Evaluation of Garlic Juice Processing Waste Supplementation in Juvenile Black Rockfish (Sebastes schlegelii) Diets on Growth Performance, Antioxidant and Digestive Enzyme Activity, Growth- and Antioxidant-Related Gene Expression, and Disease Resistance against Streptococcus iniae
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Experimental Diet
2.2. Feeding Trial
2.3. Sample Collection
2.4. Challenge Test
2.5. Analysis
2.5.1. Chemical Analysis
2.5.2. Plasma Chemistry Analysis
2.5.3. Digestive Enzymes Measurements
2.5.4. Lysozyme and Antioxidant Enzyme Activities Analysis
2.6. Expression of Growth and Antioxidant-Related Genes
2.6.1. Primer Design
2.6.2. Total RNA Extraction and qPCR Assay
2.7. Calculations and Statistical Analyses
3. Results
3.1. Growth, Feed Utilization, and Biological Parameters
3.2. Whole-Body Proximate Composition
3.3. Hematological Parameters
3.4. Digestive Enzyme Activities
3.5. Genes Expression by Quantitative Real Time PCR
3.6. Challenge Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mostafavi, Z.S.M.; Shekarabi, S.P.H.; Mehrgan, M.S.; Islami, H.R. Amelioration of growth performance, physio-metabolic responses, and antioxidant defense system in rainbow trout, Oncorhynchus mykiss, using dietary dandelion, Taraxacum officinale, flower extract. Aquaculture 2022, 546, 737296. [Google Scholar] [CrossRef]
- Paknejad, H.; Shekarabi, S.P.H.; Mehrgan, M.S.; Hajimoradloo, A.; Khorshidi, Z.; Rastegari, S. Dietary peppermint (Mentha piperita) powder affects growth performance, hematological indices, skin mucosal immune parameters, and expression of growth and stress-related genes in Caspian roach (Rutilus caspicus). Fish Physiol. Biochem. 2020, 46, 1889–1895. [Google Scholar] [CrossRef] [PubMed]
- Srichaiyo, N.; Tonhsiri, S.; Hoseinifar, S.H.; Dawood, M.A.O.; Jaturasitha, S.; Esteba, M.Á.; Ringø, E.; Van Ooan, H. The effects gotu kola (Centella asiatica) powder on growth performance, skin mucus, and serum immunity of Nile tilapia (Oreochromis niloticus) fingerlings. Aquac. Rep. 2020, 16, 100239. [Google Scholar] [CrossRef]
- Garcia-Migura, L.; Hendriksen, R.S.; Fraile, L.; Aarestrup, F.M. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: The missing link between consumption and resistance in veterinary medicine. Vet. Microbiol. 2014, 170, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Ribeiro, K.; Melo, J.F.B.; Teixeira, D.V.; Vidal, L.V.O.; Copatti, C.E. Essential oil from ginger influences the growth, haematological and biochemical variables and histomorphometry of intestine and liver of Nile tilapia juveniles. Aquaculture 2021, 534, 36325. [Google Scholar] [CrossRef]
- De Souza, E.M.; De Souza, R.C.; Melo, J.F.B.; Da Costa, M.M.; De Souza, S.A.; De Souza, A.M.; Copatti, C.E. Cymbopogon flexuosus essential oil as an additive improves growth, biochemical and physiological responses and survival against Aeromonas hydrophila infection in Nile tilapia. An. Acad. Bras. Cienc. 2020, 92, e20190140. [Google Scholar] [CrossRef] [PubMed]
- Felix e Silva, A.; Copatti, C.E.; De Oliveira, E.P.; Bonfá, H.C.; De Melo, F.V.S.T.; Camargo, A.C.S.; Melo, J.F.B. Effects of whole banana meal inclusion as replacement for corn meal on digestibility, growth performance, haematological and biochemical variables in practical diets for tambaqui juveniles (Colossoma macropomum). Aquac. Rep. 2020, 17, 100307. [Google Scholar] [CrossRef]
- Chakraborty, S.B.; Hancz, C. Application of phytochemicals as immunostimulant, antipathogenic and antistress agents in finfish culture. Rev. Aquac. 2011, 3, 103–119. [Google Scholar] [CrossRef]
- Chakraborty, S.B.; Horn, P.; Hancz, C. Application of phytochemicals as growth-promoters and endocrine modulators in fish culture. Rev. Aquac. 2014, 6, 1–19. [Google Scholar] [CrossRef]
- Kallel, F.; Driss, D.; Chaari, F.; Belghith, L.; Bouaziz, F.; Ghorbel, R.; Ellouz, C. Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Ind. Crops Prod. 2014, 62, 34–41. [Google Scholar] [CrossRef]
- Rivlin, R.S. Historical perspective on the use of garlic. J. Nutr. 2001, 131, 951S–954S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santhosha, S.G.; Jamuna, P.; Prabhavathi, S.N. Bioactive components of garlic and their physiological role in health maintenance: A review. Food Biosci. 2013, 3, 59–74. [Google Scholar] [CrossRef]
- Lawson, L.D. Garlic: A review of its medicinal effects and indicated active compounds. In Phytomedicines of Europe: Their Chemistry and Biological Activity; Lawson, L.D., Bauer, R., Eds.; ASC Press: Washington, DC, USA, 1998; pp. 176–209. [Google Scholar]
