The Effect of the Dietary Inclusion of Crude Glycerin in Pre-Starter and Starter Diets for Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets and Experimental Design
2.2. Data Recording and Sampling
2.3. Physical and Chemical Analyses
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, J.C.; He, B.B. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl. Eng. Agric. 2006, 22, 261–265. [Google Scholar] [CrossRef]
- REN21. Renewables 2020 Global Status Report; REN21 Secretariat: Paris, France, 2020; ISBN 978-3-948393-00-7. Available online: http://www.ren21.net/gsr-2020/ (accessed on 15 January 2021).
- Lammers, P.J.; Kerr, B.J.; Weber, T.E.; Bregendahl, K.; Lonergan, S.M.; Prusa, K.J.; Ahn, D.U.; Stoffregen, W.C.; Dozier III, W.A.; Honeyman, M.S. Growth performance, carcass characteristics, meat quality, and tissue histology of growing pigs fed crude glycerin-supplemented diets. J. Anim. Sci. 2008, 86, 2962–2970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duttlinger, A.J.; DeRouchey, J.M.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D.; Nelssen, J.L.; Sulabo, R.C. Effects of increasing crude glycerol and dried distillers grains with solubles on growth performance, carcass characteristics, and carcass fat quality of finishing pigs. J. Anim. Sci. 2012, 90, 840–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kijora, C.; Bergner, H.; Kupsch, R.D.; Hagemann, L. Glycerol as a feed component in diets of fattening pigs. Arch. Anim. Nutr. 1995, 47, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Kosamia, N.M.; Samavi, M.; Uprety, B.K.; Rakshit, S.K. Valorization of biodiesel byproduct crude glycerol for the production of bioenergy and biochemicals. Catalysts 2020, 10, 609. [Google Scholar] [CrossRef]
- Van Buren, N.; Demmers, M.; Van der Heijden, R.; Witlox, F. Towards a circular economy: The role of Dutch logistics industries and governments. Sustainability 2016, 8, 647. [Google Scholar] [CrossRef] [Green Version]
- Groesbeck, C.N.; McKinney, L.J.; DeRouchey, J.M.; Tokach, M.D.; Goodband, R.D.; Dritz, S.S.; Nelssen, J.L.; Duttlinger, A.W.; Fahrenholz, A.C.; Behnke, K.C. Effect of crude glycerol on pellet mill production and nursery pig growth performance. J. Anim. Sci. 2008, 86, 2228–2236. [Google Scholar] [CrossRef] [Green Version]
- Zijlstra, R.T.; Menjivar, K.; Lawrence, E.; Beltranena, E. The effect of feeding crude glycerol on growth performance and nutrient digestibility in weaned pigs. Can. J. Anim. Sci. 2009, 89, 85–89. [Google Scholar] [CrossRef]
- Shields, M.C.; VanHeugten, E.; Lin, X.; Odle, J.; Stark, C.S. Evaluation of the nutritional value of glycerol for nursery pigs. J. Anim. Sci. 2011, 89, 2145–2153. [Google Scholar] [CrossRef]
- Oliveira, L.; Madrid, J.; Ramis, G.; Martínez, S.; Orengo, J.; Villodre, C.; Valera, L.; López, M.J.; Pallarés, F.J.; Quereda, J.J.; et al. Adding crude glycerin to nursery pig diet: Effect on nutrient digestibility, metabolic status, intestinal morphology and intestinal cytokine expression. Livest. Sci. 2014, 167, 227–235. [Google Scholar] [CrossRef]
- Fischer, M.M.; Moraes, M.L.D.; Marcolla, C.S.; Kessler, A.D.M. Increased urinary losses in piglets fed diets containing high levels of glycerin. Rev. Bras. Zootec. 2019, 48, e20180039. [Google Scholar] [CrossRef] [Green Version]
