Hide-and-Seek in a Highly Human-Dominated Landscape: Insights into Movement Patterns and Selection of Resting Sites of Rehabilitated Wolves (Canis lupus) in Northern Italy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Recovered Wolves
2.2. Study Area
2.3. Data Analyses
2.3.1. Utilisation Distribution Estimation
2.3.2. Movement Patterns
- Post-release: non-directional movements following the release and preceding other well-defined and recognisable movements (see below);
- Settlement: movements within a defined area (as defined by the 95% UD);
- Dispersal: directional movements beyond the 95% UD [7], with wolves never returning to the release site or within the 95% UD.
2.3.3. Differences in Step Lengths among Movement Patterns and Time of the Day
2.3.4. Selection of Resting Sites along the Dispersal Trajectory within the Po Plain
3. Results
3.1. Utilisation Distribution and Movement Patterns
3.2. Differences in Step Lengths among Movement Patterns and Time of the Day
3.3. Selection of Resting Sites along the Dispersal Trajectory
4. Discussion
4.1. Utilisation Distribution and Movement Patterns
4.2. Differences in Step Lengths among Movement Patterns and Time of the Day
4.3. Selection of Resting Sites along the Dispersal Trajectory
5. Conclusions
- When wolves settle in urban or peri-urban areas, they make considerably longer movements, both within and outside the settlement area, probably to compensate for the paucity of food resources, especially wild prey, typical in highly human-dominated areas. This increases the chance of risky situations for the predator and increases the frequency of encounters with humans, thus the human perception of conflict [92,93].
- Environmental conditions at the release site could influence the movement patterns of rescued wolves during the subsequent phases.
- Landscape fragmentation caused by main roads can greatly slow down wolf dispersal.
- In areas with high human presence, wolves temporally segregate from human activities while dispersing.
- In areas with high urbanisation levels, small woodland patches could provide temporary shelter, allowing wolves to traverse highly disturbed areas by resting during the day and moving at night. Small wooded patches raise the ecological connectivity for wolves and other species [94] and reduce the encounter rate between wolves and humans, promoting their coexistence [4].
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chapron, G.; Kaczensky, P.; Linnell, J.D.; von Arx, M.; Huber, D.; Andrén, H.; López-Bao, J.; Adamec, M.; Álvares, F.; Anders, O.; et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 2014, 346, 1517–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, B.; Nelson, L.; Wabakken, P.; Sand, H.; Liberg, O. Behavioral responses of wolves to roads: Scale-dependent ambivalence. Behav. Ecol. 2014, 25, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Kojola, I.; Hallikainen, V.; Mikkola, K.; Gurarie, E.; Heikkinen, S.; Kaartinen, S.; Nikula, A.; Nivala, V. Wolf visitations close to human residences in Finland: The role of age, residence density, and time of day. Biol. Conserv. 2016, 198, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Llaneza, L.; García, E.J.; Palacios, V.; Sazatornil, V.; López-Bao, J.V. Resting in risky environments: The importance of cover for wolves to cope with exposure risk in human-dominated landscapes. Biodivers. Conserv. 2016, 25, 1515–1528. [Google Scholar] [CrossRef]
- Ciucci, P.; Boitani, L.; Francisci, F.; Andreoli, G. Home range, activity and movements of a wolf pack in central Italy. J. Zool. 1997, 243, 803–819. [Google Scholar] [CrossRef]
