Nutritional Value of Climate-Resilient Forage Species Sustaining Peri-Urban Dairy Cow Production in the Coastal Grasslands of Benin (West Africa)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Forages Selection and Sampling
2.3. Chemical Composition
2.4. In Vitro Gas Production
2.5. Data Processing
2.6. Statistical Analysis
3. Results
3.1. Diversity of Forage Species Preferred by Dairy Cattle along the Coastal Area of Benin
3.2. Chemical Composition
3.3. Fermentation Characteristics
4. Discussion
4.1. Diversity of Forage Species Consumed by Dairy Cows along the Coastal Areas
4.2. Chemical Composition of Forage Consumed by Dairy Cattle
4.3. In Vitro Fermentation Characteristics
4.4. Implications for Sustainable Dairy Cows’ Production in Coastal Areas
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koura, B.I.; Dossa, L.H.; Kassa, B.; Houinato, M. Adaptation of periurban cattle production systems to environmental changes: Feeding strategies of herdsmen in Southern Benin. Agroecol. Sustain. Food Syst. 2015, 39, 83–98. [Google Scholar] [CrossRef]
- Roessler, R.; Mpouam, S.E.; Muchemwa, T.; Schlecht, E. Emerging development pathways of urban livestock production in rapidly growing West Africa cities. Sustainability 2016, 8, 1199. [Google Scholar] [CrossRef] [Green Version]
- Yassegoungbe, F.P.; Oloukoi, D.; Aoudji, A.K.; Schlecht, E.; Dossa, L.H. Insights into the diversity of cow milk production systems on the fringes of coastal cities in West Africa: A case study from Benin. Front. Sustain. Food Syst. 2022, 6, 1001497. [Google Scholar] [CrossRef]
- Craighead, L.; Meyer, A.; Chengat, B.; Musallam, I.; Akakpo, J.; Kone, P. Brucellosis in West and Central Africa: A review of the current situation in a changing landscape of dairy cattle systems. Acta Trop. 2018, 179, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Dávila, J.D.; Allen, A.; Haklay, M.; Tacoli, C.; Fèvre, E.M. Does urbanization make emergence of zoonosis more likely? Evidence, myths and gaps. Environ. Urban 2019, 31, 443–460. [Google Scholar] [CrossRef] [Green Version]
- Amole, T.; Augustine, A.; Balehegn, M.; Adesogoan, A.T. Livestock feed resources in the West African Sahel. J. Agron. 2022, 114, 26–45. [Google Scholar] [CrossRef]
- Usman, M.; Nichol, J.E. Changes in agricultural and grazing land, and insights for mitigating farmer-herder conflict in West Africa. Landsc. Urban Plan 2022, 222, 104383. [Google Scholar] [CrossRef]
- Koura, B.I.; Vastolo, A.; Dossa, L.H.; Cutrignelli, M.I.; Musco, N.; Houinato, M.; Calabrò, S. Nutritive value and in vitro methane production of two perennial grasses under different stocking rates in peri-urban areas of west-Africa. Trop. Subtrop. Agroecosyst. 2021, 24. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3471 (accessed on 10 October 2022). [CrossRef]
- Konlan, S.P.; Ayantunde, A.A.; Addah, W.; Dei, H.K.; Karbo, N. Emerging feed markets for ruminant production in urban and peri-urban areas of Northern Ghana. Trop. Anim. Health Prod. 2018, 50, 169–176. [Google Scholar] [CrossRef]
- Balehegn, M.; Duncan, A.; Tolera, A.; Ayantunde, A.A.; Issa, S.; Karimou, M.; Zampaligré, N.; André, K.; Gnanda, I.; Varijakshapanicker, P.; et al. Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low-and middle-income countries. Glob. Food Sec. 2020, 1, 100372. [Google Scholar] [CrossRef]
