Dietary Se-Enriched Cardamine enshiensis Supplementation Alleviates Transport-Stress-Induced Body Weight Loss, Anti-Oxidative Capacity and Meat Quality Impairments of Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Selenium Sources
2.2. Experimental Birds, Diets and Design
2.3. Sample Collection
2.4. Plasma Biochemical Parameters
2.5. Anti-Oxidative Capacity
2.6. Meat Quality
2.7. Statistical Analyses
3. Results and Discussion
3.1. Body Weight Loss
3.2. Relative Organ Weight
3.3. Plasma Biochemical Parameters
3.4. Anti-Oxidative Capacity
3.5. Meat Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alhassan, U.B.; Zulkifli, I.; Goh, Y.M.; Elmutaz, A.A.; Abdoreza, S.F. Gut microbiota and transportation stress response affected by tryptophan supplementation in broiler chickens. Ital. J. Anim. Sci. 2018, 17, 107–113. [Google Scholar]
- Pan, L.; Ma, X.K.; Zhao, P.F.; Shang, Q.H.; Long, S.F.; Wu, Y.; Piao, X. Forsythia suspensa extract attenuates breast muscle oxidative injury induced by transport stress in broilers. Poult. Sci. 2018, 97, 1554–1563. [Google Scholar] [CrossRef]
- Zhang, C.; Geng, Z.Y.; Chen, K.K.; Zhao, X.H.; Wang, C. L-theanine attenuates transport stress-induced impairment of meat quality of broilers through improving muscle antioxidant status. Poult. Sci. 2019, 98, 4648–4655. [Google Scholar] [CrossRef]
- Li, Z.Y.; Lin, J.; Sun, F.; Li, H.; Xia, J.; Li, X.N.; Ge, J.; Zhang, C.; Li, J.-L. Transport stress induces weight loss and heart injury in chicks: Disruption of ionic homeostasis via modulating ion transporting ATPases. Oncotarget 2017, 8, 24142–24153. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, J.L.; Gao, T.; Lin, M.; Wang, X.F.; Zhu, X.D.; Gao, F.; Zhou, G. Effects of dietary supplementation with creatine monohydrate during the finishing period on growth performance, carcass traits, meat quality and muscle glycolytic potential of broilers subjected to transport stress. Animal 2014, 8, 1955–1962. [Google Scholar] [CrossRef] [Green Version]
- Conti, V.; Izzo, V.; Corbi, G.; Russomanno, G.; Manzo, V.; De Lise, F.; Di Donato, A.; Filippelli, A. Antioxidant supplementation in the treatment of aging-associated diseases. Front. Pharmacol. 2016, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Okumura, H.; Guo, R.; Naruse, K. Selenium in poultry nutrition: From sodium selenite to organic selenium sources. J. Poult. Sci. 2018, 55, 79–93. [Google Scholar]
- Aliyu, I.M.; Dalia, A.A.M.; Loh, T.C.; Henny, A.; Anjas, A.S. Effect of sodium selenite, selenium yeast, and bacterial enriched protein on chicken egg yolk color, antioxidant profiles, and oxidative stability. Foods 2021, 10, 871. [Google Scholar]
- Yuan, L.; Zhu, Y.; Lin, Z.Q.; Banuelos, G.; Li, W.; Yin, X. A novel selenocystine-accumulating plant in selenium-mine drainage area in Enshi, China. PLoS ONE 2013, 8, e65615. [Google Scholar] [CrossRef]
