://doi.org/10.3390/ani13010088
Kinh LV, Vasanthakumari BL, Sugumar C, Thanh HLT, Thanh NV, Wealleans AL, Ngoan LD, Loan NVTH. Effect of a Combination of Lysolecithin, Synthetic Emulsifier and Monoglycerides on the Apparent Ileal Digestibility, Metabolizable Energy and Growth Performance of Growing Pigs. Animals. 2023; 13(1):88. https://doi.org/10.3390/ani13010088
Chicago/Turabian StyleKinh, La Van, Bindhu L. Vasanthakumari, C. Sugumar, Huyen La Thi Thanh, Nguyen Van Thanh, Alexandra L. Wealleans, Le Duc Ngoan, and Nguyen Vu Thuy Hong Loan. 2023. "Effect of a Combination of Lysolecithin, Synthetic Emulsifier and Monoglycerides on the Apparent Ileal Digestibility, Metabolizable Energy and Growth Performance of Growing Pigs" Animals 13, no. 1: 88. https://doi.org/10.3390/ani13010088
APA StyleKinh, L. V., Vasanthakumari, B. L., Sugumar, C., Thanh, H. L. T., Thanh, N. V., Wealleans, A. L., Ngoan, L. D., & Loan, N. V. T. H. (2023). Effect of a Combination of Lysolecithin, Synthetic Emulsifier and Monoglycerides on the Apparent Ileal Digestibility, Metabolizable Energy and Growth Performance of Growing Pigs. Animals, 13(1), 88. https://doi.org/10.3390/ani13010088