- Kusak, J.; Skrbinšek, A.M.; Huber, D. Home ranges, movements, and activity of wolves (Canis lupus) in the Dalmatian part of Dinarids, Croatia. Eur. J. Wildl. Res. 2005, 51, 254–262. [Google Scholar] [CrossRef]
- Kirilyuk, A.; Kirilyuk, V.E.; Ke, R. Long-distance dispersal of wolves in the Dauria ecoregion. Mammal Res. 2020, 65, 639–646. [Google Scholar] [CrossRef]
- Theuerkauf, J.; Rouys, S.; Jędrzejewski, W. Selection of den, rendezvous, and resting sites by wolves in the Bialowieza Forest, Poland. Can. J. Zool. 2003, 81, 163–167. [Google Scholar] [CrossRef]
- Kaartinen, S.; Kojola, I.; Colpaert, A. Finnish wolves avoid roads and settlements. Ann. Zool. Fenn. 2005, 42, 523–532. [Google Scholar]
- Kaartinen, S.; Antikainen, H.; Kojola, I. Habitat model for a recolonizing wolf (Canis lupus) population in Finland. Ann. Zool. Fenn. 2015, 52, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Sazatornil, V.; Rodríguez, A.; Klaczek, M.; Ahmadi, M.; Álvares, F.; Arthur, S.; Blanco, J.C.; Borg, B.L.; Cluff, D.; Cortés, Y.; et al. The role of human-related risk in breeding site selection by wolves. Biol. Conserv. 2016, 201, 103–110. [Google Scholar] [CrossRef]
- Barry, T.; Gurarie, E.; Cheraghi, F.; Kojola, I.; Fagan, W.F. Does dispersal make the heart grow bolder? Avoidance of anthropogenic habitat elements across wolf life history. Anim. Behav. 2020, 166, 219–231. [Google Scholar] [CrossRef]
- Llaneza, L.; López-Bao, J.V.; Sazatornil, V. Insights into wolf presence in human-dominated landscapes: The relative role of food availability, humans and landscape attributes. Divers. Distrib. 2012, 18, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Mancinelli, S.; Boitani, L.; Ciucci, P. Determinants of home range size and space use patterns in a protected wolf (Canis lupus) population in the central Apennines, Italy. Can. J. Zool. 2018, 96, 828–838. [Google Scholar] [CrossRef] [Green Version]
- Morales-González, A.; Fernández-Gil, A.; Quevedo, M.; Revilla, E. Patterns and determinants of dispersal in grey wolves (Canis lupus). Biol. Rev. 2022, 97, 466–480. [Google Scholar] [CrossRef]
- Brainerd, S.M.; Andrén, H.; Bangs, E.E.; Bradley, E.H.; Fontaine, J.A.; Hall, W.; Iliopoulos, Y.; Jimenez, M.D.; Jozwiak, E.A.; Liberg, O.; et al. The effects of breeder loss on wolves. J. Wildl. Manag. 2008, 72, 89–98. [Google Scholar] [CrossRef]
- Mech, L.D.; Boitani, L. (Eds.) Wolf social ecology. In Wolves: Behavior, Ecology and Conservation; University of Chicago Press: Chicago, IL, USA, 2003; pp. 1–34. [Google Scholar]
- Kabir, M.; Hameed, S.; Ali, H.; Bosso, L.; Din, J.U.; Bischof, R.; Redpath, S.; Nawaz, M.A. Habitat suitability and movement corridors of grey wolf (Canis lupus) in Northern Pakistan. PLoS ONE 2017, 12, e0187027. [Google Scholar] [CrossRef] [Green Version]
- Gese, E.M.; Mech, L.D. Dispersal of wolves (Canis lupus) in northeastern Minnesota, 1969–1989. Can. J. Zool. 1991, 69, 2946–2955. [Google Scholar] [CrossRef]
- Boyd, D.K.; Pletscher, D.H. Characteristics of dispersal in a colonizing wolf population in the central Rocky Mountains. J. Wildl. Manag. 1999, 63, 1094–1108. [Google Scholar] [CrossRef]
- Fuller, T.K.; Mech, L.D.; Cochrane, J.F. Wolf population dynamics. In Wolves: Behavior, Ecology and Conservation; Mech, L.D., Boitani, L., Eds.; University of Chicago Press: Chicago, IL, USA, 2003; pp. 161–191. [Google Scholar]
- Musiani, M.; Leonard, J.A.; Cluff, H.D.; Gates, C.C.; Mariani, S.; Paquet, P.C.; Vilà, C.; Wayne, R.K. Differentiation of tundra/taiga and boreal coniferous forest wolves: Genetics, coat colour and association with migratory caribou. Mol. Ecol. 2007, 16, 4149–4170. [Google Scholar] [CrossRef]