- Both, E.B.; Stonehouse, G.C.; Lima, L.W.; Fakra, S.C.; Aguirre, B.; Wangeline, A.L.; Xiang, J.; Yin, H.; Jókai, Z.; Soós, Á.; et al. Selenium tolerance, accumulation, localization and speciation in a Cardamine hyperaccumulator and a non-hyperaccumulator. Sci. Total Environ. 2020, 703, 135041. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, L.; He, H.; Yin, H.; Ming, J.; Hou, T.; Xiang, J. Modulation of oxidative stress and gut microbiota by selenium-containing peptides from Cardamine enshiensis and structural-based characterization. Food Chem. 2022, 395, 133547. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wei, Y.; Zhang, Y.; Jing, X.Q.; Cong, X.; Gao, Q.Y.; Cheng, S.Y.; Zhu, Z.Z.; Zhu, H.L.; Zhao, J.C.; et al. A new selenium source from Se-enriched Cardamine violifolia improves growth performance, anti-oxidative capacity and meat quality in broilers. Front. Nutr. 2022, 9, 996932. [Google Scholar] [CrossRef]
- Wei, Y.; Gao, Q.Y.; Jing, X.Q.; Zhang, Y.; Zhu, H.L.; Cong, X.; Cheng, S.Y.; Liu, Y.L.; Xu, X. Effect of Cardamine violifolia on plasma biochemical parameters, anti-oxidative capacity, intestinal morphology, and meat quality of broilers challenged with lipopolysaccharide. Animals 2022, 12, 2497. [Google Scholar] [CrossRef]
- Niu, Z.Y.; Min, Y.N.; Wang, J.J.; Wang, Z.P.; Wei, F.X.; Liu, F.Z. On oxidation resistance and meat quality of broilers challenged with lipopolysaccharide. J. Appl. Anim. Res. 2016, 44, 215–220. [Google Scholar] [CrossRef]
- Xue, G.; Cheng, S.; Yin, J.W.; Zhang, R.X.; Su, Y.Y.; Li, X.; Li, J.H.; Bao, J. Influence of pre-slaughter fasting time on weight loss, meat quality and carcass contamination in broilers. Anim. Biosci. 2021, 34, 1070–1077. [Google Scholar] [CrossRef]
- Miezeliene, A.; Alencikiene, G.; Gruzauskas, R.; Barstys, T. The effect of dietary selenium supplementation on meat quality of broiler chickens. Biotechnol. Agron. Soc. Environ. 2011, 15, 61–69. [Google Scholar]
- Savaris, V.D.L.; Broch, J.; De Souza, C.; Rohloff Junior, N.; De Avila, A.S.; Polese, C.; Kaufmann, C.; De Oliveira Carvalho, P.L.; Pozza, P.C.; Vieites, F.M.; et al. Effects of vitamin A on carcass and meat quality of broilers. Poult. Sci. 2021, 100, 101490. [Google Scholar] [CrossRef]
- Speer, N.; Slack, G.; Troyer, E. Economic factors associated with livestock transportation. J. Anim. Sci. 2001, 79, 166–170. [Google Scholar] [CrossRef] [Green Version]
- Voslarova, E.; Janackova, B.; Rubesova, L.; Kozak, A.; Bedanova, I.; Steinhause, L. Mortality rates in poultry species and categories during transport for slaughter. Acta Vet. Brno 2007, 76, 101–108. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Ma, J.; Mahfuz, S.; Zheng, Y.; Long, S.; Wang, J.; Wu, D.; Piao, X. Dietary live yeast supplementation alleviates transport-stress-impaired meat quality of broilers through maintaining muscle enrgy metabolism and antioxidant status. J. Sci. Food Agric. 2022, 102, 4086–4096. [Google Scholar] [CrossRef]