- Akobundu, I.O.; Agyakwa, C.W. Guide des Adventices d’Afrique de l’Ouest, 1st ed.; International Institute for Tropical Agriculture: Ibadan, Nigeria, 1989. [Google Scholar]
- Osland, M.J.; Gabler, C.A.; Grace, J.B.; Day, R.H.; McCoy, M.L.; McLeod, J.L.; Hartley, S.B. Climate and plant controls on soil organic matter in coastal wetlands. Glob. Change Biol. 2018, 24, 5361–5379. [Google Scholar] [CrossRef] [PubMed]
- Quesenberry, K.H.; Rios, E.F.; Kenworthy, K.E.; Blount, A.R.; Reith, P.E. Breeding forages with climate resiliency in temperate/tropical transition zones. Grass Forage Sci. 2022, 77, 124–130. [Google Scholar] [CrossRef]
- Jha, U.C.; Nayyar, H.; Agrawal, S.K.; Siddique, K.H.M. (Eds.) Developing Climate Resilient Grain and Forage Legumes; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Mäkinen, H.; Kaseva, J.; Virkajärvi, P.; Kahiluoto, H. Managing resilience of forage crops to climate change through response diversity. Field Crops Res. 2015, 183, 23–30. [Google Scholar] [CrossRef]
- Olomonchi, E.A.O.; Garipoğlu, A.V.; Ocak, N.; Kamalak, A. Nutritional values and in vitro fermentation parameters of some fodder species found in two rangeland areas in the Republic of Benin. Turkish J. Vet. Anim. Sci. 2022, 46, 88–94. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, S.; Khan, N.A.; Khan, I.; Ahmad, N. Nutritive value, fiber digestibility and methane production potential of tropical forages in rabbits: Effect of species and harvest maturity. JAPS J. Anim. Plant Sci. 2017, 27, 1094–1100. [Google Scholar]
- da Silva-Marques, R.P.; Zervoudakis, J.T.; Nakazato, L.; Hatamoto-Zervoudakis, L.K.; da Silva Cabral, L.; do Nascimento Matos, N.B.; Feliciano, A.L. Ruminal microbial populations and fermentation characteristics in beef cattle grazing tropical forage in dry season and supplemented with different protein levels. Curr. Microbiol. 2019, 76, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Castro-Montoya, J.M.; Dickhoefer, U. The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review. Anim. Feed Sci. Technol. 2020, 269, 114641. [Google Scholar] [CrossRef]
- Li, D.; Ni, K.; Zhang, Y.; Lin, Y.; Yang, F. Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures. Asian-Australas. J. Anim. 2019, 32, 665. [Google Scholar] [CrossRef]
- Gowda, J.H.; Palo, R.T.; Udén, P. Seasonal variation in the nutritional value of woody plants along a natural gradient in Eastern Africa. Afr. J. Ecol. 2019, 57, 226–237. [Google Scholar] [CrossRef]
- Ahouangan, B.S.; Koura, B.I.; Sèwadé, C.; Toyi, M.S.; Lesse, A.D.; Houinato, M.R. Ruminant keeping around mangrove forests in Benin (West Africa): Herders’ perceptions of threats and opportunities for conservation of mangroves. Discov. Sustain. 2022, 3, 13. [Google Scholar] [CrossRef]
- Tiando, D.S.; Hu, S.; Fan, X.; Ali, M.R. Tropical coastal land use and land cover changes impact on ecosystem service value during rapid urbanization of Benin, West Africa. Int. J. Environ. Res. Public Health 2021, 18, 7416. [Google Scholar] [CrossRef] [PubMed]
- Teka, O.; Houessou, L.G.; Djossa, B.A.; Bachmann, Y.; Oumorou, M.; Sinsin, B. Mangroves in Benin, West Africa: Threats, uses and conservation opportunities. Agric. Ecosyst. Environ. 2019, 21, 1153–1169. [Google Scholar] [CrossRef]
