Usefulness of Discriminant Analysis in the Morphometric Differentiation of Six Native Freshwater Species from Ecuador
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Body Measuerements
2.3. Fulton’s Condition Factor (K)
2.4. Statistical Analysis
3. Results
3.1. Morphometric Characteristics
3.2. Morphological Differentation between Species
3.3. Fulton’s Condition Factor (K)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ormaza González, F. Estudios Industriales. Orientación Estratégica Para la Toma de Decisiones. Industria de Pesca. 2016. Available online: http://www.espae.espol.edu.ec/publicaciones-de-espae/ (accessed on 25 November 2020).
- Ley de pesca y desarrollo pesquero. Decreto Supremo nº 175. Registro Oficial nº 497 de 19 de Febrero de 1974 y Registro Oficial nº 15 de 11 de mayo de 2005. Available online: http://extwprlegs1.fao.org/docs/pdf/ecu1266.pdf (accessed on 9 January 2021).
- FAO. El Estado Mundial de la Pesca y la Acuicultura 2016. Contribución a la Seguridad Alimentaria y la Nutrición Para Todo, Report no.: 1020/5500; FAO, Departamento de Pesca y Acuicultura: Rome, Italy, 2016. [Google Scholar]
- Rodríguez, J.; Angón, E.; González, M.; Perea, J.; Barba, C.; García, A. Allometric relationship and growth models of juveniles of Cichlasoma festae (Perciforme: Cichlidae), a freshwater species native in Ecuador. Rev. Biol. Trop. 2017, 65, 1185–1193. [Google Scholar] [CrossRef] [Green Version]
- Agbayani, R.; Baticados, D.; Quinitio, E.; Tormon-West, D. Resiliency of small-holder to climate change and market prices in selected communities in the Philippines. In Enhancing the Contribution of Small-Scale Aquaculture to Food Security, Poverty Alleviation and Socioeconomic Development; Bondad-Reantaso, M.G., Subasinghe, R.P., Eds.; Food and Agriculture Organization of the United Nations: Hanoi, Vietnam, 2013; pp. 171–179. [Google Scholar]
- Triviño, J.L. Características Morfométricas, Merísticas, Físicas y Químicas Del Pescado Ratón Silvestre (Leporinus Ecuadorensis) en la Zona de Babahoyo-2017. Proyecto de Investigación; Universidad Técnica Estatal de Quevedo: Quevedo, Ecuador, 2017. [Google Scholar]
- MAGAP. Estado Actual y Proyección de la Acuicultura Continental en el Ecuador. 2016. Ecuador: MAGAP. Available online: http://acuacultura.espe.edu.ec/wp-content/uploads/2016/05/1-Estado-y-Proyecci%C3%B3n-de-la-Acuicultura-Ecuatoriana-Alejandro-de-la-Roche.pdf (accessed on 25 November 2020).
- Rodríguez, J.; González, A.; Angón, E.; Vivas, R.; Barba, C.; González, M.A.; Peña, F.; García, A. Efecto del tamaño de las reproductoras en la producción de alevines de Cichlasoma festae en condiciones semicontroladas en Ecuador. ITEA 2020, 116, 93–105. [Google Scholar] [CrossRef]
- Barriga, R. Lista de peces de agua dulce e intermareales del Ecuador. Rev. Politec. 2012, 30, 83–119. [Google Scholar]
- Gonzáles, A.; Acosta, J.; Andrade, S. Evaluación de las inundaciones de la cuenca baja del Guayas, datos y manejo. CLIRSEN. In Proceedings of the XI Congreso Ecuatoriano de la Ciencia del Suelo, Quito, Ecuador, 29–31 October 2008. [Google Scholar]
- INOCAR. Memoria Técnica de la Comisión Realizada en el Área del Río Guayas sur; Instituto Oceanográfico del Armada: Guayaquil, Ecuador, 2010; p. 183. [Google Scholar]
- Jiménez-Prado, P.; Aguirre, W.; Laaz-Moncayo, E.; Navarrete-Amaya, R.; Nugra-Salazar, F.; Rebolledo-Monsalve, E.; Zárate-Hugo, E.; Torres-Noboa, A.; Valdiviezo-Rivera, J. Guía de Peces Para Aguas Continentales en la Vertiente Occidental del Ecuador; Pontificia Universidad Católica del Ecuador Sede Esmeraldas (PUCESE); Universidad del Azuay (UDA) y Museo Ecuatoriano de Ciencias Naturales (MECN) del Instituto Nacional de Biodiversidad: Esmeraldas, Ecuador, 2015; p. 416. [Google Scholar]
- Proaño, J.; Navarrete, R.; Rodriguez, F.; Fernández, P. Calidad del Agua del Río Daule, Ecuador. 2011. Available online: https://www.academia.edu/31048019/Calidad_del_agua_del_r%C3%ADo_Daule_Septiembre_del_2009_a_octubre_del_2010_Ecuador (accessed on 5 January 2021).