- Nijdam, E.; Delezie, E.; Lambooij, E.; Nabuurs, M.J.A.; Decuypere, E.; Stegeman, J.A. Feed withdrawal of broilers before transport changes plasma hormone and metabolite concentrations. Poult. Sci. 2005, 84, 1146–1152. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.L.; Han, X.Q.; Zhu, H.L.; Liu, Y.L.; Xu, X. A comparison of two supplementary doses of vitamin A on performance, intestine and immune organ development, as well as gene expression of inflammatory factors in young Hy-Line Brown laying pullets. Animals 2022, 12, 1271. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, D.; Wu, X.; Pan, C.; Wang, S.; Ma, L. TMT quantitative proteomics analysis reveals the effects of transport stress on iron metabolism in the liver of Chicken. Animals 2022, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Masaaki, M.; Koki, M.; Ryunosuke, S.; Yutaro, S.; Yoshimasa, S.; Michiaki, Y. Selenoneine ameliorates hepatocellular injury and hepatic steatosis in a mouse model of NAFLD. Nutrients 2020, 12, 1898. [Google Scholar]
- Hossein, Z.M.; Kermanshahi, H.; Sanjabi, M.R.; Golian, A.; Azin, M.; Majidzadeh, H.R. Comparison of different selenium sources on performance, serum attributes and cellular immunity in broiler chickens. Poult. Sci. J. 2018, 2, 191–203. [Google Scholar]
- Han, H.S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.H. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 2016, 48, e28. [Google Scholar] [CrossRef]
- Halliday, W.; Ross, J.; Christie, G.; Jones, R. Effect of transportation on blood metabolites in broilers. Brit. Poult. Sci. 1977, 18, 657–659. [Google Scholar] [CrossRef]
- Chen, F.; Liu, Y.L.; Zhu, H.L.; Hong, Y.; Wu, Z.F.; Hou, Y.Q.; Li, Q.; Ding, B.Y.; Yi, D.; Chen, H.B. Fish oil attenuates liver injury caused by LPS in weaned pigs associated with inhibition of TLR4 and nucleotide-binding oligomerization domain protein signaling pathways. Innate Immun. 2013, 19, 504–515. [Google Scholar] [CrossRef] [Green Version]
- Saffari, S.; Keyvanshokooh, S.; Zakeri, M.; Johari, S.A.; Pasha-Zanoosi, H. Effects of different dietary selenium sources (sodium selenite, selenomethionine and nanoselenium) on growth performance, muscle composition, blood enzymes and antioxidant status of common carp (Cyprinus carpio). Aquac. Nutr. 2017, 23, 611–617. [Google Scholar] [CrossRef]
- Wang, Y.; Heng, C.; Zhou, X.; Cao, G.; Jiang, L.; Wang, J.; Li, K.; Wang, D.; Zhan, X. Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune response and the intestinal barrier of broiler chickens. Brit. J. Nutr. 2021, 125, 494–507. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Zheng, F.; Jia, C.; Ruan, Y.; Li, H. Correlation between the amplitude of glucose excursion and the oxidative/antioxidative system in subjects with different types of glucose regulation. Biomed. Environ. Sci. 2011, 24, 68–73. [Google Scholar] [PubMed]