- Treves, A.; Martin, K.A.; Wiedenhoeft, J.E.; Wydeven, A.P. Dispersal of gray wolves in the Great Lakes region. In Recovery of Gray Wolves in the Great Lakes Region of the United States: An Endangered Species Success Story; Wydeven, A.P., Deelen, T.R., Heske, E.J., Eds.; Springer: New York, NY, USA, 2009; pp. 191–204. [Google Scholar]
- Jimenez, M.D.; Bangs, E.E.; Boyd, D.K.; Smith, D.W.; Becker, S.A.; Ausband, D.E.; Woodruff, S.P.; Bradley, E.H.; Holyan, J.; Laudon, K. Wolf dispersal in the Rocky Mountains, Western United States: 1993–2008. J. Wildl. Manag. 2017, 81, 581–592. [Google Scholar] [CrossRef]
- Wabakken, P.; Sand, H.; Liberg, O.; Bjärvall, A. The recovery, distribution, and population dynamics of wolves on the Scandinavian peninsula, 1978–1998. Can. J. Zool. 2001, 79, 710–725. [Google Scholar] [CrossRef]
- Wabakken, P.; Sand, H.; Kojola, I.; Zimmermann, B.; Arnemo, J.M.; Pedersen, H.C.; Liberg, O. Multistage, long-range natal dispersal by a global positioning system-collared Scandinavian wolf. J. Wildl. Manag. 2007, 71, 1631–1634. [Google Scholar] [CrossRef]
- Linnell, J.D.; Brøseth, H.; Solberg, E.J.; Brainerd, S.M. The origins of the southern Scandinavian wolf Canis lupus population: Potential for natural immigration in relation to dispersal distances, geography and Baltic ice. Wildl. Biol. 2005, 11, 383–391. [Google Scholar] [CrossRef]
- Kojola, I.; Aspi, J.; Hakala, A.; Heikkinen, S.; Ilmoni, C.; Ronkainen, S. Dispersal in an expanding wolf population in Finland. J. Mammal. 2006, 87, 281–286. [Google Scholar] [CrossRef]
- Andersen, L.W.; Harms, V.; Caniglia, R.; Czarnomska, S.D.; Fabbri, E.; Jędrzejewska, B.; Kluth, G.; Madsen, A.B.; Nowak, C.; Pertoldi, C.; et al. Long-distance dispersal of a wolf, Canis lupus, in northwestern Europe. Mammal Res. 2015, 60, 163–168. [Google Scholar] [CrossRef]
- Ciucci, P.; Reggioni, W.; Maiorano, L.; Boitani, L. Long-distance dispersal of a rescued wolf from the northern Apennines to the western Alps. J. Wildl. Manag. 2009, 73, 1300–1306. [Google Scholar] [CrossRef]
- Ražen, N.; Brugnoli, A.; Castagna, C.; Groff, C.; Kaczensky, P.; Kljun, F.; Knauer, F.; Kos, I.; Krofel, M.; Luštrik, R.; et al. Long-distance dispersal connects Dinaric-Balkan and Alpine grey wolf (Canis lupus) populations. Eur. J. Wildli. Res. 2016, 62, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Musto, C.; Caniglia, R.; Fabbri, E.; Galaverni, M.; Romagnoli, N.; Pinna, S.; Berti, E.; Naldi, M.; Bologna, E.; Molinari, L.; et al. Conservation at the individual level: Successful rehabilitation and post-release monitoring of an Italian wolf (Canis lupus italicus) injured in a car accident. Vet. Arch. 2020, 90, 205–212. [Google Scholar] [CrossRef]
- Blanco, J.C.; Cortés, Y. Dispersal patterns, social structure and mortality of wolves living in agricultural habitats in Spain. J. Zool. 2007, 273, 114–124. [Google Scholar] [CrossRef]
- Reinhardt, I.; Kluth, G.; Nowak, C.; Szentiks, C.A.; Krone, O.; Ansorge, H.; Mueller, T. Military training areas facilitate the recolonization of wolves in Germany. Conserv. Lett. 2019, 12, e12635. [Google Scholar] [CrossRef]
- Zimen, E.; Boitani, L. Number and distribution of wolves in Italy. Z. Säugetierkunde 1975, 40, 102–112. [Google Scholar]
- Lucchini, V.; Galov, A.; Randi, E. Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines. Mol. Ecol. 2004, 13, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Boitani, L. Wolf conservation and recovery. In Wolves: Behavior, Ecology and Conservation; Mech, L.D., Boitani, L., Eds.; University of Chicago Press: Chicago, IL, USA, 2003; pp. 317–340. [Google Scholar]