- Bezabih, M.; Pellikaan, W.F.; Tolera, A.; Khan, N.A.; Hendriks, W.H. Chemical composition and in vitro total gas and methane production of forage species from the Mid Rift Valley grasslands of Ethiopia. Grass Forage Sci. 2013, 69, 635–643. [Google Scholar] [CrossRef]
- Tefera, S.; Mlambo, V.; Dlamini, B.J.; Dlamini, A.M.; Koralagama, K.D.N.; Mould, F.L. Chemical composition and in vitro ruminal fermentation of selected grasses in the semiarid savannas of Swaziland. Afr. J. Range Forage Sci. 2009, 26, 9–17. [Google Scholar] [CrossRef]
- Akoègninou, A.; van der Burg, W.; van der Maesen, L.J.G.; Adjakidjè, V.; Essou, J.P.; Sinsin, B.; Yédomonhan, H. Flore Analytique du Bénin; Wageningen, N.L., Ed.; Backhuys Publishers: Leiden, The Netherlands, 2006. [Google Scholar]
- Vanvanhossou, S.F.U.; Koura, B.I.; Dossa, L.H. The implications of herd entrustment practice for the sustainable use of cattle genetic resources in the (agro)-pastoral systems of West Africa: A case study from Benin. Pastoralism 2021, 11, 8. [Google Scholar] [CrossRef]
- Berkes, F.; Colding, J.; Folke, C. Rediscovery of traditional ecological knowledge as adaptive management. Ecol. Appl. 2000, 10, e1251–e1262. [Google Scholar] [CrossRef]
- Tefera, S.; Kwaza, A. Communal farmers’ ecological knowledge and perceptions of grasses in the central Eastern Cape province, South Africa: Similarities with field studies and scientific knowledge and their implications. Afr. J. Range Forage Sci. 2019, 36, 85–94. [Google Scholar] [CrossRef]
- Naah, J.S.N.; Braun, B. Local agro-pastoralists’ perspectives on forage species diversity, habitat distributions, abundance trends and ecological drivers for sustainable livestock production in West Africa. Sci. Rep. 2019, 9, 1707. [Google Scholar] [CrossRef]
- Ouachinou, J.M.A.S.; Dassou, G.H.; Azihou, A.F.; Adomou, A.C.; Yédomonhan, H. Breeders’ knowledge on cattle fodder species preference in rangelands of Benin. J. Ethnobiol. Ethnomed. 2018, 14, 66. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, Vol. 2, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analysis Apparatus, Reagents, Procedures and Some Applications in USDA, Handbook; No. 379; US Agricultural Research Service: Washington, DC, USA, 1970.
- Calabrò, S.; Cutrignelli, M.I.; Bovera, F.; Piccolo, G.; Infascelli, F. In vitro fermentation kinetics of carbohydrate fractions of fresh forage, silage and hay of Avena sativa. J. Sci. Food Agric. 2005, 85, 1838–1844. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.2186 (accessed on 11 October 2022). [CrossRef]
- Commission Regulation. No 882/2004 of the European Parliament and Council on “The official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules”. OJL 2004, 165, 1–141. [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Groot, J.C.J.; Cone, J.W.; William, B.A.; Debersaque, F.M.A.; Lantiga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feedstuff. Anim. Feed Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Bauer, E.; Williams, B.A.; Voigt, C.; Mosenthin, R.; Verstegen, M.W.A. Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates. Anim. Sci. 2001, 73, 313–322. [Google Scholar] [CrossRef]
- SAS/STAT. User’s Guide SAS Institute Inc.; Version 8.2; SAS/STAT: Cary, NC, USA, 2000; Volume 2. [Google Scholar]
- CABI. Available online: https://www.cabi.org/ (accessed on 11 October 2022).
