Alterations of Cortisol and Melatonin Production by the Theca Interna Cells of Porcine Cystic Ovarian Follicles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Collection of Ovaries
2.3. Collection of Follicular Fluid and Theca Interna
2.4. Steroids, Cortisol, and Melatonin Assays
2.5. Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR)
2.6. Data Analysis and Statistics
3. Results
3.1. Hormone Concentrations in Follicular Fluid
3.2. Relative mRNA Levels of GR, 11β-HSD, MT Receptor and Steroidogenic Enzymes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Braw-Tal, R.; Pen, S.; Roth, Z. Ovarian cysts in high-yielding dairy cows. Theriogenology 2009, 72, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Castagna, C.D.; Peixoto, C.H.; Bortolozzo, F.P.; Wentz, I.; Neto, G.B.; Ruschel, F. Ovarian cysts and their consequences on the reproductive performance of swine herds. Anim. Reprod. Sci. 2004, 81, 115–123. [Google Scholar] [CrossRef]
- Medan, M.S.; Watanabe, G.; Sasaki, K.; Taya, K. Transrectal ultrasonic diagnosis of ovarian follicular cysts in goats and treatment with GnRH. Domest. Anim. Endocrinol. 2004, 27, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Talukder, S.; Ingenhoff, L.; Kerrisk, K.L.; Celi, P. Plasma oxidative stress biomarkers and progesterone profiles in a dairy cow diagnosed with an ovarian follicular cyst. Vet. Q. 2014, 34, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, M.; Leppavuori, A.; Pyorala, S. Evaluation of reproductive failure of female pigs based on slaughterhouse material and herd record survey. Anim. Reprod. sci. 1998, 52, 235–244. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Jiang, Y.; Gao, S.; Chen, S.; Zheng, X.; Liu, Z.; Zhao, Y.; Li, H.; Yu, J.; et al. Association of gene polymorphisms of estrogen receptor, follicle-stimulating hormone beta and leptin with follicular cysts in Large White sows. Theriogenology 2017, 103, 143–148. [Google Scholar] [CrossRef]
- Einarsson, S.; Brandt, Y.; Lundeheim, N.; Madej, A. Stress and its influence on reproduction in pigs: A review. Acta Vet. Scand. 2008, 50, 48. [Google Scholar] [CrossRef] [Green Version]
- Kesler, D.J.; Garverick, H.A. Ovarian cysts in dairy cattle: A review. J. Anim. Sci. 1982, 55, 1147–1159. [Google Scholar] [CrossRef]
- Marelli, B.E.; Diaz, P.U.; Salvetti, N.R.; Rey, F.; Ortega, H.H. mRNA expression pattern of gonadotropin receptors in bovine follicular cysts. Reprod. Biol. 2014, 14, 276–281. [Google Scholar] [CrossRef]
- Mendes, M.H.; Pinto, M.H.; Gimeno, E.J.; Barbeito, C.G.; Sant’Ana, F.J.D. Lectin histochemical pattern on the normal and cystic ovaries of sows. Reprod. Domest. Anim. 2019, 54, 1366–1374. [Google Scholar] [CrossRef]
- Ortega, H.H.; Salvetti, N.R.; Muller, L.A.; Amable, P.; Lorente, J.A.; Barbeito, C.G.; Gimeno, E.J. Characterization of cytoskeletal proteins in follicular structures of cows with cystic ovarian disease. J. Comp. Pathol. 2007, 136, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Buijs, R.; Swaab, D. Glucocorticoid hormone (cortisol) affects axonal transport in human cortex neurons but shows resistance in Alzheimer’s disease. Br. J. Pharmacol. 2004, 143, 606–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mojaverrostami, S.; Asghari, N.; Khamisabadi, M.; Khoei, H.H. The role of melatonin in polycystic ovary syndrome: A review. Int. J. Reprod. BioMed. 2019, 17, 865–882. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Tan, D.X.; Tamura, H.; Cruz, M.H.; Fuentes-Broto, L. Clinical relevance of melatonin in ovarian and placental physiology: A review. Gynecol. Endocrinol. 2014, 30, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Nikolaev, G.; Robeva, R.; Konakchieva, R. Membrane Melatonin Receptors Activated Cell Signaling in Physiology and Disease. Int. J. Mol. Sci. 2021, 23, 471. [Google Scholar] [CrossRef]