- Hosen, M.B.; Islam, M.R.; Begum, F.; Kabir, Y.; Howlader, M.Z. Oxidative stress induced sperm DNA damage, a possible reason for male infertility. Iran. J. Reprod. Med. 2015, 13, 525–532. [Google Scholar] [PubMed]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.Y. Antioxidant defence systems and oxidative stress in poultry biology: An update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Zhao, L.; Xu, Z.J.; De Marco, M.; Briens, M.; Yan, X.H.; Sun, L.-H. Hydroxy-Selenomethionine improves the selenium status and helps to maintain broiler performances under a high stocking density and heat stress conditions through a better redox and immune response. Antioxidants 2021, 10, 1542. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Xu, X.L.; Zhou, G.H.; Wang, P.; Jiang, N.N. The effect of transportation of broilers during summer on the expression of heat shock protein 70, postmortem metabolism and meat quality. J. Anim. Sci. 2015, 93, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yue, H.Y.; Zhang, H.J.; Xu, L.; Wu, S.G.; Yan, H.J.; Gong, Y.S.; Qi, G.H. Transport stress in broilers: I. Blood metabolism, glycolytic potential, and meat quality. Poult. Sci. 2009, 88, 2033–2041. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhan, X.A.; Zhang, X.W.; Wu, R.J.; Yuan, D. Comparison of different forms of dietary selenium supplementation on growth performance, meat quality, selenium deposition, and antioxidant property in broilers. Biol. Trace Elem. Res. 2011, 143, 261–273. [Google Scholar] [CrossRef]
- Wang, C.; Xing, G.; Wang, L.; Li, S.; Zhang, L.; Lu, L.; Luo, X.-G.; Liao, X.-D. Effects of selenium source and level on growth performance, antioxidative ability and meat quality of broilers. J. Integr. Agric. 2021, 20, 227–235. [Google Scholar] [CrossRef]
- Cai, S.J.; Wu, C.X.; Gong, L.M.; Song, T.; Wu, H.; Zhang, L.Y. Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult. Sci. 2012, 91, 2532–2539. [Google Scholar] [CrossRef]
Item | Non-Stress | Transport Stress | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Na2SeO3 | SeCe | Na2SeO3 | SeCe | Diets | Stress | Interaction | ||
Initial body weight, g | 2065 | 2135 | 2088 | 2107 | 30 | 0.459 | 0.968 | 0.899 |
Final body weight, g | 2031 | 2103 | 1983 | 2032 | 32 | 0.325 | 0.551 | 0.251 |
Body weight loss, g | 34 c | 32 c | 105 a | 75 b | 5 | 0.007 | <0.001 | <0.001 |
Item | Non-Stress | Transport Stress | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Na2SeO3 | SeCe | Na2SeO3 | SeCe | Diets | Stress | Interaction | ||
Heart, ×10−3 | 4.16 | 4.06 | 4.04 | 3.98 | 0.30 | 0.868 | 0.699 | 0.975 |
Liver, ×10−3 | 16.3 b | 16.5 b | 19.3 a | 16.3 b | 0.82 | 0.188 | 0.410 | <0.001 |
Spleen, ×10−3 | 1.04 | 0.97 | 0.99 | 0.96 | 0.08 | 0.821 | 0.905 | 0.793 |
Bursa, ×10−3 | 1.86 | 2.28 | 1.78 | 2.35 | 0.16 | 0.039 | 0.752 | 0.609 |
Item | Non-Stress | Transport Stress | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Na2SeO3 | SeCe | Na2SeO3 | SeCe | Diets | Stress | Interaction | ||
TP, g/L | 25.6 a | 25.8 a | 22.0 b | 24.8 a | 1.24 | 0.452 | 0.398 | 0.035 |
GLU, mmol/L | 11.7 a | 11.9 a | 10.1 b | 12.2 a | 0.94 | 0.663 | 0.410 | 0.031 |
TG, mmol/L | 2.85 | 2.65 | 2.68 | 2.59 | 0.15 | 0.358 | 0.774 | 0.814 |
BUN, mmol/L | 0.45 b | 0.48 b | 0.72 a | 0.52 b | 0.05 | 0.696 | 0.099 | <0.001 |
AST, U/L | 215 b | 208 b | 288 a | 225 b | 19 | 0.089 | 0.035 | 0.017 |
ALT, U/L | 4.36 b | 4.28 b | 5.27 a | 4.38 b | 0.22 | 0.469 | 0.280 | <0.001 |