- Yépez Rosado, A.; Bolívar Yépez Yanez, A.; Urdánigo Zambrano, J.P.; Morales Cabezas, D.C.; Guerrero Chuez, N.M.; TayHing, C.C. Aquatic macroinvertebrates as indicators of water quality in areas of residual discharge to the Quevedo river.; Ecuador. Cien. Tecnol UTEQ 2017, 10, 27–34. [Google Scholar]
- Barriga, R. Los Peces de Agua dulce del Ecuador. Rev. Politécnica 1991, 3, 7–88. [Google Scholar]
- Villalobos-Cortés, A.; Martínez, M.A.; Vega-Pla, J.L.; Landi, V.; Quiroz, V.J.; Martínez, R.; Sponenberg, P.; Armstrong, E.; Zambrano, D.; Ribamar Marques, J.; et al. Relationships between Panamanians and some creole cattle landraces in Latin America. Pesq. Agrop. Bras. 2012, 47, 1637–1646. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. Realización de Encuestas y Seguimiento de los Recursos Zoogenéticos; Directrices FAO, Producción y sanidad animal: Rome, Italy, 2012. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Plan de Acción Mundial Sobre los Recursos Zoogenéticos y la Declaración de Interlaken; FAO: Rome, Italy, 2007. [Google Scholar]
- Martínez, R.; Fernández, E.; Abbiati, N.; Broccoli, A. Caracterización zoométrica de bovinos criollos: Patagónicos vs. noroeste argentino. Rev. MVZ. 2007, 12, 1042–1049. [Google Scholar] [CrossRef]
- N’goran, K.E.; Kouassi, N.C.; Loukou, N.E.; Dayo, G.S.M.; Yapi-Gnaore, C.V. Multivariate analysis for morphological caracteristics of N’Dama cattle breed in two agroecological zones of Côte d’Ivoire. Eur. Sci. J. 2018, 14, 602–621. [Google Scholar]
- Sobczuk, D.; Komosa, M. Morphological differentiation of polish Arabian horses-multivariate analysis. Bull Vet. Inst. Pulawy. 2012, 56, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Asamoah Boaheng, M.; Emmanuel Kofi, S.E. Morphological characterization of breeds of sheep: A discriminant analysis approach. Asamoah Boaheng Sam. Springer Plus 2016, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Vera, T.A.; Ricarte, A.R.; Díaz, R.; Arriba, P.N.; Vélez, J.A. Caracterización fenotípica de diferentes biotipos de razas presentes en la población caprina de La Rioja, Argentina. In Proceedings of the XXIII Reunión de ALPA y IV Congreso Internacional de Producción Animal Tropical, Havana, Cuba, 18–22 December 2013. [Google Scholar]
- Cabello, R.A.; León, J.M.; Barba, C.J. Contribución a la Diferenciación Morfológica de las Variedades del Cerdo Ibérico como Base para su Conservación; Diputación de Córdoba: Córdoba, Spain, 2007; pp. 31–87. [Google Scholar]
- González, A.; Luque, M.; Herrera, M.; Gonzalez, C.; Angón, E.; Rodero, E. Usefulness of discriminant analysis in the morphofunctional classification of Spanish dog breeds. Archiv. Tierzucht. 2014, 57, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Oguntunji, A.O.; Ayorinde, K.L. Multivariate analysis of morphological traits of the Nigerian Muscovy ducks (Cairina moschata). Arch. Zootec. 2014, 63, 483–493. [Google Scholar] [CrossRef] [Green Version]
- Adeyemi, M.A.; Oseni, S.O. Canonical discriminant analysis applied to biometric data of Nigerian indigenous turkeys. Arch. Zootec. 2018, 67, 7–12. [Google Scholar] [CrossRef]
- Suneetha Gunawickrama, K.B. Morphological heterogeneity and population differentiation in the green chromid Etroplus suratensis (Pisces: Cichlidae) in Sri Lanka. Ruhuna J. Sci. 2007, 2, 70–81. [Google Scholar]
- Brraich, O.S.; Akhter, S. Morhometric characters and meristic Counts of a Fish, Crossocheilus latius latius (Hamilton-Buchanan) from Ranjit Sagar Wetland, India. Int. J. Fish. Aquat. Stud. 2015, 2, 260–265. [Google Scholar]
- González, M.A.; Triviño, J.L. Características Morfométricas, Merísticas, Físicas y Químicas del Pescado Ratón Silvestre (Leporinus ecuadorensis) en la Zona de BABAHOYO; Grupo Compás—Universidad Técnica Estatal de Quevedo: Guayaquil, Ecuador, 2020. [Google Scholar]