- Kang, J.T.; Koo, O.J.; Kwon, D.K.; Park, H.J.; Jang, G.; Kang, S.K.; Lee, B.C. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J. Pineal Res. 2009, 46, 22–28. [Google Scholar] [CrossRef]
- Dodi, A.; Bussolati, S.; Grolli, S.; Grasselli, F.; Di Lecce, R.; Basini, G. Melatonin modulates swine luteal and adipose stromal cell functions. Reprod. Fertil. Dev. 2021, 33, 198–208. [Google Scholar] [CrossRef]
- Tamura, H.; Takasaki, A.; Taketani, T.; Tanabe, M.; Kizuka, F.; Lee, L.; Tamura, I.; Maekawa, R.; Aasada, H.; Yamagata, Y.; et al. The role of melatonin as an antioxidant in the follicle. J. Ovarian Res. 2012, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Tamura, H.; Takasaki, A.; Taketani, T.; Tanabe, M.; Kizuka, F.; Lee, L.; Tamura, I.; Maekawa, R.; Asada, H.; Yamagata, Y.; et al. Melatonin as a free radical scavenger in the ovarian follicle. Endocr. J. 2013, 60, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Itoh, M.T.; Ishizuka, B.; Kudo, Y.; Fusama, S.; Amemiya, A.; Sumi, Y. Detection of melatonin and serotonin N-acetyltransferase and hydroxyindole-O-methyltransferase activities in rat ovary. Mol. Cell. Endocrinol. 1997, 136, 7–13. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tamura, H.; Tan, D.X.; Xu, X.Y. Melatonin and the circadian system: Contributions to successful female reproduction. Fertil. Steril. 2014, 102, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.M.; Sun, T.C.; Wang, H.P.; Chen, X. Research progress of melatonin (MT) in improving ovarian function: A review of the current status. Aging 2021, 13, 17930–17947. [Google Scholar] [CrossRef] [PubMed]
- Basheer, M.; Rai, S.; Ghosh, H.; Hajam, Y.A. Therapeutic Efficacy of Melatonin Against Polycystic Ovary Syndrome (PCOS) Induced by Letrozole in Wistar Rat. Pak. J. Biol. Sci. 2018, 21, 340–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cipolla-Neto, J.; Amaral, F.G.; Soares, J.M., Jr.; Gallo, C.C.; Furtado, A.; Cavaco, J.E.; Goncalves, I.; Santos, C.; Quintela, T. The Crosstalk between Melatonin and Sex Steroid Hormones. Neuroendocrinology 2021, 15. [Google Scholar] [CrossRef] [PubMed]
- Pontes, J.T.; Maside, C.; Lima, L.F.; Magalhaes-Padilha, D.M.; Padilha, R.T.; Matos, M.; Figueiredo, J.R.; Campello, C.C. Immunolocalization for glucocorticoid receptor and effect of cortisol on in vitro development of preantral follicles. Vet. Anim. Sci. 2019, 7, 100060. [Google Scholar] [CrossRef]
- Krozowski, Z.; Li, K.X.; Koyama, K.; Smith, R.E.; Obeyesekere, V.R.; Stein-Oakley, A.; Sasano, H.; Coulter, C.; Cole, T.; Sheppard, K.E. The type I and type II 11beta-hydroxysteroid dehydrogenase enzymes. J. Steroid Biochem. Mol. Biol. 1999, 69, 391–401. [Google Scholar] [CrossRef]
- Tetsuka, M.; Yamamoto, S.; Hayashida, N.; Hayashi, K.G.; Hayashi, M.; Acosta, T.J.; Miyamoto, A. Expression of 11beta-hydroxysteroid dehydrogenases in bovine follicle and corpus luteum. J. Endocrinol. 2003, 177, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Scholten, J.A.; Liptrap, R.M. A role for the adrenal cortex in the onset of cystic ovarian follicles in the sow. Can. J. Comp. Med. 1978, 42, 525–533. [Google Scholar]
- Amweg, A.N.; Salvetti, N.R.; Stangaferro, M.L.; Paredes, A.H.; Lara, H.H.; Rodriguez, F.M.; Ortega, H.H. Ovarian localization of 11beta-hydroxysteroid dehydrogenase (11betaHSD): Effects of ACTH stimulation and its relationship with bovine cystic ovarian disease. Domest. Anim. Endocrinol. 2013, 45, 126–140. [Google Scholar] [CrossRef]