- Fabbri, E.; Miquel, C.; Lucchini, V.; Santini, A.; Caniglia, R.; Duchamp, C.; Weber, J.-M.; Lequette, B.; Marucco, F.; Boitani, L.; et al. From the Apennines to the Alps: Colonization genetics of the naturally expanding Italian wolf (Canis lupus) population. Mol. Ecol. 2007, 16, 1661–1671. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, E.; Caniglia, R.; Kusak, J.; Galov, A.; Gomerčić, T.; Arbanasić, H.; Huber, D.; Randi, E. Genetic structure of expanding wolf (Canis lupus) populations in Italy and Croatia, and the early steps of the recolonization of the Eastern Alps. Mamm. Biol. 2014, 79, 138–148. [Google Scholar] [CrossRef]
- La Morgia, V.; Marucco, F.; Aragno, P.; Salvatori, V.; Gervasi, V.; De Angelis, D.; Fabbri, E.; Caniglia, R.; Velli, E.; Avanzinelli, E.; et al. Stima Della Distribuzione e Consistenza del Lupo a Scala Nazionale 2020/2021; Relazione tecnica realizzata nell’ambito della convenzione ISPRA-Ministero della Transizione Ecologica “Attività di monitoraggio nazionale nell’ambito del Piano di Azione del lupo”; ISPRA: Rome, Italy, 2022. (In Italian) [Google Scholar]
- Dondina, O.; Orioli, V.; Torretta, E.; Merli, F.; Bani, L.; Meriggi, A. Combining ensemble models and connectivity analyses to predict wolf expected dispersal routes through a lowland corridor. PLoS ONE 2020, 15, e0229261. [Google Scholar] [CrossRef]
- Dondina, O.; Meriggi, A.; Bani, L.; Orioli, V. Decoupling residents and dispersers from detection data improve habitat selection modelling: The case study of the wolf in a natural corridor. Ethol. Ecol. Evol. 2022, 34, 1–19. [Google Scholar] [CrossRef]
- Mancinelli, S.; Ciucci, P. Beyond home: Preliminary data on wolf extraterritorial forays and dispersal in Central Italy. Mamm. Biol. 2018, 93, 51–55. [Google Scholar] [CrossRef]
- Mancinelli, S.; Falco, M.; Boitani, L.; Ciucci, P. Social, behavioural and temporal components of wolf (Canis lupus) responses to anthropogenic landscape features in the central Apennines, Italy. J. Zool. 2019, 309, 114–124. [Google Scholar] [CrossRef]
- Meriggi, A.; Torretta, E.; Dondina, O. Recent changes in wolf habitat occupancy and feeding habits in Italy: Implications for conservation and reducing conflict with humans. In Problematic Wildlife II: New Conservation and Management Challenges in the Human-Wildlife Interactions; Angelici, F.M., Rossi, L., Eds.; Springer: Cham, Switzerland, 2020; pp. 111–138. [Google Scholar] [CrossRef]
- Torretta, E.; Orioli, V.; Bani, L.; Mantovani, S.; Dondina, O. En route to the North: Modelling crested porcupine habitat suitability and dispersal flows across a highly anthropized area in northern Italy. Mamm. Biol. 2021, 101, 1067–1077. [Google Scholar] [CrossRef]
- Horne, J.S.; Garton, E.O.; Krone, S.M.; Lewis, J.S. Analyzing animal movements using Brownian bridges. Ecology 2007, 88, 2354–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielson, R.M.; Sawyer, H.; McDonald, T.L.; Nielson, M.R. BBMM: Brownian Bridge Movement Model. 2013. R package version 3.0. Available online: https://CRAN.R-project.org/package=BBMM (accessed on 20 July 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 20 July 2022).
- Börger, L.; Fryxell, J. Quantifying individual differences in dispersal using net squared displacement. In Dispersal Ecology and Evolution; Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 222–230. [Google Scholar]
- Singh, N.J.; Allen, A.M.; Ericsson, G. Quantifying migration behaviour using net squared displacement approach: Clarifications and caveats. PLoS ONE 2016, 11, e0149594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calenge, C. The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 2006, 197, 516–519. [Google Scholar] [CrossRef]
- Calenge, C. Analysis of Animal Movements in R: The adehabitatLT Package. 2011. R package version 3.26. Available online: https://CRAN.R-project.org/package=adehabitatLT (accessed on 20 July 2022).