- Yayneshet, T.; Treydte, A.C. A meta-analysis of the effects of communal livestock grazing on vegetation and soils in sub-Saharan Africa. J. Arid Environ. 2015, 116, 18–24. [Google Scholar] [CrossRef]
- Zuhri, F.; Tafsin, M.R. Mangrove utilization as sources of ruminant feed in Belawan Secanang Subdistrict, Medan Belawan District. J. Sylva Indonesiana 2022, 5, 1–9. [Google Scholar]
- Maxwell, G.S.; Lai, C. Avicennia marina foliage as salt enrichment nutrient for New Zealand dairy cattle. ISME Glomis Electron. J. 2012, 10, 22–34. [Google Scholar]
- Schuster, M.Z.; Pelissari, A.; de Moraes, A.; Harrison, S.K.; Sulc, R.M.; Lustosa, S.B.; Carvalho, P.C. Grazing intensities affect weed seedling emergence and the seed bank in an integrated crop–livestock system. Agric. Ecosyst. Environ. 2016, 232, 232–239. [Google Scholar] [CrossRef]
- Nobilly, F.; Maxwell, T.M.R.; Yahya, M.S.; Azhar, B. Application of targeted goat grazing in oil palm plantations: Assessment of weed preference, spatial use of grazing area and live weight change. J. Oil Palm Res. 2022, 34, 289–299. [Google Scholar] [CrossRef]
- Tchetan, E.; Olounladé, P.A.; Azando, E.V.B.; Khaliq, H.A.; Ortiz, S.; Houngbeme, A.; Quetin-Leclercq, J. Anthelmintic Activity, Cytotoxicity, and Phytochemical Screening of Plants Used to Treat Digestive Parasitosis of Small Ruminants in Benin (West Africa). Animals 2022, 12, 2718. [Google Scholar] [CrossRef] [PubMed]
- Ouédraogo, K.; Zaré, A.; Korbéogo, G.; Ouédraogo, O.; Linstädter, A. Resilience strategies of West African pastoralists in response to scarce forage resources. Pastoralism 2021, 11, 16. [Google Scholar] [CrossRef]
- Ahoyo, C.C.; Houehanou, T.D.; Yaoitcha, A.S.; Prinz, K.; Kakai, R.G.; Sinsin, B.A.; Houinato, M.R. Traditional medicinal knowledge of woody species across climatic zones in Benin (West Africa). J. Ethnopharmacol. 2021, 265, 113417. [Google Scholar] [CrossRef] [PubMed]
- Peerzada, A.M.; Naeem, M.; Ali, H.H.; Tanveer, A.; Javaid, M.M.; Chauhan, B.S. Cenchrus biflorus Roxb. (Indian sandbur), a blessing or curse in arid ecosystems: A review. Grass Forage Sci. 2017, 72, 179–192. [Google Scholar] [CrossRef]
- Musco, N.; Koura, B.I.; Tudisco, R.; Awadjihè, G.; Adjolohoun, S.; Cutrignelli, M.I.; Mollica, M.P.; Houinato, M.; Infascelli, F.; Calabrò, S. Nutritional Characteristics of Forage Grown in South of Benin. Asian-Australas. J. Anim. 2016, 29, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Calabrò, S.; D’Urso, S.; Banoin, M.; Piccolo, V.; Infascelli, F. Nutritional characteristics of forages from Niger. Ital. J. Anim. Sci. 2007, 6, 272–274. [Google Scholar] [CrossRef]
- Pamo, E.T.; Boukila, B.; Fonteh, F.A.; Tendonkeng, F.; Kana, J.R.; Nanda, A.S. Nutritive value of some grasses and leguminous tree leaves of the Central region of Africa. Anim. Feed Sci. Technol. 2007, 135, 273–282. [Google Scholar] [CrossRef]
- Foster, J.L.; Carter, J.N.; Sollenberger, L.E.; Blount, A.R.; Myer, R.O.; Maddox, M.K.; Phatak, S.C.; Adesogan, A.T. Nutritive value, fermentation characteristics, and in situ disappearance kinetics of ensiled warm-season legumes and bahiagrass. J. Dairy Sci. 2011, 94, 2042–2050. [Google Scholar] [CrossRef] [Green Version]
- Babatounde, S.; Oumorou, M.; Alkoiret, I.; Vidjannagni, S.; Mensah, G.A. Relative frequencies, chemical composition and in vitro organic matter digestibility of forage consumed by sheep in humid tropic of west-Africa. JAST 2011, 1, 39–47. [Google Scholar]
- Koura, B.I.; Yassegoungbe, F.P.; Afatondji, C.U.; Cândido, M.J.D.; Guimaraes, V.P.; Dossa, L.H. Diversity and nutritional values of leaves of trees and shrubs used as supplements for goats in the sub-humid areas of Benin (West Africa). Trop. Anim. Health Prod. 2021, 53, 133. [Google Scholar] [CrossRef]
- Michiels, B.; Babatounde, S.; Dahouda, M.; Chabi, S.L.W.; Buldge, A. Botanical composition and nutritive value of forage consumed by sheep during the rainy season in a sudano-guinean savanna. Trop. Grassl.—Forrajes Trop. 2000, 31, 43–47. [Google Scholar]
- Rayas Amor, A.A.; Estrada Flores, J.G.; Mould, F.L.; Castelán Ortega, O.A. Nutritional value of forage species from the Central Highlands Region of Mexico at different stages of maturity. Cienc. Rural. 2012, 42, 705–712. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Animal Nutrition; Addison Wesley: Essex, UK, 2010. [Google Scholar]
- Igue, A.M.; Saidou, A.; Adjanohoun, A.; Ezui, G.; Attiogbe, P.; Kpagbin, G.; Gotoechan-Hodonou, H.; Youl, S.; Pare, T.; Balogoun, I.; et al. Evaluation de la fertilité des sols au sud et centre du Bénin. Bull. Rech. Agron. Benin (BRAB) Numéro Spéc. Fertilité Maïs 2013, 2013, 13–23. Available online: http://www.slire.net/download/1798/igue_et_al._evaluation_fertilit_.pdf (accessed on 9 October 2022).