- Hatzirodos, N.; Irving-Rodgers, H.F.; Hummitzsch, K.; Rodgers, R.J. Transcriptome profiling of the theca interna from bovine ovarian follicles during atresia. PLoS ONE 2014, 9, e99706. [Google Scholar] [CrossRef] [Green Version]
- Salvetti, N.R.; Alfaro, N.S.; Velazquez, M.M.; Amweg, A.N.; Matiller, V.; Diaz, P.U.; Ortega, H.H. Alteration in localization of steroid hormone receptors and coregulatory proteins in follicles from cows with induced ovarian follicular cysts. Reproduction 2012, 144, 723–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruddenklau, A.; Campbell, R.E. Neuroendocrine Impairments of Polycystic Ovary Syndrome. Endocrinology 2019, 160, 2230–2242. [Google Scholar] [CrossRef] [PubMed]
- Hamidovic, A.; Karapetyan, K.; Serdarevic, F.; Choi, S.H.; Eisenlohr-Moul, T.; Pinna, G. Higher Circulating Cortisol in the Follicular vs. Luteal Phase of the Menstrual Cycle: A Meta-Analysis. Front. Endocrinol. 2020, 11, 311. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Okamoto, A.; Ikeda, M.; Tate, S.; Sumita, M.; Kawamoto, R.; Tonai, S.; Lee, J.Y.; Shimada, M.; Yamashita, Y. Cortisol induces follicle regression, while FSH prevents cortisol-induced follicle regression in pigs. Mol. Hum. Reprod. 2021, 27. [Google Scholar] [CrossRef] [PubMed]
- Acosta, T.J.; Tetsuka, M.; Matsui, M.; Shimizu, T.; Berisha, B.; Schams, D.; Miyamoto, A. In vivo evidence that local cortisol production increases in the preovulatory follicle of the cow. J. Reprod. Dev. 2005, 51, 483–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costermans, N.; Soede, N.M.; van Tricht, F.; Blokland, M.; Kemp, B.; Keijer, J.; Teerds, K.J. Follicular fluid steroid profile in sows: Relationship to follicle size and oocyte qualitydagger. Biol. Reprod. 2020, 102, 740–749. [Google Scholar] [CrossRef] [Green Version]
- Iwasa, T.; Matsuzaki, T.; Yano, K.; Irahara, M. Gonadotropin-Inhibitory Hormone Plays Roles in Stress-Induced Reproductive Dysfunction. Front. Endocrinol 2017, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Kirby, E.D.; Geraghty, A.C.; Ubuka, T.; Bentley, G.E.; Kaufer, D. Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats. Proc. Natl. Acad. Sci. USA 2009, 106, 11324–11329. [Google Scholar] [CrossRef] [Green Version]
- Whirledge, S.; Cidlowski, J.A. Glucocorticoids, stress, and fertility. Minerva Endocrinol. 2010, 35, 109–125. [Google Scholar]
- Zhu, Q.; Zuo, R.; He, Y.; Wang, Y.; Chen, Z.J.; Sun, Y.; Sun, K. Local Regeneration of Cortisol by 11beta-HSD1 Contributes to Insulin Resistance of the Granulosa Cells in PCOS. J. Clin. Endocrinol. Metab. 2016, 101, 2168–2177. [Google Scholar] [CrossRef] [Green Version]
- Tetsuka, M.; Nishimoto, H.; Miyamoto, A.; Okuda, K.; Hamano, S. Gene expression of 11beta-HSD and glucocorticoid receptor in the bovine (Bos taurus) follicle during follicular maturation and atresia: The role of follicular stimulating hormone. J. Reprod. Dev. 2010, 56, 616–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amweg, A.N.; Rodriguez, F.M.; Huber, E.; Marelli, B.E.; Salvetti, N.R.; Rey, F.; Ortega, H.H. Role of Glucocorticoids in Cystic Ovarian Disease: Expression of Glucocorticoid Receptor in the Bovine Ovary. Cells Tissues Organs 2016, 201, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, Y.; Aluru, N.; McGuire, A.; Park, Y.J.; Vijayan, M.M.; Takemura, A. Effect of cortisol on melatonin production by the pineal organ of tilapia, Oreochromis mossambicus. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 155, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Liptrap, R.M. Oestrogen excretion by sows with induced cystic ovarian follicles. Res. Vet. Sci. 1973, 15, 215–219. [Google Scholar] [CrossRef]