- Sasaki, J.; Lu, C.; Machiya, E.; Tanahashi, M.; Hamada, K. Processed black garlic (Allium sativum) extracts enhance anti-tumor potency against mouse tumors. Med. Aromat. Plant Sci. Biotechnol. 2007, 1, 278–281. [Google Scholar]
- Putnik, P.; Gabrić, D.; Roohinejad, S.; Barba, F.J.; Granato, D.; Mallikarjunan, K.; Lorenzo, J.M.; Kovačević, D.B. An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem. 2019, 276, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.J.; Kuo, C.M.; Hong, J.W.; Chou, R.L.; Lee, Y.H.; Chen, T.I. The effects of garlic-supplemented diets on antibacterial activities against Photobacterium damselae subsp. piscicida and Streptococcus iniae and on growth in Cobia, Rachycentron canadum. Aquaculture 2015, 435, 111–115. [Google Scholar] [CrossRef]
- Lee, J.Y.; Gao, Y. Review of the application of garlic, Allium sativum, in aquaculture. J. World Aquac. Soc. 2012, 43, 447–458. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.; Xu, X.; Gan, R.; Tang, G.; Corke, H.; Mavumengwana, V.; Li, H. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Büyükdeveci, M.E.; Balcázar, J.L.; Demirkale, I.; Dikel, S. Effects of garlic-supplemented diet on growth performance and intestinal microbiota of rainbow trout (Oncorhynchus mykiss). Aquaculture 2018, 486, 170–174. [Google Scholar] [CrossRef]
- Esmaeili, M.; Kenari, A.A.; Rombenso, A.N. Effects of fish meal replacement with meat and bone meal using garlic (Allium sativum) powder on growth, feeding, digestive enzymes and apparent digestibility of nutrients and fatty acids in juvenile rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Aquac. Nutr. 2017, 23, 1225–1234. [Google Scholar] [CrossRef]
- Adineh, H.; Harsij, M.; Jafaryan, H.; Asadi, M. The effects of microencapsulated garlic (Allium sativum) extract on growth performance, body composition, immune response and antioxidant status of rainbow trout (Oncorhynchus mykiss) juveniles. J. Appl. Anim. Res. 2020, 48, 372–378. [Google Scholar] [CrossRef]
- Diab, A.M.; Sake, O.A.; Eldakroury, M.F.; Elseify, M.M. Effects of garlic (Allium sativum) and curcumin (Turmeric, Curcuma longa Linn) on Nile tilapia immunity. Vet. Med. J. 2014, 60, C1–C19. [Google Scholar]
- Nya, E.J.; Austin, B. Use of garlic, Allium sativum, to control Aeromonas hydrophila infection in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 2009, 32, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Metwally, M.A.A. Effects of garlic (Allium sativum) on some antioxidant activities in tilapia nilotica (Oreochromis niloticus). World J. Fish Marine Sci. 2009, 1, 56–64. [Google Scholar]
- Fridman, S.; Sinai, T.; Zilberg, D. Efficacy of garlic based treatments against monogenean parasites infecting the guppy (Poecilia reticulata (Peters)). Vet. Parasitol. 2014, 203, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Militz, T.A.; Southgate, P.C.; Carton, A.G.; Hutson, K.S. Dietary supplementation of garlic (Allium sativum) to prevent monogenean infection in aquaculture. Aquaculture 2013, 408–409, 95–99. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Butt, M.S.; Khalid, N.; Sultan, S.; Raza, A.; Aleem, M.; Abbas, M. Garlic (Allium sativum): Diet based therapy of 21st century—A review. Asian Pac. J. Trop. Dis. 2018, 5, 271–278. [Google Scholar] [CrossRef]
- The Information on Garlic Juice Products and Producer. Available online: http://www.pulmaru.com/ (accessed on 6 October 2022).
- Kim, Y.J. Effects of dietary supplementation of garlic by-products on performance and carcass characteristic of chicken meat. Korean J. Poult. Sci. 2010, 37, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.H.; Son, H.J.; Min, S.C.; Oh, D.H.; Song, K.B. Antimicrobial activity of black garlic pomace extract and its application to cleansing of fresh spinach leaves for microbial control. J. Korean Soc. Food Sci. Nutr. 2017, 46, 450–458. [Google Scholar] [CrossRef]
- Hwang, H.K.; Son, M.H.; Myeong, J.I.; Kim, C.W.; Min, B.H. Effects of stocking density on the cage culture of Korean rockfish (Sebastes schlegeli). Aquaculture 2014, 434, 303–306. [Google Scholar] [CrossRef]
- Kai, Y.; Soes, D.M. A record of Sebastes schlegelii Hilgendorf, 1880 from Dutch coastal waters. Aquat. Invasions 2009, 4, 417–419. [Google Scholar] [CrossRef]
- KOSIS (Korea Statistical Information Service). Survey on the Status of Aquaculture. 2022. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1EW0004&vw_cd=MT_ZTITLE&list_id=K2_7&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=MT_ZTITLE&path=%252FstatisticsList%252FstatisticsListIndex.do (accessed on 6 October 2022).