- Lu, Y.; Silveira, M.L.; Vendramini, J.M.; Erickson, J.E.; Li, Y. Biosolids and biochar application effects on bahiagrass herbage accumulation and nutritive value. J. Agron. 2020, 112, 1330–1345. [Google Scholar] [CrossRef]
- Marles, S.; Bruce, M.A.; Coulman, E.; Bett, K.E. Interference of condensed tannin in lignin analyses of dry bean and forage crops. J. Agric. Food Chem. 2008, 56, 9797–9802. [Google Scholar] [CrossRef]
- Wanderley, A.M.; Ítavo, L.C.V.; Dos Santos, G.T.; Ítavo, C.C.B.F.; Cunha, C.S.; dos Santos Difante, G.; de Oliveira, M.V.M. Ruminal degradation kinetics of diets with different lipid sources and its influence on intake and milk yield of early lactation crossbred Holstein× Gir cows. Trop. Anim. Health Prod. 2021, 53, 516. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z. Impact of elevated carbon dioxide on primary, secondary metabolites and antioxidant responses of Eleais guineensis Jacq. (Oil Palm) seedlings. Molecules 2012, 17, 5195–5211. [Google Scholar] [CrossRef]
- Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [Google Scholar] [CrossRef]
- Habib, G.; Khan, N.A.; Sultan, A.; Ali, M. Nutritive value of common tree leaves for livestock in the semi-arid and arid range lands of Northern Pakistan. Livest. Sci. 2016, 184, 64–70. [Google Scholar] [CrossRef]
- Schlecht, E.; Plagemann, J.; Mpouam, S.E.; Sanon, H.O.; Sangaré, M.; Roessler, R. Input and output of nutrients and energy in urban and peri-urban livestock holdings of Ouagadougou, Burkina Faso. Nutr. Cycling Agroecosyst. 2019, 115, 201–230. [Google Scholar] [CrossRef]
- Boote, K.J.; Adesogan, A.T.; Balehegn, M.; Duncan, A.; Muir, J.P.; Dubeux, J.C., Jr.; Rios, E.F. Fodder development in sub-Saharan Africa: An introduction. J. Agron. 2022, 114, 1–7. [Google Scholar] [CrossRef]
- Zampaligré, N.; Yoda, G.; Delma, J.; Sanfo, A.; Balehegn, M.; Rios, E.; Adesogan, A.T. Fodder biomass, nutritive value, and grain yield of dual-purpose improved cereal crops in Burkina Faso. J. Agron. 2022, 114, 115–125. [Google Scholar] [CrossRef]
- Sirohi, C.; Dhillon, R.S.; Chavan, S.B.; Handa, A.K.; Balyan, P.; Bhardwaj, K.K.; Ahlawat, K.S. Development of poplar-based alley crop system for fodder production and soil improvements in semi-arid tropics. Agrofor. Syst. 2022, 96, 731–745. [Google Scholar] [CrossRef]
- Duguma, B.; Dermauw, V.; Janssens, G. The assessment and the farmers’ perceived ranking of feed resources and coping strategies with feed scarcity in smallholder dairy farming in selected district towns of Jimma Zone, Ethiopia. Trop. Anim. Health Prod. 2017, 49, 923–935. [Google Scholar] [CrossRef] [PubMed]
- Sollenberger, L.E.; Kohmann, M.M.; Dubeux, J.C., Jr.; Silveira, M.L. Grassland management affects delivery of regulating and supporting ecosystem services. Crop Sci. 2019, 59, 441–459. [Google Scholar] [CrossRef]