- Hinson, R.; Ma, L.; Allee, G. Use of glycerol in nursery pig diets. J. Anim. Sci. 2008, 86, 46. [Google Scholar]
- Cromwell, G.L.; Allee, G.L.; Mahan, D.C. Assessment of lactose level in the mid-to late-nursery phase on performance of weanling pigs. J. Anim. Sci. 2008, 86, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Shinde, P.L.; Yang, Y.X.; Yun, K.; Choi, J.Y.; Lohakare, J.D.; Chae, B.J. Effects of dietary lactose levels during different starter phases on the performance of weaning pigs. Livest. Sci. 2010, 131, 175–182. [Google Scholar] [CrossRef]
- Graham, A.; Greiner, L.; Knopf, B.; Goncalves, M.A.D.; Cast, W.; Orlando, U.A.D. Evaluation of the lactose level and organic acid inclusion in newly weaned pigs. J. Anim. Sci. 2018, 96, 154. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Z.; Zhang, S.; Page, G.; Jaworski, N.W. The role of lactose in weanling pig nutrition: A literature and meta-analysis review. J. Anim. Sci. Biotechnol. 2021, 12, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Fundación Española para el Desarrollo de la Nutrición Animal. Tablas FEDNA de Composición y Valor Nutritivo de Alimentos Para la Fabricación de Piensos Compuestos, 3rd ed.; de Blas, C., Mateos, G.G., García-Rebollar, P., Eds.; FEDNA: Madrid, Spain, 2010. [Google Scholar]
- Wapnir, R.A.; Sia, M.C.; Fisher, S.E. Enhancement of intestinal water absorption and sodium transport by glycerol in rats. J. Appl. Physiol. 1996, 81, 2523–2527. [Google Scholar] [CrossRef] [PubMed]
- Kerr, B.J.; Weber, T.E.; Dozier III, W.A.; Kidd, M.T. Digestible and metabolizable energy content of crude glycerin originating from different sources in nursery pigs. J. Anim. Sci. 2009, 87, 4042–4049. [Google Scholar] [CrossRef]
- Carvalho, P.L.D.O.; Moreira, I.; Martins, E.N.; Piano, L.M.; Toledo, J.B.; Costa Filho, C.D.L. Crude glycerine in diets for piglets. Rev. Bras. Zootec. 2012, 41, 1654–1661. [Google Scholar] [CrossRef] [Green Version]
- De Blas, C.; Gasa, J.; Mateos, G.G. Necesidades Nutricionales Para Ganado Porcino, 2nd ed.; De Blas, C., Gasa, J., Mateos, G.G., Eds.; Fundación Española Para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2013. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- BOE. BOE-A-2000-3195 Orden de 16 de febrero de 2000 por la que se modifica el anexo del Real Decreto 2257/1994, de 25 de noviembre, por el que se aprueban los Métodos Oficiales de Análisis de Piensos o Alimentos para Animales y sus primeras materias y el Real Decreto 1999/1995, de 7 de diciembre, relativo a los alimentos para animales destinados a objetivos de nutrición específicos. BOE 2000, 41, 7211–7215. [Google Scholar]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, C.B.; Elias, A.N.; Whisnant, C.S. Effects of feeding pattern on ghrelin and insulin secretion in pigs. Domest. Anim. Endocrinol. 2010, 39, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Madrid, J.; Villodre, C.; Valera, L.; Orengo, J.; Martínez, S.; López, M.J.; Megías, M.D.; Hernández, F. Effect of crude glycerin on feed manufacturing, growth performance, plasma metabolites, and nutrient digestibility of growing-finishing pigs. J. Anim. Sci. 2013, 91, 3788–3795. [Google Scholar] [CrossRef]
- Shields, M.C. Evaluation of the Nutritional Value of Glycerol, a Byproduct of Biodiesel Production, for Swine. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, April 2009. [Google Scholar]