- Kang, Y.; Kim, A.; Lee, Y.; Kim, N.; Roh, H.; Kim, D. Complete genome sequence of Aeromonas salmonicida subsp. masoucida Strain BR19001YR, Isolated from Diseased Korean Rockfish (Sebastes schlegelii). Microbiol. Resour. Announc. 2021, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, S.I.; Ko, J.Y.; Lee, W.L.; Kim, S.R.; Song, J.Y.; Kim, D.K. A new genotype of lymphocystivirus, LCDV-RF, from lymphocystis diseased rockfish. Arch. Virol. 2006, 151, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Kitani, Y.; Kikuchi, N.; Zhang, G.; Ishizaki, S.; Shimakura, K.; Shiomi, K.; Nagashima, Y. Antibacterial action of L-amino acid oxidase from the skin mucus of rockfish Sebastes schlegelii. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 149, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, C.; Kim, K.; Lim, H.J.; Kim, H.S. Effects of diet supplementation with plant juice processing by-products on juvenile black rockfish (Sebastes schlegelii) growth performance, feed utilization, non-specific immunity, and disease resistance against Vibrio harveyi. Aquac. Rep. 2021, 21, 100831. [Google Scholar] [CrossRef]
- Gutfinger, T. Polyphenols in olive oils. J. Am. Oil. Chem. Soc. 1981, 58, 966–968. [Google Scholar] [CrossRef]
- Moreno, M.I.N.; Isla, M.I.; Sampietro, A.R.; Vatuone, M.A. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 2000, 71, 109–114. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Method of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Galagarza, O.A.; Smith, S.A.; Drahos, D.J.; Eifert, J.D.; Williams, R.C.; Kuhn, D.D. Modulation of innate immunity in Nile tilapia (Oreochromis niloticus) by dietary supplementation of Bacillus subtilis endospores. Fish Shellfish Immunol. 2018, 3, 171–179. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Davis, M.J. Contrast coding in multiple regression analysis: Strengths, weaknesses, and utility of popular coding structures. J. Data Sci. 2010, 8, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Oosthuizen, C.B.; Reid, A.; Lall, N. Garlic (Allium sativum) and its associated molecules, as medicine. In Medicinal Plants for Holistic Health and Well-Being; Lall, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 277–295. [Google Scholar]
- Szychowski, K.A.; Rybczynska-Tkaczyk, K.; Gawel-Beben, K.; Swieca, M.; Karas, M.; Jakuczyk, A.; Matysiak, M.; Binduga, U.E.; Gminski, J. Characterization of active compounds of different garlic (Allium sativum L.) cultivars. Pol. J. Food Nutr. Sci. 2018, 68, 73–81. [Google Scholar] [CrossRef]
- Valenzuela-Gutiérrez, R.; Lago-Lestón, A.; Vargas-Albores, F.; Vargas-Albores, F.; Cicala, F.; Martínez-Porchas, M. Exploring the garlic (Allium sativum) properties for fish aquaculture. Fish Physiol. Biochem. 2021, 47, 1179–1198. [Google Scholar] [CrossRef] [PubMed]
- Ahmadifar, E.; Yousefi, M.; Karimi, M.; Raieni, R.F.; Dadar, M.; Yilmaz, S.; Dawood, M.A.O.; Abdel-Latif, H.M.R. Benefits of dietary polyphenols and polyphenol-rich additives to aquatic animal health: An overview. Rev. Fish. Sci. Aquac. 2021, 29, 478–511. [Google Scholar] [CrossRef]
- Habotta, O.A.; Dawood, M.A.; Kari, Z.A.; Tapingkae, W.; Van Doan, H. Antioxidative and immunostimulant potential of fruit derived biomolecules in aquaculture. Fish Shellfish Immunol. 2022, 130, 317–322. [Google Scholar] [CrossRef]
- Jahazi, M.A.; Hoseinifar, S.H.; Jafari, V.; Hajimoradloo, A.; Van Doan, H.; Paolucci, M. Dietary supplementation of polyphenols positively affects the innate immune response, oxidative status, and growth performance of common carp, Cyprinus carpio L. Aquaculture 2020, 517, 734709. [Google Scholar] [CrossRef]
