Genotype VII.1.1-Based Newcastle Disease Virus Vaccines Afford Better Protection against Field Isolates in Commercial Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Viruses and Vaccines
2.1.1. Vaccines
2.1.2. Diagnostic Antigens
2.1.3. Challenge Virus
2.2. Evaluation of Different Vaccination Regimes (Genotype II- and Genotype VII-Based Vaccines) against NDV Field Isolate Challenges
2.2.1. Chicken Experiments
2.2.2. Virus Shedding Titers Determination
2.2.3. Tissues Histopathology
2.3. Statistical Analysis
3. Results
3.1. Serological Response in Different Newcastle Disease Virus Vaccination Regimes
3.2. Clinical Protection of Different Live Attenuated and Killed Genotype VII.1.1-Based NDV Vaccines against NDV Virulent Challenge
3.3. Challenge Virus Shedding
3.4. Histopathology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, J.; Liu, C. Detecting Newcastle disease virus in combination of RT-PCR with red blood cell absorption. Virol. J. 2011, 8, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitrov, K.M.; Abolnik, C.; Afonso, C.L.; Albina, E.; Bahl, J.; Berg, M.; Briand, F.X.; Brown, I.H.; Choi, K.S.; Chvala, I.; et al. Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2019, 74, 103917. [Google Scholar] [CrossRef] [PubMed]
- Suarez, D.L.; Miller, P.J.; Koch, G.; Mundt, E.; Rautenschlein, S. Newcastle Disease, Other Avian Paramyxoviruses, and Avian Metapneumovirus Infections. In Diseases of Poultry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 109–166. [Google Scholar] [CrossRef]
- Ellakany, H.F.; Abd El-Hamid, H.S.; Nasef, S.A.; Elbestawy, A.R.; Nasr, S.M.; Abd El Aziz, M.N.; Gado, A.R.; Zedan, R.E.; Yonisb, A.E. Evaluation of the protection of commercial live and inactivated NDV vaccines against Newcastle virus genotype VIId circulating in the field. Damanhour J. Vet. Sci. 2019, 1, 17–20. [Google Scholar] [CrossRef]
- Absalón, A.E.; Mariano-Matías, A.; Vásquez-Márquez, A.; Morales-Garzón, A.; Cortés-Espinosa, D.V.; Ortega-García, R.; Lucio-Decanini, E. Complete genome sequence of a velogenic newcastle disease virus isolated in Mexico. Virus Genes 2012, 45, 304–310. [Google Scholar] [CrossRef]
- Kilany, W.H.; Ali, A.; Bazid, A.H.I.; Zain El-Abideen, M.A.; El Sayed, M. Evaluation of two inactivated newcastle disease virus vaccines (genotype II and VII) against challenge of newcastle disease genotype VII infection in chicken. J. Anim. Vet. Adv. 2015, 14, 211–218. [Google Scholar]
- Nagy, A.; Ali, A.; Zain El-Abideen, M.A.; Kilany, W.; Elsayed, M. Characterization and genetic analysis of recent and emergent virulent newcastle disease viruses in Egypt. Transbound. Emerg. Dis. 2020, 67, 2000–2012. [Google Scholar] [CrossRef]
- Dewidar, A.A.A.; El-Sawah, A.A.; Shany, S.A.S.; Dahshan, A.-H.M.; Ali, A. Genetic characterization of genotype VII.1.1 Newcastle Disease viruses from commercial and backyard broiler chickens in Egypt. Ger. J. Vet. Res. 2021, 1, 11–17. [Google Scholar] [CrossRef]
- Cho, S.-H.; Kwon, H.-J.; Kim, T.-E.; Kim, J.-H.; Yoo, H.-S.; Kim, S.-J. Variation of a newcastle disease virus hemagglutinin-neuraminidase linear epitope. J. Clin. Microbiol. 2008, 46, 1541–1544. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.M.; Zhao, J.; Xue, J.; Yang, Y.L.; Zhang, G.Z. Antigenic variation of LaSota and genotype VII Newcastle disease virus (NDV) and their efficacy against challenge with velogenic NDV. Vaccine 2017, 35, 27–32. [Google Scholar] [CrossRef]