- Kerr, B.J.; Shurson, G.C.; Johnston, L.J.; Dozier, G., III. Utilization of Crude Glycerin in Nonruminants. In Biodiesel–Quality, Emissions, and By-Products; Montero, G., Stoytcheva, M., Eds.; InTech: Rijeka, Croatia, 2011; pp. 365–380. [Google Scholar] [CrossRef]
- Robergs, R.A.; Griffin, S.E. Glycerol. Biochemistry, pharmacokinetics and clinical and practical applications. Sports Med. 1998, 26, 145–167. [Google Scholar] [CrossRef] [PubMed]
- Bruininx, E.M.A.M.; Van der Peet-Schwering, C.M.C.; Schrama, J.W. Individual feed intake of group-housed weaned pigs and health status. In The Weaner Pig: Nutrition and Management; Varley, M.A., Wiseman, J., Eds.; CAB International: Wallingford, UK, 2001; pp. 113–122. [Google Scholar] [CrossRef]
- Dong, G.Z.; Pluske, J.R. The low feed intake in newly-weaned pigs: Problems and possible solutions. Asian Australas. J. Anim. Sci. 2007, 20, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Da Rocha, L.O.; Luis e Silva, J.; Rodrigues, C.D.F.; Mascarenhas, A.G.; Nunes, R.D.C. Crude glycerin in diets for piglets in nursing phase. Cienc. Anim. Bras. 2016, 17, 51–59. [Google Scholar] [CrossRef]
- Lin, E.C.C. Glycerol utilization and its regulation in mammals. Ann. Rev. Biochem. 1977, 46, 765–795. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Hayashi, Y.; Inoue, K.; Yuasa, H. Glycerol absorption by Na+-dependent carrier-mediated transport in the closed loop of the rat small intestine. Biol. Pharm. Bull. 2005, 28, 553–555. [Google Scholar] [CrossRef] [Green Version]
- Ohta, K.Y.; Inoue, K.; Hayashi, Y.; Yuasa, H. Carrier-mediated transport of glycerol in the perfused rat small intestine. Biol. Pharm. Bull. 2006, 29, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Sommer, S.; Nau, R.; Wieland, E.; Prange, H.W. Pharmacokinetics of glycerol administered orally in healthy volunteers. Arzneim. Forsch. 1993, 43, 744–747. [Google Scholar]
- Lammers, P.J.; Kerr, B.J.; Weber, T.E.; Dozier, W.A.; Kidd, M.T.; Bregendahl, K.; Honeyman, M.S. Digestible and metabolizable energy of crude glycerol for growing pigs. J. Anim. Sci. 2008, 86, 602–608. [Google Scholar] [CrossRef] [Green Version]
- Verussa, G.H.; Corassa, A.; Pina, D.D.S.; Ton, A.P.S.; Komiyama, C.M.; Teixeira, A.D.O. Nutritional value of glycerin for pigs determined by different methodologies. Rev. Bras. Zootec. 2017, 46, 584–590. [Google Scholar] [CrossRef] [Green Version]
- Papadomichelakis, G.; Zoidis, E.; Mountzouris, K.C.; Lippas, T.; Fegeros, K. Glycerine kinase gene expression, nutrient digestibility and gut microbiota composition in post-weaned pigs fed diets with increasing crude glycerine levels. Anim. Feed Sci. Technol. 2012, 177, 247–252. [Google Scholar] [CrossRef]
- Verussa, G.H.; Corassa, A.; Pina, D.S.; Ton, A.P.S.; Komiyama, C.M.; Teixeira, A.O. Performance and serum parameters of growing pigs fed diets containing semipurified glycerin. Rev. Colomb. Cienc. Pecu. 2017, 30, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Hansen, C.F.; Hernandez, A.; Mullan, B.P.; Moore, K.; Trezona-Murray, M.; King, R.H.; Pluske, J.R. A chemical analysis of samples of crude glycerol from the production of biodiesel in Australia, and the effects of feeding crude glycerol to growing-finishing pigs on performance, plasma metabolites and meat quality at slaughter. Anim. Prod. Sci. 2009, 49, 154–161. [Google Scholar] [CrossRef]