- González, M.A.; Rodríguez, J.M.; Angón, E.; Martínez, A.; García, A.; Peña, F. Characterization of morphological and meristic traits and their variations between two different populations (wild and cultured) of Cichlasoma festae, a species native to tropical Ecuadorian rivers. Archiv. Tierz. 2016, 59, 435–444. [Google Scholar] [CrossRef] [Green Version]
- González, M.; Angón, E.; Rodriguez, J.; Moya, A.; García Peña, F.A. Yield, flesh parameters, and proximate and fatty acid composition in muscle tissue of wild and cultured Vieja Colorada (Cichlasoma festae) in tropical Ecuadorian river. Span. J. Agri. Res. 2017, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Caez, J.; González, A.; González, M.A.; Angón, E.; Rodríguez, J.M.; Peña, F.; Barca, C.; García, A. Application of multifactorial discriminant analysis in the morphostructural differentiation of wild and cultured populations of Vieja Azul (Andinoacara rivulatus). Turk. J. Zool. 2019, 43, 516–530. [Google Scholar] [CrossRef]
- González-Martinez, A.; Angón, E.; González, M.A.; Peña, F.; Rodríguez, J.; Barb, C.; García, A. Effect of production system and sex on composition and fatty acid profile of flesh from Andinoacara rivulatus raised in Ecuador. Rev. Fac. Cienc. Agrar. 2020. (submitted). [Google Scholar]
- Gonzalez-Martinez, A.; Lopez, M.; Molero, H.M.; Rodriguez, J.; González, M.; Barba, C.; García, A. Morphometric and Meristic Characterization of Native Chame Fish (Dormitator latifrons) in Ecuador Using Multivariate Analysis. Animals 2020, 10, 1805. [Google Scholar] [CrossRef]
- Gonzalez, A.; Noles, P.; Rodriguez, J.; González, M.; Barba, C.; García, A. Multifactorial discriminant analysis of guanchiche, Hoplias microlepis, morphometric variation in three sites in the Guayas Basin (Ecuador). Mar. Freshwater Res. 2020. (submitted). [Google Scholar]
- Martínez-Lendech, N.; Martínez-Falcón, A.P.; Schmitter-Soto, J.J.; Mejía-Mojica, H.; Sorani-Dalbón, V.; Cruz-Ruíz, G.I.; Mercado-Silva, N. Ichthyological Differentiation and Homogenization in the Pánuco Basin, Mexico. Diversity 2020, 12, 187. [Google Scholar] [CrossRef]
- Alvarez-Mieles, G.; Irvine, K.; Griensven, A.V.; Arias-Hidalgo, M.; Torres, A.; Mynett, A.E. Relationships between aquatic biotic communities and water quality in a tropical river–wetland system (Ecuador). Environ Sci Policy. 2013, 34, 115–127. [Google Scholar] [CrossRef]
- Hatter, I.W.; Quayle, J.; Ramsay, L.R. A conservation status assessment of the mountain caribou ecotype based on IUCN red list criteria. In Proceedings of the Species at Risk 2004 Pathways to Recovery Conference, Victoria, BC, Canada, 18 March 2004. [Google Scholar]
- Cavalcanti, M.J.; Rabello Monteiro, L.; Duarte Lopes, P.R. Landmark-based Morphometric Analysis in Selected Species of Serranid Fishes (Perciformes: Teleostei). Zoo. Stud. 1999, 38, 287–294. [Google Scholar]
- Solomon, S.O.; Okomoda, V.T.; Ogbenyikwu, A.I. Intraspecific morphological variation between cultured and wild Clarias gariepinus (Burchell) (Clariidae: Siluriformes). Arch. Pol. Fish. 2015, 23, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Yakubu, A.; Okunsebor, S. Morphometric differentiation of two Nigerian fish species (Oreochromis niloticus and Lates niloticus) using principal components and discriminant analysis. Int. J. Morphol. 2011, 29, 1429–1434. [Google Scholar] [CrossRef] [Green Version]
- Canadian Council on Animal Care. Guidelines on: The Care and Use of Fish Research, Teaching and Testing. 2005. Available online: https://www.ccac.ca/Documents/Standards/Guidelines/Fish.pdf (accessed on 25 November 2020).