- Hu, S.; Ma, H.; Wu, Y.; Liu, W.; Wang, X.; Liu, Y.; Liu, X. A vaccine candidate of attenuated genotype VII Newcastle disease virus generated by reverse genetics. Vaccine 2009, 27, 904–910. [Google Scholar] [CrossRef]
- Hu, Z.; Hu, S.; Meng, C.; Wang, X.; Zhu, J.; Liu, X. Generation of a genotype VII Newcastle disease virus vaccine candidate with high yield in embryonated chicken eggs. Avian Dis. 2011, 55, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Amer, S.; Maatouq, A.; Ahmed, H.; Hassan, E. Evaluation for Efficacy of Commercially Available Vaccines Against Challenge with Newcastle Disease Virus Genotype VII in Broilers. Egypt. J. Vet. Sci. 2020, 51, 35–41. [Google Scholar] [CrossRef]
- Bello, M.B.; Mahamud, S.N.A.; Yusoff, K.; Ideris, A.; Hair-Bejo, M.; Peeters, B.P.H.; Omar, A.R. Development of an Effective and Stable Genotype-Matched Live Attenuated Newcastle Disease Virus Vaccine Based on a Novel Naturally Recombinant Malaysian Isolate Using Reverse Genetics. Vaccines 2020, 8, 270. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, T.; Du, Y.; Cui, X.; Yu, Q.; Wang, Z.; Zhang, J.; Li, Y.; Zhu, Q. A novel genotype VII Newcastle disease virus vaccine candidate generated by mutation in the L and F genes confers improved protection in chickens. Vet. Microbiol. 2018, 216, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Zhang, X.; Wang, H.; Teng, Q.; Xue, J.; Zhang, G. Construction and immune efficacy of a recombinant turkey herpesvirus vaccine strain expressing fusion protein of genotype VII Newcastle disease virus. Vet. Microbiol. 2022, 268, 109429. [Google Scholar] [CrossRef]
- Cho, S.H.; Kwon, H.J.; Kim, T.E.; Kim, J.H.; Yoo, H.S.; Park, M.H.; Park, Y.H.; Kim, S.J. Characterization of a Recombinant Newcastle Disease Virus Vaccine Strain. Clin. Vaccine Immunol. 2008, 15, 1572–1579. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.C.S.; Chou, W.K.; Berghman, L.R.; Carey, J.B. Evaluation of the effect of live LaSota Newcastle disease virus vaccine as primary immunization on immune development in broilers. Poult. Sci. 2018, 97, 455–462. [Google Scholar] [CrossRef]
- OIE. Newcastle disease. In Terrestrial Manual 2021; OIE, Ed.; World Organization for Animal Health: Paris, France, 2021. [Google Scholar]
- Reed, L.J.; Munech, H. A simple method of estimation of fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Dean, A.G.; Sullivan, K.M.; Soe, M.M. OpenEpi: Open Source Epidemiologic Statistics for Public Health, Version 3.01. Available online: www.OpenEpi.com (accessed on 14 June 2022).
- Shehata, A.A.; Sedeik, M.E.; Elbestawy, A.R.; Zain El-Abideen, M.A.; Ibrahim, H.H.; Kilany, W.H.; Ali, A. Co-infections, genetic, and antigenic relatedness of avian influenza H5N8 and H5N1 viruses in domestic and wild birds in Egypt. Poult. Sci. 2019, 98, 2371–2379. [Google Scholar] [CrossRef]
- Moharam, I.; Razik, A.A.E.; Sultan, H.; Ghezlan, M.; Meseko, C.; Franzke, K.; Harder, T.; Beer, M.; Grund, C. Investigation of suspected Newcastle disease (ND) outbreaks in Egypt uncovers a high virus velogenic ND virus burden in small-scale holdings and the presence of multiple pathogens. Avian Pathol. 2019, 48, 406–415. [Google Scholar] [CrossRef]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques, 6th ed.; Churchill Livingstone: London, UK, 2008; p. 744. [Google Scholar]