- Orengo, J.; Villodre, C.; Madrid, J.; Martínez, S.; López, M.J.; Megías, M.D.; Valera, L.; Hernández, F. Effect of dietary crude glycerin on growth performance, nutrient digestibility and hormone levels of Iberian crossbred pigs from 50 to 100 kg body weight. Livest. Sci. 2014, 165, 95–99. [Google Scholar] [CrossRef]
- Ariyasu, H.; Takaya, K.; Hosoda, H.; Iwakura, H.; Ebihara, K.; Mori, K.; Ogawa, Y.; Hosoda, K.; Akamizu, T.; Kojima, M.; et al. Delayed short-term secretory regulation of ghrelin in obese animals: Evidenced by a specific RIA for the active form of ghrelin. Endocrinology 2002, 143, 3341–3350. [Google Scholar] [CrossRef] [Green Version]
- Murakami, N.; Hayashida, T.; Kuroiwa, T.; Nakahara, K.; Ida, T.; Mondal, M.S.; Nakazato1, M.; Kojima, M.; Kangawa, K. Role for central ghrelin in food intake and secretion profile of stomach ghrelin in rats. J. Endocrinol. 2002, 174, 283–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saad, M.F.; Bernaba, B.; Hwu, C.M.; Jinagouda, S.; Fahmi, S.; Kogosov, E.; Boyadjian, R. Insulin regulates plasma ghrelin concentration. J. Clin. Endocrinol. Metab. 2002, 87, 3997–4000. [Google Scholar] [CrossRef] [PubMed]
- Schaller, G.; Schmidt, A.; Pleiner, J.; Woloszczuk, W.; Wolzt, M.; Luger, A. Plasma ghrelin concentrations are not regulated by glucose or insulin: A double-blind, placebo-controlled crossover clamp study. Diabetes 2003, 52, 16–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, F.; Orengo, J.; Villodre, C.; Martínez, S.; López, M.J.; Madrid, J. Addition of crude glycerin to pig diets: Sow and litter performance, and metabolic and feed intake regulating hormones. Animal 2016, 10, 919–926. [Google Scholar] [CrossRef] [PubMed]
Item | Pre-Starter 1 | Starter 1 | ||||
---|---|---|---|---|---|---|
G0 | G2.5 | G5 | G0 | G2.5 | G5 | |
Ingredients, % | ||||||
Corn | 31.82 | 31.36 | 31.18 | 35.00 | 35.00 | 35.00 |
Wheat | 15.00 | 15.00 | 15.00 | 15.81 | 12.63 | 9.65 |
Soybean meal, 440 g CP/kg | 11.55 | 12.00 | 12.00 | 23.92 | 24.72 | 25.50 |
Barley | 10.00 | 10.00 | 10.00 | 15.00 | 15.00 | 15.00 |
Nutralmix 10% Primafeed SM premix 2 | 10.00 | 10.00 | 10.00 | -- | -- | -- |
Actium FR 3 | 7.50 | 7.50 | 7.50 | -- | -- | -- |
Sheep sweet whey powder | 7.50 | 5.00 | 2.50 | -- | -- | -- |
Soy oil | 2.99 | 2.76 | 2.47 | 5.37 | 5.28 | 5.00 |
Whey powder, 50% fat | 2.50 | 2.50 | 2.50 | -- | -- | -- |
Crude glycerin >80% 4 | 0 | 2.50 | 5.00 | 0 | 2.50 | 5.00 |
Monocalcium phosphate | -- | -- | -- | 1.35 | 1.35 | 1.35 |
Actium Nursery Booster Premix 5 | -- | -- | -- | 1.00 | 1.00 | 1.00 |
Calcium carbonate | -- | -- | -- | 0.76 | 0.76 | 0.75 |
Titanium dioxide | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Sodium chloride | -- | -- | -- | 0.40 | 0.40 | 0.40 |
L-Lysine HCl | 0.32 | 0.34 | 0.38 | 0.48 | 0.46 | 0.45 |
L-Threonine | 0.15 | 0.35 | 0.77 | 0.20 | 0.19 | 0.19 |
DL-Methionine | 0.13 | 0.14 | 0.15 | 0.18 | 0.18 | 0.18 |
L-Tryptophan | 0.04 | 0.05 | 0.05 | 0.03 | 0.03 | 0.03 |
Calculated composition 6, % | ||||||
Net Energy, kcal/kg | 2540 | 2540 | 2540 | 2525 | 2525 | 2525 |
Lysine digestible, % | 1.28 | 1.28 | 1.28 | 1.13 | 1.13 | 1.13 |
Lactose, % | 6.27 | 4.52 | 2.77 | -- | -- | -- |
Analyzed composition 7, % on dry matter (DM) basis except for DM | ||||||
DM | 91.2 | 90.9 | 91.0 | 89.6 | 89.5 | 89.5 |
Ash | 5.40 | 5.14 | 5.37 | 6.12 | 6.23 | 6.17 |