- Norma Española UNE 173300. Piscicultura: Guía de Prácticas Correctas para el Sacrificio. Available online: http://www.apromar.es/sites/default/files/2016-AENOR%20Guia%20practicas%20correctas%20sacrificio%20piscicultura.pdf (accessed on 25 December 2020).
- Diodatti, F.C.; Fonseca de Freitas, R.T.; Freato, T.A.; Pérez Ribeiro, P.A.; Solis Murgas, L.D. Parámetros morfométricos en el rendimiento de los componentes corporales de tilapia del Nilo (Oreochromis niloticus). An. Vet. 2008, 24, 45–55. [Google Scholar]
- Getso, B.; Abdullahi, J.; Yola, I. Relación longitud-peso y factor de condición de Clarias gariepinus y Oreochromis niloticus en el Río Wudil, Kano, Nigeria. Agro Sci. 2017, 16, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Elliott, N.G.; Haskard, K.; Koslow, J.A. Morphometric analysis of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia. J. Fish Biol. 1995, 46, 202–220. [Google Scholar] [CrossRef]
- Tudela, S. Morphological variability in a Mediterranean, genetically homogeneous population of the European anchovy, Engraulis encrasicolus. Fish. Res. 1999, 42, 229–243. [Google Scholar] [CrossRef]
- Salini, J.; Milton, D.; Rahman, M.; Hussain, M. Allozyme and morphological variation throughout the geographic range of the tropical shad, hilsa Tenualosa ilisha. Fish. Res. 2004, 66, 53–69. [Google Scholar] [CrossRef]
- Turan, C.; Oral, M.; Öztürk, B.; Düzgüne, E. Morphometric and meristic variation between stocks of Bluefish (Pomatomus saltatrix) in the Black, Marmara, Aegean and northeastern Mediterranean Seas. Fish. Res. 2006, 79, 139–147. [Google Scholar] [CrossRef]
- Allendorf, F.W. Conservation biology of fishes. Conserv. Biol. 1988, 2, 145–148. [Google Scholar] [CrossRef]
- Wimberger, P.H. Plasticity of fish body shape. The effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biol. J. Linn. Soc. 1992, 45, 197–218. [Google Scholar] [CrossRef]
- Teimori, A.; Schulz-Mirbach, T.; Esmaeli, H.R.; Reichenbacher, B. Geographical differentiation of Aphanius dispar (Teleostei: Cyprinodontae) from Southern Iran. J. Zool. Syst. Res. 2012, 50, 289–304. [Google Scholar] [CrossRef]
- Scheiner, S.M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 1993, 24, 35–68. [Google Scholar] [CrossRef]
- Smith, T.B. Disruptive selection and the genetic basis of bill size polymorphism in the African finch, Pyrenestes. Nature 1993, 363, 618–620. [Google Scholar] [CrossRef]
- Svanbäck, R.; Eklöv, P. Genetic variation and phenotypic plasticity: Causes of morphological and dietary variation in Eurasian perch. Evol. Ecol. Res. 2006, 8, 37–49. [Google Scholar]
- Cadrin, S. Advances in morphometric identification of fishery stock. Rev. Fish. Biol. Fisher. 2000, 10, 91–112. [Google Scholar] [CrossRef]
- Bailey, K.M. Structural dynamics and ecology of flatfish populations. J. Sea Res. 1997, 37, 269–280. [Google Scholar] [CrossRef]
- Aguirre, W.W.; Shervette, V.R.; Navarrete, R.; Calle, P.; Agorastos, S. Morphological and Genetic Divergence of Hoplias microlepis (Characiformes: Erythrinidae) in Rivers and Artificial Impoundments of Western Ecuador. Copeia 2013, 2, 312–323. [Google Scholar] [CrossRef]
- Patiyal, R.S.; Mir, J.I.; Sharma, R.C.; Chandra, S.; Mahanta, P.C. Pattern of meristic and morphometric variations between wild and captive stocks of endangered Tor putitora (Hamilton 1822) using multivariate statistical analysis methods. Proc. Natl Acad. Sci. India Sect. B Biol. Sci. 2014, 84, 123–129. [Google Scholar] [CrossRef]
- Barnhill, L.B.; Lopez, E.; Les, A. Estudio sobre la biologia de peces del rio Vinces. Instituto Nacional de Pesca. Bol. Cient. Tec. 1997, 5, 76. [Google Scholar]
- Laaz, E.; Salazar, V.; Torres, A. Guía Ilustrada Para la Identificación de Peces Continentales de la Cuenca del Guayas; Facultad de Ciencias Naturales-Universidad de Guayaquil: Guayaquil, Ecuador, 2009; p. 40. [Google Scholar]
- Revelo, W.; Laaz, E. Catálogo de peces de aguas continentales de la provincia de los Ríos-Ecuador. Bol. Espec. 2012, 3, 1–56. [Google Scholar]
- Froese, R.; Pauly, D. FishBase. Available online: www.fishbase.org (accessed on 25 November 2020).