- Herrera, A.Y.; Nielsen, S.E.; Mather, M. Stress-induced increases in progesterone and cortisol in naturally cycling women. Neurobiol. Stress 2016, 3, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Bakhshalizadeh, S.; Amidi, F.; Shirazi, R.; Shabani, N.M. Vitamin D3 regulates steroidogenesis in granulosa cells through AMP-activated protein kinase (AMPK) activation in a mouse model of polycystic ovary syndrome. Cell Biochem. Funct. 2018, 36, 183–193. [Google Scholar] [CrossRef]
- Anuka, E.; Gal, M.; Stocco, D.M.; Orly, J. Expression and roles of steroidogenic acute regulatory (StAR) protein in ‘non-classical’, extra-adrenal and extra-gonadal cells and tissues. Mol. Cell. Endocrinol. 2013, 371, 47–61. [Google Scholar] [CrossRef]
- Lin, H.; Yuan, K.M.; Zhou, H.Y.; Bu, T.; Su, H.; Liu, S.; Zhu, Q.; Wang, Y.; Hu, Y.; Shan, Y.; et al. Time-course changes of steroidogenic gene expression and steroidogenesis of rat Leydig cells after acute immobilization stress. Int. J. Mol. Sci. 2014, 15, 21028–21044. [Google Scholar] [CrossRef] [Green Version]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar]
- Ortega, H.H.; Marelli, B.E.; Rey, F.; Amweg, A.N.; Diaz, P.U.; Stangaferro, M.L.; Salvetti, N.R. Molecular aspects of bovine cystic ovarian disease pathogenesis. Reproduction 2015, 149, R251–R264. [Google Scholar] [CrossRef]
Gene | Primer Sequence | Primer Positions | Accession Numbers | Product Length |
---|---|---|---|---|
GAPDH | F: TGAAGGTCGGAGTGAACGGATT | 105–126 | NM_001206359.1 | 120 |
R:CCATGTAGTGAGGTCAATGAAGG | 224–201 | |||
StAR | F:GACTTTGTGAGTGTGCGCTG | 547–566 | NM_213755.2 | 108 |
R:AGCTCTGATGACCCCCTTCT | 635–654 | |||
3β-HSD | F:GTTCTCCAGAGTCAACCCCG | 651–670 | NM_001004049.2 | 112 |
R:GTTCTCCAGAGTCAACCCCG | 743–762 | |||
CYP11A1 | F:CCGCTCAGTCCTGGTCAAAG | 24–43 | NM_214427.1 | 145 |
R:GTCACCAGGAGAGGGGATCT | 149–168 | |||
LHCGR | F:GCTGATTTCCCTGGAGCTGA | 594–613 | NM_214449.1 | 124 |
R:ACTAGGCAGGGCCTGTAGTT | 698–717 | |||
GR | F:GTGATGGGAAGTGACCTGGG | 292–311 | NM_001008481.1 | 231 |
R:CTGACCCTTCACATTCGGCT | 503–522 | |||
11β-HSD1 | F:CACGCTCTGTATCCTCGGTC | 630–649 | NM_214248.3 | 201 |
R:TCCAGGATCTTCCTCCCTGG | 811–830 | |||
11β-HSD2 | F:GGAGTTGGATAGCCCTGGTG | 342–361 | NM_213913.1 | 173 |
R:TGTTGTGGCCTGCATTGTTG | 495–514 | |||
MT1 | F:ACAAGAAGCTGAGGAACGCA | 209–228 | XM_021078041.1 | 207 |
R:TGATGGCAATTCCCGCGATA | 396–415 | |||
MT2 | F:CCAGAACTTCCGCAGGGAAT | 738–757 | XM_021063941.1 | 126 |
R:CTAACCTCGGGGAGAGCTTG | 844–863 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Bai, J.; Dai, J.; Zhou, J.; Zhang, T.; Zhang, S.; Xu, X.; Liu, Y. Alterations of Cortisol and Melatonin Production by the Theca Interna Cells of Porcine Cystic Ovarian Follicles. Animals 2022, 12, 357. https://doi.org/10.3390/ani12030357
Qin Y, Bai J, Dai J, Zhou J, Zhang T, Zhang S, Xu X, Liu Y. Alterations of Cortisol and Melatonin Production by the Theca Interna Cells of Porcine Cystic Ovarian Follicles. Animals. 2022; 12(3):357. https://doi.org/10.3390/ani12030357
Chicago/Turabian StyleQin, Yusheng, Jiahua Bai, Jiage Dai, Jianhui Zhou, Taipeng Zhang, Silong Zhang, Xiaoling Xu, and Yan Liu. 2022. "Alterations of Cortisol and Melatonin Production by the Theca Interna Cells of Porcine Cystic Ovarian Follicles" Animals 12, no. 3: 357. https://doi.org/10.3390/ani12030357
APA StyleQin, Y., Bai, J., Dai, J., Zhou, J., Zhang, T., Zhang, S., Xu, X., & Liu, Y. (2022). Alterations of Cortisol and Melatonin Production by the Theca Interna Cells of Porcine Cystic Ovarian Follicles. Animals, 12(3), 357. https://doi.org/10.3390/ani12030357