- Bekoff, M. Mammalian dispersal and the ontogeny of individual behavioral phenotypes. Am. Nat. 1977, 111, 715–732. [Google Scholar] [CrossRef]
- Thurfjell, H.; Ciuti, S.; Boyce, M.S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2014, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Therneau, T. A Package for Survival Analysis in R. 2022. R package version 3.4-0. Available online: https://CRAN.R-project.org/package=survival (accessed on 20 July 2022).
- Therneau, T.M.; Grambsch, P.M. Modeling Survival Data: Extending the Cox Model; Springer: New York, NY, USA, 2000. [Google Scholar]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S. ESA WorldCover 10 m 2020 v100, 2021. [CrossRef]
- Corbane, C.; Florczyk, A.; Pesaresi, M.; Politis, P.; Syrris, V. GHS-BUILT R2018A—GHS Built-Up Grid, Derived from Landsat, Multitemporal (1975-1990-2000-2014)—GOBSOLETE RELEASE; European Commission, Joint Research Centre (JRC) [Dataset]: Brussels, Belgium, 2018; Available online: http://data.europa.eu/89h/jrc-ghsl-10007 (accessed on 5 September 2022). [CrossRef]
- Hijmans, R. geosphere: Spherical Trigonometry. 2021. R package version 1.5-10. Available online: https://CRAN.R-project.org/package=geosphere (accessed on 5 September 2022).
- Hijmans, R. raster: Geographic Data Analysis and Modeling. 2022. R package version 3.4-5. Available online: https://cran.r-project.org/package=raster (accessed on 5 September 2022).
- Nielsen, S.E.; Cranston, J.; Stenhouse, G.B. Identification of priority areas for grizzly bear conservation and recovery in Alberta, Canada. J. Conserv. Plan. 2009, 5, 38–60. [Google Scholar]
- Hesselbarth, M.H.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. Landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef] [Green Version]
- Barton, K. MuMIn: Multi-Model Inference. 2022. R package version 1.43.17. Available online: https://cran.r-project.org/package=MuMIn (accessed on 26 September 2022).
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Capitani, C.; Mattioli, L.; Avanzinelli, E.; Gazzola, A.; Lamberti, P.; Mauri, L.; Scandura, M.; Viviani, A.; Apollonio, M. Selection of rendezvous sites and reuse of pup raising areas among wolves Canis lupus of north-eastern Apennines, Italy. Acta Theriol. 2006, 51, 395–404. [Google Scholar] [CrossRef]
- Ahmadi, M.; López-Bao, J.V.; Kaboli, M. Spatial heterogeneity in human activities favors the persistence of wolves in agroecosystems. PLoS ONE 2014, 9, e108080. [Google Scholar] [CrossRef]
- Okarma, H.; Jędrzejewski, W.; Schmidt, K.; Śnieżko, S.; Bunevich, A.N.; Jędrzejewska, B. Home ranges of wolves in Białowieża Primeval Forest, Poland, compared with other Eurasian populations. J. Mammal. 1998, 79, 842–852. [Google Scholar] [CrossRef]
- Kittle, A.M.; Anderson, M.; Avgar, T.; Baker, J.A.; Brown, G.S.; Hagens, J.; Iwachewski, E.; Moffatt, S.; Mosser, A.; Patterson, B.R.; et al. Wolves adapt territory size, not pack size to local habitat quality. J. Anim. Ecol. 2015, 84, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Rich, L.N.; Mitchell, M.S.; Gude, J.A.; Sime, C.A. Anthropogenic mortality, intraspecific competition, and prey availability influence territory sizes of wolves in Montana. J. Mammal. 2012, 93, 722–731. [Google Scholar] [CrossRef]
- ST.E.R.N.A. Carta delle Vocazioni Faunistiche della Regione Emilia-Romagna. Available online: http://www.sterna.it/AggCartVocCD/ (accessed on 4 October 2022). (In Italian).