- Bussing, W.A. Peces de las Aguas Continentales de Costa Rica, 2nd ed.; Editorial de la Universidad de Costa Rica: San José, Costa Rica, 1998; p. 468. [Google Scholar]
- Kullander, S.O. Family Cichlidae (Cichlids). In Checklist of the Freshwater Fishes of South and Central America (Cloffsca); Reis, E., Kullander, E.S., Ferraris, C., Jr., Eds.; Edipucrs: Porto Alegre, Brazil, 2003; p. 729. [Google Scholar]
- Turan, C.; Yalçin, S.; Turan, F.; Okur, E.; Akyurt, I. Morphometric comparisons of African catfish, Clarias gariepinus, populations in Turkey. Folia Zool. 2005, 54, 165–172. [Google Scholar]
- Khan, M.A.; Miyan, K.; Khan, S. Morphometric variation of snakehead fish, Channa punctatus, populations from three Indian rivers. J. Appl. Ichthyol. 2013, 29, 637–642. [Google Scholar] [CrossRef]
- Oni, S.K.; Olayemi, J.Y.; Adegboye, J.D. Comparative physiology of three ecologically distinct fresh water fishes, Alestes nurse (Ruppell), Synodontis schall (Bloch), S. Schneider and Tilapia zilli (Gervais). J. Fish Biol. 1983, 22, 105–109. [Google Scholar] [CrossRef]
- Froese, R. Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 2006, 22, 241–253. [Google Scholar] [CrossRef]
- Mcpherson, L.R.; Slotte, A.; Kvamme, C.; Meier, S.; Marshall, C.T. Inconsistencies in measurement of fish condition: A comparison of four indices of fat reserves for Atlantic herring (Clupea harengus). ICES J. Mar. Sci. 2011, 68, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Rennie, M.D.; Verdon, R. Evaluation of condition indices for the lake whitefish, Coregonus clupeaformis. N. Am. J. Fish. Manag. 2008, 28, 1270–1293. [Google Scholar] [CrossRef]
- Blackwell, B.; Seamans, T.; Helon, D.; Dolbeer, R. Early loss of Herring Gull glutches after egg-oiling. Wildl. Soc. Bull. 2000, 28, 70–75. [Google Scholar]
- Trudel, M.; Tucker, S.; Morris, J.; Higgs, D.; Welch, D. Indicators of energetic status in juvenile coho and chinook salmon. N. Am. J. Fish. Manag. 2005, 25, 374–390. [Google Scholar] [CrossRef]
Character | Description | Acronyms |
---|---|---|
Weight | Total weight including gut and gonads | BW |
Total length | Tip of the upper jaw to the bottom of caudal end of the caudal fin | TL |
Total length 1 | Tip of the upper jaw to the top of caudal superior end of the caudal fin | TL 1 |
Total length 2 | Tip of the upper jaw to the top of caudal inferior end of the caudal fin | TL 2 |
Standard length | Tip of the upper jaw to the tail base | SL |
Head length. | From the front of the upper lip to the posterior end of the opercula membrane | HL |
Eye diameter | The greatest bony diameter of the orbit | ED |
Pre-orbital length | Front of the upper lip to cranial eye edge | Pre-OL |
Pre-dorsal fin length | Front of the upper lip to the origin of the dorsal fin | Pre-DL |
Pre-pectoral fin length | Front of the upper lip to the origin of the pectoral fin | Pre-PcL |