- Capua, I.; Alexander, D.J. Avian Influenza and Newcastle Disease: A Field and Laboratory Manual; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Alexander, D.J.; Aldous, E.W.; Fuller, C.M. The long view: A selective review of 40 years of Newcastle disease research. Avian Pathol. 2012, 41, 329–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehmani, S.F. Newcastle disease vaccination: A comparison of vaccines and routes of administration in Pakistan. Prev. Vet. Med. 1996, 25, 241–248. [Google Scholar] [CrossRef]
- Dortmans, J.C.F.M.; Peeters, B.P.H.; Koch, G. Newcastle disease virus outbreaks: Vaccine mismatch or inadequate application? Vet. Microbiol. 2012, 160, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Amanollahi, R.; Asasi, K.; Abdi-Hachesoo, B. Effect of Newcastle disease and infectious bronchitis live vaccines on the immune system and production parameters of experimentally infected broiler chickens with H9N2 avian influenza. Comp. Immunol. Microbiol. Infect. Dis. 2020, 71, 101492. [Google Scholar] [CrossRef] [PubMed]
- Bolha, L.; Benčina, D.; Cizelj, I.; Oven, I.; Slavec, B.; Rojs, O.Z.; Narat, M. Effect of Mycoplasma synoviae and lentogenic newcastle disease virus coinfection on cytokine and chemokine gene expression in chicken embryos. Poult. Sci. 2013, 92, 3134–3143. [Google Scholar] [CrossRef]
- Mansour, S.M.G.; ElBakrey, R.M.; Mohamed, F.F.; Hamouda, E.E.; Abdallah, M.S.; Elbestawy, A.R.; Ismail, M.M.; Abdien, H.M.F.; Eid, A.A.M. Avian Paramyxovirus Type 1 in Egypt: Epidemiology, Evolutionary Perspective, and Vaccine Approach. Front. Vet. Sci 2021, 8, 647462. [Google Scholar] [CrossRef]
- Liu, H.; de Almeida, R.S.; Gil, P.; Majó, N.; Nofrarías, M.; Briand, F.-X.; Jestin, V.; Albina, E. Can genotype mismatch really affect the level of protection conferred by Newcastle disease vaccines against heterologous virulent strains? Vaccine 2018, 36, 3917–3925. [Google Scholar] [CrossRef]
- Sultan, H.A.; Talaat, S.; Elfeil, W.K.; Selim, K.; Kutkat, M.A.; Amer, S.A.; Choi, K.S. Protective efficacy of the Newcastle disease virus genotype VII-matched vaccine in commercial layers. Poult. Sci. 2020, 99, 1275–1286. [Google Scholar] [CrossRef]
- Bu, Y.W.; Yang, H.M.; Jin, J.H.; Zhao, J.; Xue, J.; Zhang, G.Z. Recombinant Newcastle disease virus (NDV) La Sota expressing the haemagglutinin-neuraminidase protein of genotype VII NDV shows improved protection efficacy against NDV challenge. Avian Pathol. 2019, 48, 91–97. [Google Scholar] [CrossRef]
- Sultan, H.A.; Elfeil, W.K.; Nour, A.A.; Tantawy, L.; Kamel, E.G.; Eed, E.M.; El Askary, A.; Talaat, S. Efficacy of the Newcastle Disease Virus Genotype VII.1.1-Matched Vaccines in Commercial Broilers. Vaccines 2021, 10, 29. [Google Scholar] [CrossRef]
- Morrison, T.G. Newcastle disease virus-like particles as a platform for the development of vaccines for human and agricultural pathogens. Future Virol. 2010, 5, 545–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, P.J.; Estevez, C.; Yu, Q.; Suarez, D.L.; King, D.J. Comparison of Viral Shedding Following Vaccination With Inactivated and Live Newcastle Disease Vaccines Formulated With Wild-Type and Recombinant Viruses. Avian Dis. 2009, 53, 39–49. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, H.; Xu, H.; Ma, Z.; Zhang, G. Efficacy of an inactivated bivalent vaccine against the prevalent strains of Newcastle disease and H9N2 avian influenza. Virol. J. 2017, 14, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, P.J.; Afonso, C.L.; El Attrache, J.; Dorsey, K.M.; Courtney, S.C.; Guo, Z.; Kapczynski, D.R. Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses. Dev. Comp. Immunol. 2013, 41, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Xu, H.; Ji, X.; Zhao, J. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases. Future Microbiol. 2015, 10, 1307–1323. [Google Scholar] [CrossRef]