- Darbyshire, B.; Henry, R.J. Differences in fructan content and synthesis in some allium species. N. Phytol. 1981, 87, 249–256. [Google Scholar] [CrossRef]
- Gambogou, B.; Anani, K.; Karou, S.D.; Ameyapoh, Y.A.; Simpore, J. Effect of Aqueous garlic extract on biofilm formation and antibiotic susceptibility of multidrug-resistant uropathogenic Escherichia coli clinical isolates in Togo. Int. J. Adv. Multidiscip. Res. 2018, 5, 23–33. [Google Scholar] [CrossRef]
- Drago-Serrano, M.E.; López, M.L.; Saínz Espuñes, T.R. Bioactive components of functional foods from vegetable origin. Rev. Mex. Cienc. Farm. 2006, 37, 58–68. [Google Scholar]
- Portz, D.; Koch, E.; Slusarenko, A.J. Effects of garlic (Allium sativum L.) juice containing allicin on Phytophthora infestans and on downy mildew of cucumber caused by Pseudoperonospora cubensis. Eur. J. Plant Pathol. 2008, 122, 197–206. [Google Scholar] [CrossRef]
- Chandrashekar, P.M.; Venkatesh, Y.P. Fructans from aged garlic extract produce a delayed immunoadjuvant response to ovalbumin antigen in BALB/c mice. Immunopharmacol. Immunotoxicol. 2012, 34, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Saif, S.; Hanif, M.A.; Rehman, R.; Riaz, M. Garlic. In Medicinal plants of South Asia; Hanif, M.A., Nawaz, H., Khan, M.M., Byrne, H.J., Eds.; Academic Press; Elsevier: Amsterdam, The Netherlands, 2020; pp. 301–315. [Google Scholar] [CrossRef]
- Aly, S.M.; Atti, N.M.A.; Mohamed, M.F. Effect of garlic on the survival, growth, resistance and quality of Oreochromis niloticus. In Proceedings of the 8th International Symposium on Tilapia in Aquaculture, Cairo, Egypt, 12–14 October 2008; pp. 277–296. [Google Scholar]
- Thanikachalam, K.; Kasi, M.; Rathinam, X. Effect of garlic peel on growth, hematological parameters and disease resistance against Aeromonas hydrophila in African catfish Clarias gariepinus (Bloch) fingerlings. Asian Pac. Trop. Med. 2010, 3, 614–618. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Balasundaram, C.; Heo, M. Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture 2011, 317, 1–15. [Google Scholar] [CrossRef]
- Citarasu, T. Herbal biomedicines: A new opportunity for aquaculture industry. Aquac. Int. 2010, 18, 403–414. [Google Scholar] [CrossRef]
- De Souza, E.M.; De Souza, R.C.; Melo, J.F.B.; Da Costa, M.M.; De Souza, A.M.; Copatti, C.E. Evaluation of the effects of Ocimum basilicum essential oil in Nile tilapia diet: Growth, biochemical, intestinal enzymes, haematology, lysozyme and antimicrobial challenges. Aquaculture 2019, 504, 7–12. [Google Scholar] [CrossRef]
- Hassaan, M.S.; Mohammady, E.Y.; Soaudy, M.R.; Abdel Rahman, A.A.S. Exogenous xylanase improves growth, protein digestibility and digestive enzymes activities in Nile tilapia, Oreochromis niloticus, fed different ratios of fish meal to sunflower meal. Aquac. Nutr. 2019, 25, 841–853. [Google Scholar] [CrossRef]
- Duan, C. Nutritional and developmental regulation of insulin-like growth factors in fish. J. Nutr. 1998, 128, 306S–314S. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Khalil, W.K.B.; Becker, K. Influences of incorporating detoxified Jatropha curcas kernel meal in common carp (Cyprinus carpio L.) diet on the expression of growth hormone- and insulin-like growth factor-1-encoding genes. J. Anim. Physiol. Anim. Nutr. 2011, 97, 97–108. [Google Scholar] [CrossRef]
- Rashmeei, M.; Shekarabi, S.P.H.; Mehrgan, M.S.; Paknejad, H. Assessment of dietary chaste tree (Vitex agnus-castus) fruit extract on growth performance, hemato-biochemical parameters, and mRNA levels of growth and appetite-related genes in goldfish (Carassius auratus). Aquac. Fish. 2022, 7, 296–303. [Google Scholar] [CrossRef]