Pre-pelvic fin length | Front of the upper lip to the origin of the pelvic fin | Pre-PvL |
Pre-anal fin length | Front of the upper lip to the origin of the anal fin | Pre-AL |
Dorsal fin length | From base of first dorsal spine to base of last dorsal ray | DFL |
Dorsal fin ray length | From base to tip of the fifth dorsal ray | DFRL |
Pectoral fin length | From base to tip of the pectoral fin | PcFL |
Pelvic fin length | From base to tip of the pelvic fin | PvFL |
Anal fin length | From base of first anal spine to base of last anal ray | AFL |
Anal fin ray length | From base to tip of the last anal ray | AFRL |
Upper jaw length | Straight line measurement between the snout tip and posterior edge of maxilla | UJL |
Body perimeter 1 | Body perimeter at the level of the first ray of the dorsal fin | P1 |
Body perimeter 2 | Body perimeter at the level of the first radius of the anal fin | P2 |
Body perimeter 3 | Body perimeter at the level of the last ray of the dorsal fin | P3 |
Body width 1 | Straight line measurement from side to side at the level of the base of first dorsal spine | LC1 |
Body width 2 | Straight line measurement from side to side at the level of the base of first anal spine | LC2 |
Body width 3 | Straight line measurement from side to side at the level of the base of last dorsal ray | LC3 |
Body depth 1 | Body depth at the level of the first ray of the dorsal fin | AC1 |
Body depth 2 | Body depth at the level of the first ray of the anal fin | AC2 |
Body depth 3 | Body depth at the level of the first radius of the caudal fin | AC3 |
Character 1 | Cichlasoma festae | Andinoacara rivulatus | Dormitator latifrons | Brycon dentex | Hoplias microlepis | Leporinus ecuadorensis | ANOVA 2 |
---|---|---|---|---|---|---|---|
BW | 89.20 b ± 3.01 (23.89) | 154.71 ac ± 2.58 (16.98) | 173.13 a ± 5.37 (31.00) | 150.91 a ± 5.47 (53.02) | 442.66 d ± 29.52 (68.97) | 106.10 bc ± 3.91 (38.30) | 98.48 *** |
K | 3.17 b ± 0.11 (23.72) | 5.40 d ± 0.13 (24.15) | 2.41 b ± 0.06 (23.23) | 4.27 c ± 0.16 (56.26) | 1.47 a ± 0.10 (69.70) | 1.66 a ± 0.07 (41.29) | 115.55 *** |
TL | 18.30 a ± 0.27 (10.62) | 18.37 a ± 0.15 (8.49) | 24.65 c ± 0.32 (12.93) | 21.39 b ± 0.23 (15.68) | 37.82 d ± 0.69 (18.97) | 20.82 b ± 0.29 (14.35) | 368.014 *** |
SL | 14.37 ab ± 0.36 (17.74) | 14.34 a ± 0.13 (9.32) | 19.23 c ± 0.25 (13.24) | 15.58 b ± 0.16 (14.82) | 32.14 d ± 0.60 (19.28) | 18.88 c ± 0.27 (15.00) | 456.49 *** |
HL | 5.33 ab ± 0.08 (10.72) | 4.88 a ± 0.04 (9.16) | 6.47 d ± 0.10 (15.88) | 5.62 b ± 0.06 (16.34) | 8.31 e ± 0.15 (18.77) | 3.88 c ± 0.06 (17.15) | 264.61 *** |
ED | 1.21 bc ± 0.02 (10.69) | 1.09 b ± 0.02 (15.43) | 0.88 a ± 0.02 (18.86) | 1.29 cd ± 0.02 (22.21) | 1.34 d ± 0.03 (23.71) | 0.79 a ± 0.02 (23.72) | 104.12 *** |