Item | Non-Stress | Transport Stress | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Na2SeO3 | SeCe | Na2SeO3 | SeCe | Diets | Stress | Interaction | ||
T-AOC, Mm | 0.39 | 0.45 | 0.34 | 0.44 | 0.02 | 0.029 | 0.426 | 0.525 |
GSH-Px, U/mL | 56.2 a | 54.6 a | 40.4 b | 60.3 a | 2.51 | 0.018 | 0.166 | 0.007 |
SOD, U/L | 673 a | 658 a | 513 b | 754 a | 38 | 0.048 | 0.562 | 0.027 |
MDA, nmol/mL | 1.49 b | 1.30 b | 1.90 a | 1.20 b | 0.11 | 0.030 | 0.302 | 0.019 |
Item | Non-Stress | Transport Stress | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Na2SeO3 | SeCe | Na2SeO3 | SeCe | Diets | Stress | Interaction | ||
Breast muscle | ||||||||
Color | ||||||||
L* | 66.9 | 69.3 | 65.8 | 65.4 | 2.85 | 0.774 | 0.412 | 0.680 |
a* | 11.6 b | 15.6 a | 11.8 b | 12.2 b | 0.90 | 0.128 | 0.620 | <0.001 |
b* | 5.00 | 4.78 | 5.17 | 5.28 | 0.67 | 0.928 | 0.745 | 0.880 |
Drip loss, % | 1.13 b | 0.80 b | 1.81 a | 1.10 b | 0.22 | 0.062 | 0.048 | 0.014 |
Cooking loss, % | 30.4 | 28.2 | 35.5 | 35.9 | 1.20 | 0.741 | <0.001 | 0.385 |
Shear force, N | 27.0 | 24.8 | 27.4 | 25.0 | 1.01 | 0.082 | 0.710 | 0.608 |
Thigh muscle | ||||||||
Color | ||||||||
L* | 60.4 | 65.2 | 63.8 | 62.1 | 2.63 | 0.385 | 0.842 | 0.710 |
a* | 12.2 | 14.4 | 12.0 | 14.3 | 0.79 | 0.018 | 0.859 | 0.773 |
b* | 6.83 | 6.44 | 6.00 | 5.39 | 0.66 | 0.296 | 0.368 | 0.872 |
Drip loss, % | 0.67 | 0.69 | 0.77 | 0.73 | 0.18 | 0.880 | 0.621 | 0.743 |
Cooking loss, % | 33.7 ab | 26.0 c | 35.9 a | 31.1 b | 1.32 | 0.006 | 0.036 | 0.028 |
Shear force, N | 26.9 b | 21.4 c | 28.8 a | 28.5 a | 0.80 | 0.023 | 0.008 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhu, Y.; Wei, Y.; Chen, X.; Li, R.; Xie, J.; Wang, G.; Ming, J.; Yin, H.; Xiang, J.; et al. Dietary Se-Enriched Cardamine enshiensis Supplementation Alleviates Transport-Stress-Induced Body Weight Loss, Anti-Oxidative Capacity and Meat Quality Impairments of Broilers. Animals 2022, 12, 3193. https://doi.org/10.3390/ani12223193
Xu X, Zhu Y, Wei Y, Chen X, Li R, Xie J, Wang G, Ming J, Yin H, Xiang J, et al. Dietary Se-Enriched Cardamine enshiensis Supplementation Alleviates Transport-Stress-Induced Body Weight Loss, Anti-Oxidative Capacity and Meat Quality Impairments of Broilers. Animals. 2022; 12(22):3193. https://doi.org/10.3390/ani12223193
Chicago/Turabian StyleXu, Xiao, Yunfen Zhu, Yu Wei, Xiaofei Chen, Rong Li, Junhui Xie, Guogui Wang, Jiajia Ming, Hongqing Yin, Jiqian Xiang, and et al. 2022. "Dietary Se-Enriched Cardamine enshiensis Supplementation Alleviates Transport-Stress-Induced Body Weight Loss, Anti-Oxidative Capacity and Meat Quality Impairments of Broilers" Animals 12, no. 22: 3193. https://doi.org/10.3390/ani12223193
APA StyleXu, X., Zhu, Y., Wei, Y., Chen, X., Li, R., Xie, J., Wang, G., Ming, J., Yin, H., Xiang, J., Huang, F., & Yang, Y. (2022). Dietary Se-Enriched Cardamine enshiensis Supplementation Alleviates Transport-Stress-Induced Body Weight Loss, Anti-Oxidative Capacity and Meat Quality Impairments of Broilers. Animals, 12(22), 3193. https://doi.org/10.3390/ani12223193