- Ramezani, F.; Shekarabi, S.P.H.; Mehrgan, M.S.; Foroudi, F.; Islami, H.R. Supplementation of Siberian sturgeon (Acipenser baerii) diet with barberry (Berberis vulgaris) fruit extract: Growth performance, hemato-biochemical parameters, digestive enzyme activity, and growth-related gene expression. Aquaculture 2021, 540, 736750. [Google Scholar] [CrossRef]
- Safari, R.; Hoseinifar, S.H.; Nejadmoghadam, S.; Jafar, A. Transciptomic study of mucosal immune, antioxidant and growth related genes and non-specific immune response of common carp (Cyprinus carpio) fed dietary Ferula (Ferula assafoetida). Fish Shellfish Immunol. 2016, 55, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.N.; Safian, D.; Valdés, J.A.; Molina, A. Isolation and selection of suitable reference genes for real-time PCR analyses in the skeletal muscle of the fine flounder in response to nutritional status: Assessment and normalization of gene expression of growth-related genes. Fish Physi. Biochem. 2013, 39, 765–777. [Google Scholar] [CrossRef] [PubMed]
- De Francesco, M.; Parisi, G.; Médale, F.; Lupi, P.; Kaushik, S.J.; Poli, B.M. Effect of long-term feeding with a plant protein mixture based diet on growth and body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss). Aquaculture 2004, 236, 413–429. [Google Scholar] [CrossRef] [Green Version]
- Agbebi, O.T.; Ogunmuyiwa, T.G.; Herbert, S.M. Effect of dietary garlic source on feed utilization, growth and Histopathology of the African catfish (Clarias gariepinus). J. Agric. Sci. 2013, 5, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Jegede, T. Effect of garlic (Allium sativum) on growth, nutrient utilization, resistance and survival of Tilapia zillii (Gervais 1852) fingerlings. J. Agric. Sci. 2012, 4, 269–274. [Google Scholar] [CrossRef]
- Talpur, A.D.; Ikhwanuddin, M. Dietary effects of garlic (Allium sativum) on haemato-immunological parameters, survival, growth, and disease resistance against Vibrio harveyi infection in Asian sea bass, Lates calcarifer (Bloch). Aquaculture 2012, 364–365, 6–12. [Google Scholar] [CrossRef]
- Lee, D.; Lim, S.; Han, J.; Lee, S.; Ra, C.; Kim, J. Effects of dietary garlic powder on growth, feed utilization and whole body composition changes in fingerling sterlet sturgeon, Acipenser ruthenus. Asian-Australas. J. Anim. Sci. 2014, 27, 1303–1310. [Google Scholar] [CrossRef]
- Lemos, C.H.P.; Ribeiro, C.V.M.; De Oliveira, C.P.B.; Couto, R.D.; Copatti, C.E. Effects of interaction between pH and stocking density on the growth, haematological and biochemical responses of Nile tilapia juveniles. Aquaculture 2018, 495, 62–67. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S. Vitamin C supplementation to optimize growth, health and stress resistance in aquatic animals. Rev. Aquac. 2018, 10, 334–350. [Google Scholar] [CrossRef]
- Morante, V.H.P.; Copatti, C.E.; Souza, A.R.L.; Da Costa, M.M.; Braga, L.G.T.; Souza, A.M.; De Melo, F.V.S.T.; Camargo, A.C.S.; Melo, J.F.B. Assessment the crude grape extract as feed additive for tambaqui (Colossoma macropomum), an omnivorous fish. Aquaculture 2021, 544, 737068. [Google Scholar] [CrossRef]
- Hassaan, M.S.; Mohammady, E.Y.; Soaudy, M.R.; El-Garhy, H.A.S.; Moustafa, M.M.A.; Mohamed, S.A.; El-Haroun, E.R. Effect of Silybum marianum seeds as a feed additive on growth performance, serum biochemical indices, antioxidant status, and gene expression of Nile tilapia, Oreochromis niloticus (L.) fingerlings. Aquaculture 2019, 509, 178–187. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H. Serum metabolic enzyme activities and hepatocyte ultrastructure of common carp after gallium exposure. Zool. Stud. 2003, 42, 455–461. [Google Scholar]