Pre-OL | 2.20 c ± 0.08 (24.47) | 2.12 c ± 0.03 (15.42) | 1.21 a ± 0.02 (20.23) | 1.18 a ± 0.02 (19.84) | 1.34 b ± 0.04 (31.79) | 1.41 b ± 0.02 (17.99) | 193.28 *** |
Pre-DL | 5.37 b ± 0.11 (14.66) | 6.31 c ± 0.05 (8.80) | 7.68 a ± 0.11 (13.88) | 12.76 d ± 0.13 (15.40) | 16.16 e ± 0.30 (19.25) | 8.32 a ± 0.13 (16.15) | 546.75 *** |
Pre-PcL | 5.60 a ± 0.07 (9.25) | 5.65 a ± 0.04 (8.01) | 6.45 c ± 0.09 (13.77) | 5.85 a ± 0.07 (18.18) | 8.33 d ± 0.17 (20.79) | 4.38 b ± 0.06 (15.26) | 170.76 *** |
Pre-PvL | 5.82 a ± 0.09 (10.79) | 6.26 a ± 0.06 (9.91) | 3.36 c ± 0.12 (35.12) | 11.18 b ± 0.12 (15.16) | 11.08 b ± 0.22 (20.63) | 8.56 d ± 0.19 (22.84) | 441.05 *** |
Pre-AL | 9.13 a ± 0.16 (12.51) | 10.39 a ± 0.11 (10.83) | 12.95 b ± 0.19 (14.67) | 15.35 c ± 0.15 (14.38) | 25.29 d ± 0.55 (22.44) | 13.12 b ± 0.21 (16.87) | 393.80 *** |
DFL | 5.94 d ± 0.11 (13.39) | 8.79 e ± 0.08 (9.60) | 3.08 b ± 0.05 (15.26) | 2.52 a ± 0.04 (22.26) | 3.58 c ± 0.08 (22.28) | 2.47 a ± 0.04 (16.17) | 1,656.95 *** |
DFRL | 5.87 e ± 0.07 (8.94) | 1.02 b ± 0.04 (40.37) | 2.22 c ± 0.04 (18.50) | 3.49 a ± 0.05 (20.13) | 3.99 d ± 0.08 (20.37) | 3.59 a ± 0.05 (14.59) | 564.22 *** |
PcFL | 8.06 e ± 0.15 (13.42) | 4.63 b ± 0.06 (12.95) | 4.51 ab ± 0.07 (15.45) | 4.34 a ± 0.05 (17.89) | 2.80d±0.08 (28.85) | 2.25 c ± 0.06 (25.58) | 501.60 *** |
PvFL | 6.41 e ± 0.07 (8.26) | 4.63 d ± 0.06 (13.10) | 4.01 c ± 0.07 (17.86) | 2.93 a ± 0.04 (17.91) | 3.63 b ± 0.09 (25.49) | 2.78 a ± 0.04 (15.78) | 340.61 *** |
AFL | 4.59 c ± 0.18 (27.08) | 3.08 a ± 0.03 (10.38) | 2.75 a ± 0.05 (19.09) | 5.64 d ± 0.09 (23.74) | 2.99 a ± 0.08 (28.73) | 1.82 b ± 0.04 (22.07) | 323.08 *** |
AFRL | 3.30 b ± 0.07 (14.49) | 3.46 b ± 0.06 (18.78) | 2.03 c ± 0.07 (35.80) | 2.51 a ± 0.04 (24.33) | 2.95d±0.07 (24.30) | 2.37 a ± 0.03 (14.09) | 79.39 *** |
UJL | 0.94 a ± 0.02 (16.63) | 0.64 b ± 0.01 (20.53) | 1.12 d ± 0.02 (20.18) | 1.01 a ± 0.02 (27.61) | 2.18 e ± 0.05 (24.51) | 0.80 c ± 0.02 (22.73) | 371.62 *** |
AC1 | 5.47 e ± 0.07 (9.39) | 7.78 a ± 0.16 (20.62) | 6.45 d ± 0.12 (17.92) | 5.89 a ± 0.05 (12.00) | 3.56 b ± 0.05 (14.14) | 4.26 c ± 0.10 (24.78) | 250.56 *** |
AC2 | 4.94 ab ± 0.07 (9.68) | 7.07 d ± 0.16 (23.55) | 5.35 bc ± 0.08 (14.81) | 5.44 c ± 0.05 (12.72) | 4.77 a ± 0.06 (12.22) | 4.91 a ± 0.11 (22.57) | 79.12 *** |
AC3 | 1.94 a ± 0.04 (15.55) | 2.62 bc ± 0.05 (18.07) | 2.93 c ± 0.04 (14.14) | 2.36 ab ± 0.10 (64.39) | 5.44 d ± 0.06 (11.69) | 2.38 ab ± 0.05 (20.71) | 1,87.981 *** |
P1 | 13.28 a ± 0.16 (8.77) | 16.28 d ± 0.10 (6.45) | 14.85 c ± 0.20 (13.63) | 13.61 a ± 0.18 (19.56) | 13.66 a ± 0.19 (14.23) | 10.62 b ± 0.13 (12.23) | 93.92 *** |
P2 | 11.38 a ± 0.11 (6.97) | 14.99 c ± 0.11 (7.48) | 12.23 ab ± 0.18 (14.58) | 14.02 bc ± 0.62 (64.89) | 14.19bc ± 0.24 (17.69) | 11.99 a ± 0.13 (11.32) | 6.90 *** |
P3 | 4.71 b ± 0.08 (11.69) | 6.02 a ± 0.05 (8.05) | 6.79 c ± 0.08 (11.97) | 5.84 a ± 0.06 (15.62) | 12.36 e ± 0.13 (10.91) | 8.93 d ± 0.12 (14.10) | 207.44 *** |