- De Pasquale, D.; Dondina, O.; Scancarello, E.; Meriggi, A. Long-term viability of a reintroduced population of roe deer Capreolus capreolus, in a lowland area of northern Italy. Folia Zool. 2019, 68, 9–20. [Google Scholar] [CrossRef]
- Marucco, F.; McIntire, E.J.B. Predicting spatio-temporal recolonization of large carnivore populations and livestock depredation risk: Wolves in the Italian Alps. J. Appl. Ecol. 2010, 47, 789–798. [Google Scholar] [CrossRef]
- Caniglia, R.; Fabbri, E.; Galaverni, M.; Milanesi, P.; Randi, E. Noninvasive sampling and genetic variability, pack structure, and dynamics in an expanding wolf population. J. Mammal. 2014, 95, 41–59. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Rio-Maior, H.; Godinho, R.; Petrucci-Fonseca, F.; Álvares, F. Source-sink dynamics promote wolf persistence in human-modified landscapes: Insights from long-term monitoring. Biol. Conserv. 2021, 256, 109075. [Google Scholar] [CrossRef]
- Kaczensky, P.; Enkhsaikhan, N.; Ganbaatar, O.; Walzer, C. The Great Gobi B Strictly Protected Area in Mongolia-refuge or sink for wolves Canis lupus in the Gobi. Wildl. Biol. 2008, 14, 444–456. [Google Scholar] [CrossRef] [Green Version]
- Joly, K.; Gurarie, E.; Sorum, M.S.; Kaczensky, P.; Cameron, M.D.; Jakes, A.F.; Borg, B.L.; Nandintsetseg, D.; Hopcraft, J.G.C.; Buuveibaatar, B.; et al. Longest terrestrial migrations and movements around the world. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gable, T.; Homkes, A.; Windels, S.; Bump, J. Is there a mechanism that causes wolves from same area to disperse long-distances in same direction? Can. Wildl. Biol. Manag. 2019, 8, 61–65. [Google Scholar]
- Mech, L.D. Unexplained patterns of grey wolf Canis lupus natal dispersal. Mammal Rev. 2020, 50, 314–323. [Google Scholar] [CrossRef]
- Fritts, S.H.; Mech, L.D. Dynamics, movements, and feeding ecology of a newly protected wolf population in northwestern Minnesota. Wildl. Monogr. 1981, 80, 3–79. [Google Scholar]
- Messier, F. Solitary living and extraterritorial movements of wolves in relation to social status and prey abundance. Can. J. Zool. 1985, 63, 239–245. [Google Scholar] [CrossRef]
- Frame, P.F.; Hik, D.S.; Cluff, H.D.; Paquet, P.C. Long foraging movement of a denning tundra wolf. Arctic 2004, 57, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Van Ballenberghe, V. Extraterritorial movements and dispersal of wolves in southcentral Alaska. J. Mammal. 1983, 64, 168–171. [Google Scholar] [CrossRef]
- Ballard, W.B.; Whitman, J.S.; Gardner, C.L. Ecology of an exploited wolf population in south-central Alaska. Wildl. Monogr. 1987, 98, 3–54. [Google Scholar]
- Boyd, D.K.; Paquet, P.C.; Donelon, S.; Ream, R.R.; Pletscher, D.H.; White, C.C. Transboundary movements of a colonizing wolf population in the Rocky Mountains. In Ecology and Conservation of Wolves in a Changing World; Carbyn, L.N., Fritts, S.H., Seip, D.R., Eds.; Canadian Circumpolar Institute: Edmonton, AB, Canada, 1995; pp. 135–140. [Google Scholar]
- Imbert, C.; Caniglia, R.; Fabbri, E.; Milanesi, P.; Randi, E.; Serafini, M.; Torretta, E.; Meriggi, A. Why do wolves eat livestock?: Factors influencing wolf diet in northern Italy. Biol. Conserv. 2016, 195, 156–168. [Google Scholar] [CrossRef]