Species | Local Name | Family | Life Form * | Common Name | Climate Resilience ** |
---|---|---|---|---|---|
Acroceras zizanioides | Pagouri (Fu) | Poaceae | Perennial grass | Oat grass | no |
Andropogon virginicus | Klogbou (Fo) | Poaceae | Perennial grass | Broomsedge | yes |
Brachiaria deflexa | Rôti (Yo) | Poaceae | Annual grass | Guinea millet | yes |
Cenchrus biflorus | Agbokodjagbé (Fo) | Poaceae | Annual grass | Cram-cram | yes |
Centrosema puberscens | Gadigui (Fu) | Fabaceae | Perennial herb | Butterfly pea | no |
Chamaecrista rotundifolia | Abèko (Yo) | Fabaceae | Perennial or annual plant | Round-leaf cassia | yes |
Commelina benghalensis | Balassa (Fu) | Commelinaceae | Annual or perennial herb | Wandering jew | no |
Cyperus difformis | Kponnikpon (Fo) | Cyperaceae | Annual grass | Small-flowered nutsedge | no |
Dactyloctenium aegyptium | Landalaho (Fu) | Poaceae | Perennial grass | Crowfoot grass | yes |
Echinochloa colona | Goal (Fo) | Poaceae | Annual grass | Junglerice | no |
Elaeis guineensis | Déman (Fo) | Arecaceae | Woody | African oil palm | yes |
Elytrophorus spicatus | Gan siri (Fu) | Poaceae | Annual or perennial plant | Spikegrass | no |
Eragrostis pilosa | Selsênin (Fu) | Poaceae | Annual grass | India lovegrass | no |
Eragrostis tremula | Sarao | Poaceae | Annual grass or perennial | Chinese lovegrass | yes |
Ischaemum rugosum | Hêbêrê | Poaceae | Annual grass | Saramolla grass | no |
Kyllinga erecta | Goal | Poaceae | Annual grass | spikesedges | no |
Kyllinga squamulata | Goal | Poaceae | Annual grass | Crested greenhead sedge | no |
Leptochloa caerulescens | Monlougbé (Fo) | Poaceae | Annual grass | Sprangletops | yes |
Loudetia arundinacea | Kékéyo (Yo) | Poaceae | Perennial grass | Russet grass | yes |
Mariscus cylindristachyus | Gbékui (Fo) | Cyperaceae | Annual grass | Flatsedges | no |
Nymphaea lotus | Flowa (Fu) | Nymphaeceae | Perennial herb | White Egyptian lotus | no |
Oryza barthii | Rayêrê (Fu) | Poaceae | Annual grass | African wild rice | no |
Panicum maximum | Gayéri (Fu) | Poaceae | Annual grass | Guinea grass | no |
Paspalum notatum | Gazongbé (Fo) | Poaceae | Perennial grass | Bahiagrass | yes |
Paspalum vaginatum | Tchitchiri (Fu) | Poaceae | Perennial grass | Seashore paspalum | yes |
Pennisetum pedicellatum | Hulunin (Fu) | Poaceae | Perennial grass | Deenanath grass | no |
Pennisetum purpureum | Fan vovo (Fo) | Poaceae | Perennial grass | Napier grass | yes |
Spermacoce verticillata | Goudoudél (Fu) | Rubiaceae | Annual or perennial | Shrubby false bottoweed | no |
Synedrella nodiflora | Badjanadji (Fu) | Asteraceae | Perennial herb | Nodeweed | no |
Tridax procumbens | Kourkoudi (Fu) | Asteraceae | Perennial herb | Coat buttons | no |