- Zhai, S.; Lu, J.; Chen, X. Effects of dietary grape seed Proanthocyanidins on growth performance, some serum biochemical parameters and body composition of tilapia (Oreochromis niloticus) fingerlings. Ital. J. Anim. Sci. 2014, 13, 3357. [Google Scholar] [CrossRef]
- Satheeshkumar, P.; Ananthan, G.; Senthilkumar, D.; Khan, A.B.; Jeevanantham, K. Comparative investigation on haematological and biochemical studies on wild marine teleost fishes from Vellar estuary, southeast coast of India. Comp. Clin. Pathol. 2012, 21, 275–281. [Google Scholar] [CrossRef]
- Samavat, Z.; Shamsaie Mehrgan, M.; Jamili, S.; Soltani, M.; Hosseini Shekarabi, S.P. Determination of grapefruit (Citrus paradisi) peel extract bio-active substances and its application in Caspian white fish (Rutilus frisii kutum) diet: Growth, haemato-biochemical parameters and intestinal morphology. Aquac. Res. 2019, 5, 2496–2504. [Google Scholar] [CrossRef]
- Davila, J.C.; Lenherr, A.; Acosta, D. Protective effect of flavonoids on drug-induced hepatotoxicity in vitro. Toxicology 1989, 57, 267–286. [Google Scholar] [CrossRef]
- Qi, S.; Wang, T.; Chen, R.; Wang, C.; Ao, C. Effects of flavonoids from Allium mongolicum Regel on growth performance and growth-related hormones in meat sheep. Anim. Nutr. 2017, 3, 33–38. [Google Scholar] [CrossRef]
- Wu, L.; Hsu, H.; Chen, Y.; Chiu, C.; Lin, Y.; Ho, J.A. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
- Waagbø, R. The impact of nutritional factors on the immune system in Atlantic salmon, Salmo salar L.: A review. Aquac. Res. 1994, 25, 175–197. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Cao, J.; Wu, Y.; Xiao, J.; Wang, Q. Analysis of flavonoids and antioxidants in extracts of ferns from Tianmu Mountain in Zhejiang Province (China). Ind. Crops Prod. 2017, 97, 137–145. [Google Scholar] [CrossRef]
- Chen, X.; Tait, A.R.; Kitts, D.D. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chem. 2017, 218, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhu, X.; Tian, J.; Liu, M.; Wang, G. Dietary flavonoids from Allium mongolicum Regel promotes growth, improves immune, antioxidant status, immune-related signaling molecules and disease resistance in juvenile northern snakehead fish (Channa argus). Aquaculture 2019, 501, 473–481. [Google Scholar] [CrossRef]
- Yousefi, M.; Vatnikov, Y.A.; Kulikov, E.V.; Plushikov, V.G.; Drukovsky, S.G.; Hoseinifar, S.H.; Van Doan, H. The protective effects of dietary garlic on common carp (Cyprinus carpio) exposed to ambient ammonia toxicity. Aquaculture 2020, 526, 735400. [Google Scholar] [CrossRef]
- Hou, J.; Li, L.; Xue, T.; Long, M.; Su, Y.; Wu, N. Hepatic positive and negative antioxidant responses in zebrafish after intraperitoneal administration of toxic microcystin-LR. Chemosphere 2015, 120, 729–736. [Google Scholar] [CrossRef]
- Giri, S.S.; Sen, S.S.; Chi, C.; Kim, H.Y.; Yun, S.; Park, S.C.; Sukumaran, V. Effect of cellular products of potential probiotic bacteria on the immune response of Labeo rohita and susceptibility to Aeromonas hydrophila infection. Fish Shellfish Immunol. 2015, 46, 716–722. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, S.; Cai, Y.; Wu, Y.; Tian, L.; Wang, S.; Jiang, L.; Guo, W.; Sun, Y.; Zhou, Y. Effects of dietary mannan oligosaccharide supplementation on growth performance, antioxidant capacity, non-specific immunity and immune-related gene expression of juvenile hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀). Aquaculture 2020, 523, 735195. [Google Scholar] [CrossRef]
- Monir, M.S.; Yusoff, S.B.M.; Zulperi, Z.B.M.; Hassin, H.B.A.; Mohamad, A.; Ngoo, M.S.B.M.H.; Ina-Salwany, M.Y. Haemato-immunological responses and effectiveness of feed-based bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila infections in hybrid red tilapia (Oreochromis mossambicus × O. niloticus). BMC Vet. Res. 2020, 16, 226. [Google Scholar] [CrossRef]