- Peeters, B.P.H.; De Leeuw, O.S.; Verstegen, I.; Koch, G.; Gielkens, A.L.J. Generation of a recombinant chimeric Newcastle disease virus vaccine that allows serological differentiation between vaccinated and infected animals. Vaccine 2001, 19, 1616–1627. [Google Scholar] [CrossRef]
- Perozo, F.; Villegas, P.; Dolz, R.; Afonso, C.L.; Purvis, L.B. The VG/GA strain of Newcastle disease virus: Mucosal immunity, protection against lethal challenge and molecular analysis. Avian Pathol. 2008, 37, 237–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Zhang, Z.; Zsak, L.; Yu, Q. P and M gene junction is the optimal insertion site in Newcastle disease virus vaccine vector for foreign gene expression. J. Gen. Virol. 2015, 96, 40–45. [Google Scholar] [CrossRef] [PubMed]
Group/Number of Birds | Abbreviation 1 | Treatment(s) | Volume/Method | Age of Birds | ||
---|---|---|---|---|---|---|
7 Days | 21 Days | 31 Days | ||||
G1: (n = 15) unvaccinated, unchallenged | UC | Saline | 50 µL/Eye drop | x | x | - |
G2: (n = 15) vaccinated, challenged | LaSota GII L/L | Volvac® LaSota gold | 50 µL/Eye drop | x | x | Velogenic NDV GVII 1.1 6.0 log10 EID50/200 µL/Eye Drop |
G3: (n = 15) vaccinated, challenged | LaSota GII LI/L | Volvac® LaSota gold | 50 µL/Eye drop | x | x | |
Volvac® AI + ND KV | 0.5 mL/Subcutaneous | x | - | |||
G4: (n = 15) vaccinated, challenged | Vaccine (A) GVII L/L | Himmvac Dalguban N+ (Plus) (Live) | 50 µL/Eye drop | x | x | |
G5: (n = 15) vaccinated, challenged | Vaccine (A) GVII LI/L | Himmvac Dalguban N+ (Plus) (Live) | 50 µL/Eye drop | x | x | |
Himmvac Dalguban N+ (Plus) (Inactivated) | 0.5 mL/Subcutaneous | x | - | |||
G6: (n = 15) vaccinated, challenged | Vaccine (B) GVII L/L | RINNOVAC™ ELI-7 | 50 µL/Eye drop | x | x | |
G7: (n = 15) vaccinated, challenged | Vaccine (B) GVII LI/L | RINNOVAC™ ELI-7 | 50 µL/Eye drop | x | x | |
MEVAC™ ND7 Plus | 0.5 mL/Subcutaneous | x | - | |||
G8: (n = 15) unvaccinated, challenged | CC | Saline | 50 µL/Eye drop | x | x |
Virus | Primer Sequence (5′–3′) | Reference | |
---|---|---|---|
F | CGS-ARG-ATM-CAA-GGG-TCT | [21] | |
R | CTA-CAC-TGC-CAA-TAA-CRG-C | ||
Probe | AGG-AGA-CRA-AAA-CGY-TTT-ATA-GGT-GC | ||
Thermal Profile | |||
Step | Temperature | Time | No. of Cycles |
cDNA synthesis | 45 °C | 10 min | 1 |
Thermo-start activation | 95 °C | 10 min | 1 |
Denaturation | 95 °C | 15 s | 40 |
Annealing/Extension | 56 °C | 45 s | |
Final extension | 72 °C | 5 min | 1 |
Group 1 | Day 21 | |
---|---|---|
GII LaSota Antigen | GVII 1.1 Antigen | |
G1: Negative control (UC) | 0.3 ± 0.0 | 0.5 ± 0.0 |
G2: LaSota GII L/L | A 3.00 ± 1.15 a 2 | A 3.11 ± 0.78 a |
G3: LaSota GII LI/L | A 3.67 ± 1.00 a | A 3.40 ± 1.07 a |
G4: Vaccine (A) GVII L/L | A 2.50 ± 0.55 a | A 2.67 ± 1.66 a |
G5: Vaccine (A) GVII LI/L | A 2.60 ± 0.55 a | A 4.33 ± 0.50 b |
G6: Vaccine (B) GVII L/L | A 3.00 ± 0.82 a | A 3.40 ± 1.17 a |
G7: Vaccine (B) GVII LI/L | A 3.00 ± 0.89 a | A 4.50 ± 0.85 b |
Group | Day 31 | |
GII LaSota Antigen | GVII 1.1 Antigen | |
G1: Negative control (UC) | 0.5 ± 0.53 | 0.2 ± 0.42 |
G2: LaSota GII L/L | A 3.80 ± 1.14 a | A 3.50 ± 0.93 a |
G3: LaSota GII LI/L | A 4.20 ± 0.63 a | A 4.50 ± 0.97 a |