LC1 | 2.31 a ± 0.05 (13.95) | 2.61 b ± 0.02 (9.09) | 3.29 d ± 0.06 (17.75) | 2.62 b ± 0.03 (17.29) | 3.11 c ± 0.04 (12.55) | 2.12 a ± 0.03 (14.27) | 117.53 *** |
LC2 | 1.55 a ± 0.06 (28.76) | 1.83 b ± 0.02 (12.25) | 2.89 e ± 0.04 (13.95) | 2.71 d ± 0.04 (21.28) | 3.13 f ± 0.04 (13.52) | 2.31 c ± 0.03 (14.30) | 165.87 *** |
LC3 | 4.71 a ± 0.08 (11.69) | 0.91 a ± 0.02 (18.99) | 2.10 d ± 0.03 (16.16) | 2.46 b ± 0.04 (21.92) | 2.54 b ± 0.04 (17.36) | 1.33 c ± 0.02 (15.10) | 262.33 *** |
Character 1 | Wilks’-Lambda | Partial-Lambda | F-Remove | p-Level 2 | Toler | 1-Toler |
---|---|---|---|---|---|---|
Pre-DL | 0.00 | 0.34 | 255.47 | *** | 0.62 | 0.38 |
HL | 0.00 | 0.82 | 29.05 | *** | 0.54 | 0.46 |
Pre-OL | 0.00 | 0.67 | 63.81 | *** | 0.66 | 0.34 |
PcFL | 0.00 | 0.75 | 43.36 | *** | 0.47 | 0.53 |
AC1 | 0.00 | 0.73 | 49.13 | *** | 0.17 | 0.83 |
Pre-PvL | 0.00 | 0.80 | 32.27 | *** | 0.70 | 0.30 |
PvFL | 0.00 | 0.75 | 44.74 | *** | 0.53 | 0.47 |
AFRL | 0.00 | 0.82 | 28.76 | *** | 0.66 | 0.34 |
AC2 | 0.00 | 0.84 | 25.11 | *** | 0.23 | 0.77 |
ED | 0.00 | 0.87 | 19.20 | *** | 0.78 | 0.22 |
P1 | 0.00 | 0.87 | 19.06 | *** | 0.64 | 0.36 |
AFL | 0.00 | 0.90 | 14.56 | *** | 0.71 | 0.29 |
UJL | 0.00 | 0.87 | 19.91 | *** | 0.84 | 0.16 |
LC2 | 0.00 | 0.92 | 12.09 | *** | 0.36 | 0.64 |
Pre-AL | 0.00 | 0.92 | 12.06 | *** | 0.66 | 0.34 |
P3 | 0.00 | 0.90 | 14.80 | *** | 0.52 | 0.48 |
LC1 | 0.00 | 0.92 | 11.64 | *** | 0.36 | 0.64 |
TL | 0.00 | 0.92 | 11.22 | *** | 0.75 | 0.25 |
Pre-PcL | 0.00 | 0.92 | 11.80 | *** | 0.62 | 0.38 |
AC3 | 0.00 | 0.95 | 7.33 | *** | 0.78 | 0.22 |
P2 | 0.00 | 0.99 | 1.79 | Ns | 0.73 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Martinez, A.; De-Pablos-Heredero, C.; González, M.; Rodriguez, J.; Barba, C.; García, A. Usefulness of Discriminant Analysis in the Morphometric Differentiation of Six Native Freshwater Species from Ecuador. Animals 2021, 11, 111. https://doi.org/10.3390/ani11010111
Gonzalez-Martinez A, De-Pablos-Heredero C, González M, Rodriguez J, Barba C, García A. Usefulness of Discriminant Analysis in the Morphometric Differentiation of Six Native Freshwater Species from Ecuador. Animals. 2021; 11(1):111. https://doi.org/10.3390/ani11010111
Chicago/Turabian StyleGonzalez-Martinez, Ana, Carmen De-Pablos-Heredero, Martin González, Jorge Rodriguez, Cecilio Barba, and Antón García. 2021. "Usefulness of Discriminant Analysis in the Morphometric Differentiation of Six Native Freshwater Species from Ecuador" Animals 11, no. 1: 111. https://doi.org/10.3390/ani11010111
APA StyleGonzalez-Martinez, A., De-Pablos-Heredero, C., González, M., Rodriguez, J., Barba, C., & García, A. (2021). Usefulness of Discriminant Analysis in the Morphometric Differentiation of Six Native Freshwater Species from Ecuador. Animals, 11(1), 111. https://doi.org/10.3390/ani11010111