Chemical Compounds | Radical Scavenging Activities | ||||
---|---|---|---|---|---|
Total Phenolics (mg/100 g) | Total Flavonoids (mg/100 g) | Concentration (µg/mL) | DPPH (%) | ABTS (%) | |
GJPW | 27.3 ± 1.58 | 36.8 ± 1.75 | 2000 | 48.52 ± 1.37 | 73.23 ± 2.53 |
1000 | 28.80 ± 1.09 | 51.00 ± 1.16 | |||
500 | 13.59 ± 1.08 | 29.82 ± 3.89 | |||
250 | 4.74 ± 0.15 | 17.57 ± 3.27 | |||
IC50 | 2002.53 ± 59.63 | 1164.13 ± 69.72 |
Experimental Diets | |||||
---|---|---|---|---|---|
GJPW0 | GJPW2.5 | GJPW5 | GJPW7.5 | GJPW10 | |
Pollock meal | 500 | 500 | 500 | 500 | 500 |
Fermented soybean meal | 115 | 115 | 115 | 115 | 115 |
Wheat flour | 270 | 267.5 | 265 | 262.5 | 260 |
Garlic juice processing waste (GJPW a) | 0 | 2.5 | 5 | 7.5 | 10 |
Fish oil | 45 | 45 | 45 | 45 | 45 |
Soybean oil | 45 | 45 | 45 | 45 | 45 |
Vitamin premix b | 10 | 10 | 10 | 10 | 10 |
Mineral premix c | 10 | 10 | 10 | 10 | 10 |
Choline chloride | 5 | 5 | 5 | 5 | 5 |
Proximate composition (g kg−1) | |||||
Dry matter | 949 | 957 | 955 | 952 | 956 |
Crude protein | 506 | 505 | 512 | 512 | 506 |
Crude lipid | 140 | 137 | 143 | 142 | 139 |
Ash | 89 | 89 | 93 | 89 | 89 |
Gene | Primer Sequences; Forward/Reverse (5′ ⟶ 3′) | Target Tissue | Amplicon (bp) | Accession No. |
---|---|---|---|---|
IGF-1 | F: ACACCCTCTCCCTACTGCTG R: CACACAAATTGGAGCGTGTC | Liver | 109 | AF481856.1 |
SOD | F: GGATCATGCCGGTCCTACTG R: GCCCAGTGAGAGTGAGCATC | Liver | 119 | AY771324.1 |
GST | F: AATGGAGCACAAGTCCCAAG R: GGCTGTCTGGGATCAGTTTG | Liver | 158 | AY771323.2 |
CAT | F: GCATGGTCGAGACCTTGAAT R: GCCTCGGCATTGTACTTGTT | Liver | 82 | KM401562.1 |
β-Actin | F: AGAGCTACGAGCTGCCTGAC R: AGGAAAGAGGGCTGGAAGAG | Liver | 88 | KF430616.1 |
Items | Experimental Diets | SEM | Orthogonal Contrast | Regression | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GJPW0 | GJPW2.5 | GJPW5 | GJPW7.5 | GJPW10 | Linear | Quadratic | Cubic | Model | p-Value | Adj. R2 | ||
IBW (g) | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 0.09 | 0.628 | 0.682 | 0.165 | NR | – | – |
FBW (g) | 9.7 a | 10.4 b | 10.6 b | 10.5 b | 10.6 b | 0.44 | 0.011 | 0.059 | 0.281 | L | 0.016 | 0.669 |
SR (%) | 97.8 | 97.8 | 100.0 | 96.7 | 98.9 | 1.13 | 0.820 | 0.857 | 0.501 | NR | – | – |
WG (g/fish) | 7.4 a | 8.2 b | 8.3 b | 8.3 b | 8.4 b | 0.45 | 0.016 | 0.081 | 0.309 | L | 0.018 | 0.662 |
SGR (%/day) | 2.61 a | 2.76 b | 2.77 b | 2.77 b | 2.78 b | 0.20 | 0.018 | 0.088 | 0.285 | L | 0.020 | 0.649 |
CF | 1.79 | 1.76 | 1.77 | 1.79 | 1.77 | 0.11 | 0.688 | 0.385 | 0.129 | NR | – | – |
VSI (%) | 7.78 | 7.75 | 7.77 | 7.92 | 7.81 | 0.37 | 0.632 | 0.941 | 0.507 | NR | – | – |
HSI (%) | 2.10 | 2.13 | 2.08 | 2.14 | 2.17 | 0.31 | 0.689 | 0.761 | 0.861 | NR | – | – |
FC (g/fish) | 9.0 | 9.2 | 9.1 | 9.0 | 9.0 | 0.44 | 0.226 | 0.341 | 0.356 | NR | – | – |
FE | 0.85 a | 0.91 b | 0.91 bc | 0.95 c | 0.95 c | 0.10 | 0.001 | 0.335 | 0.447 | L | 0.000 | 0.705 |
PER | 1.64 a | 1.76 b | 1.78 b | 1.84 b | 1.88 b | 0.18 | 0.001 | 0.355 | 0.447 | L | 0.000 | 0.640 |
PR (%) | 27.4 a | 29.8 ab | 30.2 ab | 30.5 b | 31.5 b | 0.88 | 0.008 | 0.601 | 0.460 | L | 0.003 | 0.600 |
Items | Experimental Diets | SEM | Orthogonal Contrast | Regression | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GJPW0 | GJPW2.5 | GJPW5 | GJPW7.5 | GJPW10 | Linear | Quadratic | Cubic | Model | p-Value | Adj. R2 | ||
Moisture (%) | 71.6 | 71.7 | 71.6 | 71.9 | 71.7 | 0.46 | 0.594 | 0.940 | 0.536 | NR | – | – |
Crude protein (%) | 16.9 | 17.0 | 17.0 | 16.8 | 16.9 | 0.33 | 0.478 | 0.651 | 0.335 | NR | – | – |
Crude lipid (%) | 5.9 | 6.0 | 6.0 | 5.9 | 5.9 | 0.30 | 0.569 | 0.502 | 0.266 | NR | – | – |