G4: Vaccine (A) GVII L/L | B 2.89 ± 0.78 a | A 3.80 ± 1.03 a |
G5: Vaccine (A) GVII LI/L | A 3.50 ± 0.53 a | A 4.50 ± 1.08 a |
G6: Vaccine (B) GVII L/L | A 3.30 ± 0.67 a | A 4.25 ± 1.39 a |
G7: Vaccine (B) GVII LI/L | A 3.60 ± 0.84 a | B 6.20 ± 1.03 b |
Groups 1 | 3 DPC | 7 DPC | 10 DPC | |||
---|---|---|---|---|---|---|
Mean ± SD 2 | Positivity 3 | Mean ± SD | Positivity | Mean ± SD | Positivity | |
Challenged control | 5.33 ± 0.38 a 4 | 5/5 (100%) | N/A 5 | N/A | N/A | N/A |
LaSota GII L/L | 4.37 ± 0.22 ab | 5/5 (100%) | 1.88 ± 0.20 a | 5/5 (100%) | 1.73 ± 0.10 a | 5/5 (100%) |
LaSota GII LI/L | 3.94 ± 0.51 abc | 5/5 (100%) | 2.31 ± 0.43 ab | 5/5 (100%) | 1.41 ± 0.11 ab | 5/5 (100%) |
Vaccine (A) GVII L/L | 4.26 ± 0.52 ab | 5/5 (100%) | 1.77 ± 0.46 ab | 4/5 (80%) | 1.40 ± 0.10 ab | 5/5 (100%) |
Vaccine (A) GVII LI/L | 4.25 ± 0.46 ab | 5/5 (100%) | 1.94 ± 0.17 ab | 3/5 (60%) | Nd 6 | 0/5 (0%) |
Vaccine (B) GVII L/L | 4.20 ± 0.30 ab | 5/5 (100%) | 1.45 ± 0.59 ab | 3/5 (60%) | Nd | 0/5 (0%) |
Vaccine (B) GVII LI/L | 3.70 ± 0.48 abc | 5/5 (100%) | 1.13 ± 0.16 ab | 2/5 (40%) | Nd | 0/5 (0%) |
Days Post Challenge | Groups 1 | Tracheal Lesions Scores 2 | ||||
---|---|---|---|---|---|---|
Epithelial Degeneration | Epithelial Sloughing | Congestion | Lymphocytic Infiltration | Tracheal Cast | ||
3 | G1: Negative control (UC) | - | - | - | - | - |
G2: Challenged control | +++ | ++ | +++ | ++ | + | |
G2: LaSota GII L/L | + | - | + | + | - | |
G3: LaSota GII LI/L | +++ | + | ++ | + | + | |
G4: Vaccine (A) GVII L/L | ++ | + | + | + | + | |
G5: Vaccine (A) GVII LI/L | + | - | + | + | - | |
G6: Vaccine (B) GVII L/L | ++ | + | ++ | + | + | |
G7: Vaccine (B) GVII LI/L | + | - | + | + | - | |
7 | G1: Negative control (UC) | - | - | - | - | - |
G2: Challenged control | +++ | ++ | ++ | +++ | +++ | |
G2: LaSota GII L/L | + | - | + | + | - | |
G3: LaSota GII LI/L | ++ | ++ | + | ++ | ++ | |
G4: Vaccine (A) GVII L/L | ++ | + | + | + | - | |
G5: Vaccine (A) GVII LI/L | + | + | + | ++ | - | |
G6: Vaccine (B) GVII L/L | + | + | + | ++ | + | |
G7: Vaccine (B) GVII LI/L | + | - | + | + | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewidar, A.A.A.; Kilany, W.H.; El-Sawah, A.A.; Shany, S.A.S.; Dahshan, A.-H.M.; Hisham, I.; Elkady, M.F.; Ali, A. Genotype VII.1.1-Based Newcastle Disease Virus Vaccines Afford Better Protection against Field Isolates in Commercial Broiler Chickens. Animals 2022, 12, 1696. https://doi.org/10.3390/ani12131696
Dewidar AAA, Kilany WH, El-Sawah AA, Shany SAS, Dahshan A-HM, Hisham I, Elkady MF, Ali A. Genotype VII.1.1-Based Newcastle Disease Virus Vaccines Afford Better Protection against Field Isolates in Commercial Broiler Chickens. Animals. 2022; 12(13):1696. https://doi.org/10.3390/ani12131696
Chicago/Turabian StyleDewidar, Abdelmonem A. A., Walid H. Kilany, Azza A. El-Sawah, Salama A. S. Shany, Al-Hussien M. Dahshan, Islam Hisham, Magdy F. Elkady, and Ahmed Ali. 2022. "Genotype VII.1.1-Based Newcastle Disease Virus Vaccines Afford Better Protection against Field Isolates in Commercial Broiler Chickens" Animals 12, no. 13: 1696. https://doi.org/10.3390/ani12131696
APA StyleDewidar, A. A. A., Kilany, W. H., El-Sawah, A. A., Shany, S. A. S., Dahshan, A.-H. M., Hisham, I., Elkady, M. F., & Ali, A. (2022). Genotype VII.1.1-Based Newcastle Disease Virus Vaccines Afford Better Protection against Field Isolates in Commercial Broiler Chickens. Animals, 12(13), 1696. https://doi.org/10.3390/ani12131696