Vossia cuspidata | Talol (Fu) | Poaceae | Aquatic grass | Hippo grass | no |
Zornia latifolia | Linguéri (Fu) | Fabaceae | Perennial herb | Maconha brava | yes |
Forage Species | DM | Ash | CP | EE | NDF | ADF | ADL | ME 1 |
---|---|---|---|---|---|---|---|---|
% DM | MJ/kg DM | |||||||
Poaceae | ||||||||
Andropogon virginicus | 90.82 ab | 11.57 ab | 7.84 cd | 1.10 ef | 73.88 cd | 47.52 ab | 5.85 cd | 5.84 de |
Brachiaria deflexa | 91.03 ab | 8.1 cde | 7.07 de | 1.31 def | 75.92 bc | 41.87 cd | - | 5.56 ef |
Cenchorus biflorus | 90.35 ab | 8.22 cde | 7.83 cd | 1.39 def | 73.81 cd | 46.18 bc | 7.06 bc | 5.93 de |
Dactyloctenium aegyptium | 88.45 b | 10.03 bcd | 8.23 cd | 1.79 c | 70.61 e | 46.33 bc | 7.60 b | 5.98 cd |
Eragrostis tremula | 91.75 a | 4.99 f | 6.45 ef | 1.16 def | 81.80 a | - | - | 5.13 g |
Leptochloa caerulescens | 91.33 a | 8.91 bcde | 5.51 fg | 1.27 def | 78.88 ab | 46.77 b | 4.66 d | 5.33 fg |
Loudetia aroundinacea | 91.06 ab | 10.84 abc | 6.53 ef | 1.04 f | 73.88 cd | 51.24 a | 4.00 d | 5.25 fg |
Paspalum notatum | 91.36 a | 6.83 def | 8.42 c | 1.43 cde | 71.19 de | 41.95 c | 7.64 b | 6.62 c |
Paspalum vaginatum | 90.26 ab | 13.12 a | 6.09 ef | 1.40 def | 73.93 cd | 47.55 ab | 7.07 bc | 5.60 ef |
Pennisetum purpureum | 91.11 a | 7.79 def | 4.62 g | 1.47 cd | 78.45 b | 51.27 a | 5.61 cd | 4.32 h |
Fabaceae | ||||||||
Chamaecrista rotundifolia | 90.99 ab | 5.99 ef | 13.19 b | 3.34 b | 54.79 f | - | - | 9.84 b |
Zornia latifolia | 89.56 ab | 9.41 bcd | 14.90 a | 5.28 a | 43.97 h | 38.31 de | 10.31 a | 11.19 a |
Arecaceae | ||||||||
Elaeis guineensis | 90.32 ab | 9.84 bcd | 14.01 a | 1.10 ef | 53.66 g | 36.97 e | 8.35 b | 10.36 b |
MSE | 5.73 | 6.26 | 0.25 | 0.08 | 0.83 | 0.97 | 0.33 | 0.15 |
Forage Species | pH | dOM | OMCV | Yield | A | B | tVFAs | BCFA |
---|---|---|---|---|---|---|---|---|
% | mL/g | mL/g | mL/g | h | mM/g iOM | |||
Poaceae | ||||||||
Andropogon virginicus | 6.83 | 51.03 cd | 166.35 bc | 325.98 abcd | 200.74 bcde | 38.25 cde | 72.52 | 0.025 bcd |
Brachiaria deflexa | 6.70 | 55.27 bc | 175.38 ab | 317.74 bcd | 223.88 abc | 44.14 bc | 77.65 | 0.025 bcd |
Cenchorus biflorus | 6.82 | 51.90 cd | 172.96 ab | 333.41 abc | 198.39 cde | 34.49 defg | 78.36 | 0.026 bcd |
Dactyloctenium aegyptium | 6.86 | 55.09 bc | 174.57 ab | 317.07 bcd | 198.66 bcde | 34.83 def | 76.19 | 0.027 bcd |
Eragrostis tremula | 6.80 | 42.30 e | 148.65 d | 351.61 ab | 210.58 bcd | 55.69 a | 62.70 | 0.034 b |
Leptochloa caerulescens | 6.81 | 54.28 bc | 175.73 ab | 323.77 abcd | 245.31 a | 52.16 ab | 74.80 | 0.023 cd |
Loudetia aroundinacea | 6.60 | 51.38 cd | 150.11 cd | 292.21 def | 180.51 e | 37.33 cde | 59.13 | 0.035 b |
Paspalum notatum | 6.85 | 52.35 cd | 172.68 ab | 329.69 abc | 190.93 de | 27.46 fgh | 79.17 | 0.027 bcd |