- Avanzinelli, E.; Perrone, D.; Menzano, A.; Bertotto, P.; Bionda, R.; Boiani, M.V.; Ferraro, G.; Martinelli, L.; Russo, I.; Friard, O.; et al. Il lupo in Regione Piemonte 2020/2021; Relazione tecnica dell’attività di monitoraggio nazionale nell’ambito del Piano di Azione del lupo ai sensi della Convenzione ISPRA MITE e nell’ambito del Progetto LIFE 18 NAT/IT/000972 WOLFALPS EU; Regione Piemonte: Torino, Italy, 2022. (In Italian) [Google Scholar]
- Hebblewhite, M.; Merrill, E. Modelling wildlife-human relationships for social species with mixed-effects resource selection models. J. Appl. Ecol. 2008, 45, 834–844. [Google Scholar] [CrossRef]
- Alexander, S.M.; Waters, N.M.; Paquet, P.C. Traffic volume and highway permeability for a mammalian community in the Canadian Rocky Mountains. Can. Geogr. 2005, 49, 321–331. [Google Scholar] [CrossRef]
- Rodríguez-Freire, M.; Crecente-Maseda, R. Directional connectivity of wolf (Canis lupus) populations in northwest Spain and anthropogenic effects on dispersal patterns. Environ. Model. Assess. 2008, 13, 35–51. [Google Scholar] [CrossRef]
- Blanco, J.C.; Cortés, Y.; Virgós, E. Wolf response to two kinds of barriers in an agricultural habitat in Spain. Can. J. Zool. 2005, 83, 312–323. [Google Scholar] [CrossRef]
- Williams, C.K.; Ericsson, G.; Heberlein, T.A. A Quantitative summary of attitudes toward wolves and their reintroduction (1972–2000). Wildl. Soc. Bull. 2002, 30, 575–584. [Google Scholar]
- Karlsson, J.; Sjöström, M. Human attitudes towards wolves, a matter of distance. Biol. Conserv. 2007, 137, 610–616. [Google Scholar] [CrossRef]
- Dondina, O.; Orioli, V.; Chiatante, G.; Bani, L. Practical insights to select focal species and design priority areas for conservation. Ecol. Indic. 2020, 108, 105767. [Google Scholar] [CrossRef]
A—W2357M | B—W2358F | C—W2606 | |
---|---|---|---|
Minimum daily distance (mean ± SD) (km) | 5.4 ± 5.2 | 4.5 ± 3.2 | 13.4 ± 8.6 |
Cumulative net displacement (km) | 55.1 | 110.0 | 70.1 |
Maximum net displacement (km) | 142.3 | 129.8 | 91.3 |
Cumulative line distance (km) | 1182.8 | 1649.2 | 2922.4 |
Mean travel speed (mean ± SD) (km/h) | 0.24 ± 0.35 | 0.19 ± 0.26 | 0.57 ± 0.83 |
Dispersal [release—last GPS location](km) | 55.1 | 109.4 | 62.9 |
Dispersal [release—farthest GPS location] (km) | 94.0 | 129.7 | 88.4 |
Movement Pattern | A—W2357M | B—W2358F | C—W2606 | |||
---|---|---|---|---|---|---|
Day | Night | Day | Night | Day | Night | |
Post-release | 317.3 ± 352.8 | 1413.9 ± 2273.2 | 34.1 ± 41.7 | 1564.8 ± 1433.6 | 42.7 ± 29.0 | 953.8 ± 1694.0 |
U = 0.744; p-value = 0.028 | U = 0.778; p-value = 0.129 | U = 0.795; p-value < 0.0001 | ||||
Settlement | 432.3 ± 562.2 | 1816.0 ± 2034.0 | 420.4 ± 668.6 | 1569.5 ± 1776.8 | 137.6 ± 319.3 | 3144.1 ± 3280.9 |
U = 0.797; p-value < 0.0001 | U = 0.729; p-value < 0.0001 | U = 0.912; p-value < 0.0001 | ||||
Exploration | 536.9 ± 623.8 | 4656.0 ± 3149.7 | 120.7 ± 301.3 | 2096.5 ± 2472.8 | 31.1 ± 39.9 | 5852.0 ± 6674.3 |
U = 0.912; p-value = 0.002 | U = 0.728; p-value = 0.036 | U = 0.920; p-value < 0.0001 | ||||
Dispersal | 1045.4 ± 1167.7 | 3699.0 ± 3330.4 | 58.5 ± 140.8 | 2890.6 ± 3122.0 | 101.4 ± 246.5 | 2327.1 ± 3721.2 |