Crude protein (CP) | 18.3 | 18.9 | 18.7 | 18.4 | 18.3 | 18.7 |
Starch + sugars | 42.5 | 42.6 | 42.4 | 44.7 | 44.0 | 43.0 |
Crude Fiber (CF) | 3.64 | 3.78 | 3.55 | 4.21 | 4.25 | 4.36 |
Growth Performance | Diets 1 | SEM 2 | p-Value 3 | |||
---|---|---|---|---|---|---|
G0 | G2.5 | G5 | L | Q | ||
Number of pens | 6 | 6 | 6 | |||
BW, kg | ||||||
Start of the study (at 0 day) | 7.74 | 7.73 | 7.73 | 0.221 | 0.982 | 0.983 |
End of pre-starter period (at 24 day) 4 | 15.02 ab | 15.60 a | 14.77 b | 0.134 | 0.456 | 0.026 |
End of starter period (at 39 day) 5 | 22.24 | 21.79 | 21.74 | 0.140 | 0.168 | 0.537 |
Pre-starter period, 0–24 d | ||||||
ADG, kg day−1 | 0.298 ab | 0.324 a | 0.292 b | 0.006 | 0.647 | 0.034 |
ADFI, kg day−1 | 0.433 a | 0.426 ab | 0.397 b | 0.006 | 0.029 | 0.407 |
FCR, kg feed kg−1 gain | 1.453 a | 1.317 b | 1.367 b | 0.014 | 0.021 | 0.006 |
Starter period, 24–39 day | ||||||
ADG, kg day−1 | 0.473 | 0.445 | 0.447 | 0.009 | 0.243 | 0.436 |
ADFI, kg day−1 | 0.772 ab | 0.804 a | 0.728 b | 0.012 | 0.166 | 0.056 |
FCR, kg feed kg−1 gain | 1.634 a | 1.806 b | 1.638 a | 0.026 | 0.959 | 0.008 |
Whole period, 0–39 d | ||||||
ADG, kg day−1 | 0.365 | 0.370 | 0.351 | 0.005 | 0.275 | 0.267 |
ADFI, kg day−1 | 0.562 a | 0.571 a | 0.524 b | 0.008 | 0.060 | 0.113 |
FCR, kg feed kg−1 gain | 1.540 a | 1.540 a | 1.492 b | 0.009 | 0.039 | 0.210 |
ATTD | Diets 1 | SEM 2 | p-Value 3 | |||
---|---|---|---|---|---|---|
G0 | G2.5 | G5 | L | Q | ||
Number of pens | 6 | 6 | 6 | |||
Pre-starter period | ||||||
DM, % | 80.3 a | 81.2 a | 82.4 b | 0.175 | <0.001 | 0.684 |
OM, % | 82.4 a | 83.3 a | 84.5 b | 0.169 | <0.001 | 0.580 |
CP, % | 74.6 a | 77.5 b | 80.6 c | 0.202 | <0.001 | 0.730 |
Starter period | ||||||
DM, % | 79.9 a | 78.5 a | 83.9 b | 0.571 | 0.012 | 0.013 |
OM, % | 82.2 a | 80.8 a | 85.9 b | 0.495 | 0.008 | 0.008 |
CP, % | 78.1 a | 74.4 b | 80.3 a | 0.679 | 0.196 | 0.004 |
Serum Concentration | Diets 1 | SEM 2 | p-Value 3 | |||
---|---|---|---|---|---|---|
G0 | G2.5 | G5 | L | Q | ||
Sample size 4 | 12 | 12 | 12 | |||
Total ghrelin, pg/mL | 592.9 | 615.2 | 537.0 | 47.238 | 0.606 | 0.599 |
Acylated ghrelin, pg/mL | 114.0 | 51.9 | 93.8 | 30.924 | 0.711 | 0.152 |
Insulin, µg/mL | 5.79 | 3.70 | 7.10 | 0.868 | 0.614 | 0.135 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orengo, J.; Madrid, J.; Aragón, J.L.; Martínez-Miró, S.; López, M.J.; Hernández, F. The Effect of the Dietary Inclusion of Crude Glycerin in Pre-Starter and Starter Diets for Piglets. Animals 2021, 11, 1249. https://doi.org/10.3390/ani11051249
Orengo J, Madrid J, Aragón JL, Martínez-Miró S, López MJ, Hernández F. The Effect of the Dietary Inclusion of Crude Glycerin in Pre-Starter and Starter Diets for Piglets. Animals. 2021; 11(5):1249. https://doi.org/10.3390/ani11051249
Chicago/Turabian StyleOrengo, Juan, Josefa Madrid, Juan Luis Aragón, Silvia Martínez-Miró, Miguel J. López, and Fuensanta Hernández. 2021. "The Effect of the Dietary Inclusion of Crude Glycerin in Pre-Starter and Starter Diets for Piglets" Animals 11, no. 5: 1249. https://doi.org/10.3390/ani11051249
APA StyleOrengo, J., Madrid, J., Aragón, J. L., Martínez-Miró, S., López, M. J., & Hernández, F. (2021). The Effect of the Dietary Inclusion of Crude Glycerin in Pre-Starter and Starter Diets for Piglets. Animals, 11(5), 1249. https://doi.org/10.3390/ani11051249