Paspalum vaginatum | 6.68 | 66.87 a | 184.69 a | 276.05 ef | 210.78 bcd | 31.50 efg | 87.37 | 0.020 d |
Pennisetum purpureum | 6.76 | 48.92 d | 173.60 ab | 355.05 a | 227.67 ab | 49.94 ab | 70.12 | 0.026 bcd |
Fabaceae | ||||||||
Chamaecrista rotundifolia | 6.82 | 52.94 cd | 171.66 ab | 324.27 abcd | 211.97 bcd | 26.12 gh | 77.52 | 0.032 bc |
Zornia latifolia | 6.90 | 58.45 b | 180.38 ab | 309.18 cde | 194.90 cde | 19.48 h | 76.38 | 0.029 bcd |
Arecaceae | ||||||||
Elaeis guineensis | 6.71 | 58.16 b | 152.52 cd | 262.49 f | 199.12 bcde | 40.90 cd | 69.29 | 0.049 a |
MSE | 0.10 | 1.49 | 5.70 | 12.10 | 8.03 | 2.35 | 20.91 | 0.003 |
dOM | OMCV | Yield | B | Tmax | Rmax | Isobut | Isoval | Val | BCFA | |
---|---|---|---|---|---|---|---|---|---|---|
% | mL/g | mL/g | h | h | mL/h | mM/g iOM | ||||
Ash | 0.67 *** | 0.21 NS | −0.63 *** | −0.22 NS | 0.06 NS | 0.01 NS | −0.04 NS | −0.12 NS | −0.07 NS | −0.18 NS |
CP | 0.28 NS | −0.03 NS | −0.37 * | −0.62 *** | −0.60 *** | 0.66 *** | 0.40 * | 0.42 * | 0.59 *** | 0.50 ** |
EE | 0.23 NS | 0.37 * | 0.01 NS | −0.65 *** | −0.48 ** | 0.8 *** | 0.09 NS | 0.07 NS | 0.38 * | −0.04 NS |
NDF | −0.40 * | −0.10 NS | 0.42 * | 0.69 *** | 0.59 *** | −0.74 *** | −0.36 * | −0.36 * | −0.57 *** | −0.41 * |
ADF | −0.36 NS | −0.02 NS | 0.35 NS | 0.40 * | 0.59 *** | −0.50 ** | −0.38 * | −0.38 * | −0.57 *** | −0.44 * |
ADL | 0.45 * | 0.31 NS | −0.21 NS | −0.71 *** | −0.33 NS | 0.74 *** | 0.28 NS | 0.27 NS | 0.50 ** | 0.19 NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koura, B.I.; Vastolo, A.; Kiatti, D.d.; Cutrignelli, M.I.; Houinato, M.; Calabrò, S. Nutritional Value of Climate-Resilient Forage Species Sustaining Peri-Urban Dairy Cow Production in the Coastal Grasslands of Benin (West Africa). Animals 2022, 12, 3550. https://doi.org/10.3390/ani12243550
Koura BI, Vastolo A, Kiatti Dd, Cutrignelli MI, Houinato M, Calabrò S. Nutritional Value of Climate-Resilient Forage Species Sustaining Peri-Urban Dairy Cow Production in the Coastal Grasslands of Benin (West Africa). Animals. 2022; 12(24):3550. https://doi.org/10.3390/ani12243550
Chicago/Turabian StyleKoura, Bossima Ivan, Alessandro Vastolo, Dieu donné Kiatti, Monica Isabella Cutrignelli, Marcel Houinato, and Serena Calabrò. 2022. "Nutritional Value of Climate-Resilient Forage Species Sustaining Peri-Urban Dairy Cow Production in the Coastal Grasslands of Benin (West Africa)" Animals 12, no. 24: 3550. https://doi.org/10.3390/ani12243550
APA StyleKoura, B. I., Vastolo, A., Kiatti, D. d., Cutrignelli, M. I., Houinato, M., & Calabrò, S. (2022). Nutritional Value of Climate-Resilient Forage Species Sustaining Peri-Urban Dairy Cow Production in the Coastal Grasslands of Benin (West Africa). Animals, 12(24), 3550. https://doi.org/10.3390/ani12243550