U = 0.807; p-value < 0.0001 | U = 0.950; p-value < 0.0001 | U = 0.823; p-value < 0.0001 |
Movement Pattern | A—W2357M | B—W2358F | C—W2606 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | Night | Day | Night | Day | Night | |||||||
U | p- Value | U | p- Value | U | p- Value | U | p- Value | U | p- Value | U | p- Value | |
Post-release vs. Settlement | 0.503 | 0.976 | 0.637 | 0.074 | 0.731 | 0.052 | 0.508 | 0.951 | 0.513 | 0.817 | 0.760 | < 0.001 |
Post-release vs. Exploration | 0.519 | 0.912 | 0.793 | 0.014 | 0.578 | 0.631 | 0.523 | 0.903 | 0.688 | 0.028 | 0.728 | 0.009 |
Post-release vs. Dispersal | 0.671 | 0.050 | 0.777 | <0.001 | 0.521 | 0.879 | 0.624 | 0.326 | 0.536 | 0.620 | 0.624 | 0.067 |
Settlement vs. Exploration | 0.527 | 0.798 | 0.782 | 0.002 | 0.664 | 0.031 | 0.501 | 0.970 | 0.644 | 0.035 | 0.553 | 0.465 |
Settlement vs. Dispersal | 0.661 | <0.001 | 0.704 | <0.001 | 0.723 | < 0.001 | 0.642 | <0.001 | 0.503 | 0.961 | 0.632 | 0.004 |
Exploration vs. Dispersal | 0.625 | 0.251 | 0.597 | 0.322 | 0.607 | 0.207 | 0.621 | 0.161 | 0.650 | 0.063 | 0.640 | 0.097 |
Coefficients (90% CI) | |||
---|---|---|---|
A—W2357M | B—W2358F | C—W2606 | |
Tree density (50 m) | 0.956 (0.045, 1.866) | 0.143 (−0.795, 1.081) | 0.962 * (0.271, 1.653) |
Human settlement density (250 m) | −1.838 (−4.290, 0.613) | −1.264 (−4.870, 2.341) | −0.271 (−1.875, 1.333) |
Patch density (250 m) | −0.384 (−1.662, 0.894) | 1.388 (−0.084, 2.860) | −1.572 * (−2.668, −0.476) |
Distance from motorways | −0.357 (−0.660, −0.054) | −0.348 (−1.650, 0.954) | 19.642 (−50.430, 89.715) |
Distance from primary roads | −0.839 ** (−1.363, −0.315) | 0.069 (−1.251, 1.389) | −0.248 (−0.800, 0.304) |
Distance from rivers | −0.371 (−0.855, 0.112) | −0.322 (−0.966, 0.323) | −0.353 (−0.772, 0.065) |
Distance from built patch | 0.115 (−0.710, 0.939) | 2.234 ** (0.902, 3.567) | 0.140 (−0.507, 0.788) |
Observations | 13 | 11 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torretta, E.; Corradini, A.; Pedrotti, L.; Bani, L.; Bisi, F.; Dondina, O. Hide-and-Seek in a Highly Human-Dominated Landscape: Insights into Movement Patterns and Selection of Resting Sites of Rehabilitated Wolves (Canis lupus) in Northern Italy. Animals 2023, 13, 46. https://doi.org/10.3390/ani13010046
Torretta E, Corradini A, Pedrotti L, Bani L, Bisi F, Dondina O. Hide-and-Seek in a Highly Human-Dominated Landscape: Insights into Movement Patterns and Selection of Resting Sites of Rehabilitated Wolves (Canis lupus) in Northern Italy. Animals. 2023; 13(1):46. https://doi.org/10.3390/ani13010046
Chicago/Turabian StyleTorretta, Elisa, Andrea Corradini, Luca Pedrotti, Luciano Bani, Francesco Bisi, and Olivia Dondina. 2023. "Hide-and-Seek in a Highly Human-Dominated Landscape: Insights into Movement Patterns and Selection of Resting Sites of Rehabilitated Wolves (Canis lupus) in Northern Italy" Animals 13, no. 1: 46. https://doi.org/10.3390/ani13010046
APA StyleTorretta, E., Corradini, A., Pedrotti, L., Bani, L., Bisi, F., & Dondina, O. (2023). Hide-and-Seek in a Highly Human-Dominated Landscape: Insights into Movement Patterns and Selection of Resting Sites of Rehabilitated Wolves (Canis lupus) in Northern Italy. Animals, 13(1), 46. https://doi.org/10.3390/ani13010046