Ash (%) | 4.3 | 4.4 | 4.5 | 4.4 | 4.4 | 0.33 | 0.713 | 0.537 | 0.854 | NR | – | – |
Items | Experimental Diets | SEM | Orthogonal Contrast | Regression | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GJPW0 | GJPW2.5 | GJPW5 | GJPW7.5 | GJPW10 | Linear | Quadratic | Cubic | Model | p-Value | Adj. R2 | ||
AST (U/L) | 153.0 b | 95.7 a | 93.0 a | 91.3 a | 91.0 a | 3.21 | 0.022 | 0.068 | 0.287 | L | 0.028 | 0.519 |
ALT (U/L) | 34.7 b | 29.0 a | 29.0 a | 27.7 a | 26.7 a | 1.67 | 0.049 | 0.079 | 0.575 | L | 0.041 | 0.444 |
T-CHO (mg/dL) | 209.3 | 193.7 | 181.3 | 178.7 | 178.7 | 3.88 | 0.230 | 0.574 | 0.991 | NR | – | – |
TP (g/dL) | 4.4 | 5.3 | 4.9 | 5.0 | 5.6 | 0.53 | 0.146 | 0.933 | 0.114 | NR | – | – |
GLU (mg/dL) | 63.0 b | 46.7 a | 40.7 a | 39.0 a | 37.3 a | 1.98 | 0.002 | 0.081 | 0.497 | L | 0.002 | 0.532 |
Lysozyme (U/mL) | 57.0 a | 60.5 b | 60.7 b | 60.9 b | 64.2 b | 1.07 | 0.002 | 0.929 | 0.105 | L | 0.002 | 0.550 |
SOD (U/mL) | 5.3 a | 6.7 b | 6.9 b | 7.0 b | 7.0 b | 0.58 | 0.007 | 0.059 | 0.305 | L | 0.010 | 0.515 |
CAT (nmol/min/mL) | 2.1 a | 2.5 b | 2.6 b | 2.6 b | 2.7 b | 0.37 | 0.010 | 0.147 | 0.323 | L | 0.008 | 0.526 |
GSH (µM) | 15.2 a | 17.4 b | 17.7 b | 17.4 b | 17.4 b | 0.76 | 0.044 | 0.046 | 0.277 | L | 0.042 | 0.493 |
Items | Experimental diets | SEM | Orthogonal contrast | Regression | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GJPW0 | GJPW2.5 | GJPW5 | GJPW7.5 | GJPW10 | Linear | Quadratic | Cubic | Model | p-Value | Adj. R2 | ||
Amylase (U/L) | 46.5 a | 54.0 b | 60.0 b | 64.4 b | 61.0 b | 1.68 | 0.000 | 0.003 | 0.180 | L | 0.003 | 0.615 |
Trypsin (U/L) | 7.5 a | 9.5 b | 11.2 c | 11.7 c | 13.5 d | 0.63 | 0.000 | 0.354 | 0.216 | L | 0.000 | 0.902 |
Lipase (U/L) | 1.3 a | 2.4 b | 2.4 b | 2.8 b | 2.7 b | 0.36 | 0.003 | 0.082 | 0.541 | L | 0.001 | 0.701 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, H.Y.; Lee, T.H.; Lee, D.-Y.; Lee, C.-H.; Sohn, M.-Y.; Kwon, R.-W.; Kim, J.-G.; Kim, H.S.; Kim, K.-D. Evaluation of Garlic Juice Processing Waste Supplementation in Juvenile Black Rockfish (Sebastes schlegelii) Diets on Growth Performance, Antioxidant and Digestive Enzyme Activity, Growth- and Antioxidant-Related Gene Expression, and Disease Resistance against Streptococcus iniae. Animals 2022, 12, 3512. https://doi.org/10.3390/ani12243512
Oh HY, Lee TH, Lee D-Y, Lee C-H, Sohn M-Y, Kwon R-W, Kim J-G, Kim HS, Kim K-D. Evaluation of Garlic Juice Processing Waste Supplementation in Juvenile Black Rockfish (Sebastes schlegelii) Diets on Growth Performance, Antioxidant and Digestive Enzyme Activity, Growth- and Antioxidant-Related Gene Expression, and Disease Resistance against Streptococcus iniae. Animals. 2022; 12(24):3512. https://doi.org/10.3390/ani12243512
Chicago/Turabian StyleOh, Hwa Yong, Tae Hoon Lee, Da-Yeon Lee, Chang-Hwan Lee, Min-Young Sohn, Ryeong-Won Kwon, Jeong-Gyun Kim, Hee Sung Kim, and Kyoung-Duck Kim. 2022. "Evaluation of Garlic Juice Processing Waste Supplementation in Juvenile Black Rockfish (Sebastes schlegelii) Diets on Growth Performance, Antioxidant and Digestive Enzyme Activity, Growth- and Antioxidant-Related Gene Expression, and Disease Resistance against Streptococcus iniae" Animals 12, no. 24: 3512. https://doi.org/10.3390/ani12243512
APA StyleOh, H. Y., Lee, T. H., Lee, D.-Y., Lee, C.-H., Sohn, M.-Y., Kwon, R.-W., Kim, J.-G., Kim, H. S., & Kim, K.-D. (2022). Evaluation of Garlic Juice Processing Waste Supplementation in Juvenile Black Rockfish (Sebastes schlegelii) Diets on Growth Performance, Antioxidant and Digestive Enzyme Activity, Growth- and Antioxidant-Related Gene Expression, and Disease Resistance against Streptococcus iniae. Animals, 12(24), 3512. https://doi.org/10.3390/ani12243512