Mucosal Hallmarks in the Alimentary Canal of Northern Pike Esox lucius (Linnaeus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Esophagus
4.2. Stomach
4.3. Intestine
4.4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilson, J.M.; Castro, L.F.C. Morphological diversity of the gastrointestinal tract in fishes. In The Multifunctional Gut of Fish; Grosell, M., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: New York, NY, USA, 2010; Volume 30, pp. 1–55. [Google Scholar] [CrossRef]
- Bucke, D. The anatomy and histology of the alimentary tract of the carnivorous fish the pike Esox lucius L. J. Fish Biol. 1971, 3, 421–431. [Google Scholar] [CrossRef]
- Petrinec, Z.; Nejedli, S.; Kužir, S.; Opačak, A. Mucosubstances of the digestive tract mucosa in northern pike (Esox lucius L.) and european catfish (Silurus glanis L.). Vet. Arhiv. 2005, 75, 317–327. [Google Scholar]
- Sadeghinezhad, J.; Hooshmand Abbasi, R.; Dehghani Tafti, E.; Boluki, Z. Anatomical, histological and histomorphometric study of the intestine of the northern pike (Esox lucius). Iran. J. Vet. Med. 2015, 9, 207–211. [Google Scholar]
- Díaz, A.O.; García, A.M.; Goldemberg, A.L. Glycoconjugates in the mucosa of the digestive tract of Cynoscion guatucupa: A histochemical study. Acta Histochem. 2008, 110, 76–85. [Google Scholar] [CrossRef]
- Cao, X.J.; Wang, W.M. Histology and mucin histochemistry of the digestive tract of yellow catfish, Pelteobagrus fulvidraco. Anat. Histol. Embryol. 2009, 38, 254–261. [Google Scholar] [CrossRef]
- Leknes, I.L. Histochemical studies on mucin-rich cells in the digestive tract of the Buenos Aires tetra (Hyphessobrycon anisitsi). Acta Histochem. 2011, 113, 353–357. [Google Scholar] [CrossRef]
- Pereira, R.T.; Nebo, C.; de Paula Naves, L.; Fortes-Silva, R.; Cardoso de Oliveira, I.R.; Rosa Paulino, R.; Delarete Drummond, C.; Vieira Rosa, P. Distribution of goblet and endocrine cells in the intestine: A comparative study in Amazonian freshwater Tambaqui and hybrid catfish. J. Morphol. 2020, 281, 55–67. [Google Scholar] [CrossRef]
- Fiertak, A.; Kilarski, W.M. Glycoconjugates of the intestinal goblet cells of four cyprinids. Cell. Mol. Life Sci. 2002, 59, 1724–1733. [Google Scholar] [CrossRef]
- Domeneghini, C.; Arrighi, S.; Radaelli, G.; Bosi, G.; Veggetti, A. Histochemical analysis of glycoconjugate secretion in the alimentary canal of Anguilla anguilla L. Acta Histochem. 2005, 106, 477–487. [Google Scholar] [CrossRef]
- Marchetti, L.; Capacchietti, M.; Sabbieti, M.G.; Accili, D.; Materazzi, G.; Menghi, G. Histology and carbohydrate histochemistry of the alimentary canal in the rainbow trout Oncorhynchus mykiss. J. Fish Biol. 2006, 68, 1808–1821. [Google Scholar] [CrossRef]
- Bosi, G.; DePasquale, J.A.; Rossetti, E.; Sayyaf Dezfuli, B. Differential mucins secretion by intestinal mucous cells of Chelon ramada in response to an enteric helminth Neoechinorhynchus agilis (Acanthocephala). Acta Histochem. 2020, 122, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Danguy, A.; Afik, F.; Pajak, B.; Gabius, H.J. Contribution of carbohydrate histochemistry to glycobiology. Histol. Histopathol. 1994, 9, 155–171. [Google Scholar] [PubMed]
- Bosi, G.; DePasquale, J.A.; Manera, M.; Castaldelli, G.; Giari, L.; Sayyaf Dezfuli, B. Histochemical and immunohistochemical characterization of rodlet cells in the intestine of two teleosts, Anguilla anguilla and Cyprinus carpio. J. Fish Dis. 2018, 41, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, S. Comparative anatomy of the autonomic nervous system. Auton. Neurosci. Basic Clin. 2011, 165, 3–9. [Google Scholar] [CrossRef]
- Takei, Y.; Loretz, C.A. The gastrointestinal tract as an endocrine/neuroendocrine/paracrine organ: Organization, chemical messengers and physiological targets. In The Multifunctional Gut of Fish; Grosell, M., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: New York, NY, USA, 2010; Volume 30, pp. 261–317. [Google Scholar] [CrossRef]
- Rønnestad, I.; Gomes, A.S.; Murashita, K.; Angotzi, R.; Jönsson, E.; Volkoff, H. Appetite-controlling endocrine systems in Teleosts. Front. Endocrinol. 2017, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Bosi, G.; Domeneghini, C.; Arrighi, S.; Giari, L.; Simoni, E.; Sayyaf Dezfuli, B. Response of the gut neuroendocrine system of Leuciscu cephalus (L.) to the presence of Pomphorhynchus laevis Müller, 1776 (Acanthocephala). Histol. Histopathol. 2005, 20, 509–518. [Google Scholar]
- Bosi, G.; Shinn, A.P.; Giari, L.; Sayyaf Dezfuli, B. Enteric neuromodulators and mucus discharge in a fish infected with the intestinal helminth Pomphorhynchus laevis. Parasit. Vectors 2015, 8, 359. [Google Scholar] [CrossRef] [Green Version]
- Sayyaf Dezfuli, B.; Pironi, F.; Giari, L.; Domeneghini, C.; Bosi, G. Effect of Pomphorhynchus laevis (Acanthocephala) on putative neuromodulators in the intestine of naturally infected Salmo trutta. Dis. Aq. Org. 2002, 51, 27–35. [Google Scholar] [CrossRef] [Green Version]
- García-Meilán, I.; Ordóñez-Grande, B.; Machahua, C.; Buenestado, S.; Fontanillas, R.; Gallardo, M.A. Effects of dietary protein-to-lipid ratio on digestive and absorptive processes in sea bass fingerlings. Aquaculture 2016, 463, 163–173. [Google Scholar] [CrossRef]
- Xu, C.; Li, X.F.; Tian, H.Y.; Jiang, G.Z.; Liu, W.B. Feeding rates affect growth, intestinal digestive and absorptive capabilities and endocrine functions of juvenile blunt snout bream Megalobrama amblycephala. Fish Physiol. Biochem. 2016, 42, 689–700. [Google Scholar] [CrossRef]
- Roque Hernández, D.; Barrios, C.E.; Santinón, J.J.; Sánchez, S.; Baldisserotto, B. Effect of fasting and feeding on growth, intestinal morphology and enteroendocrine cell density in Rhamdia quelen juveniles. Aquac. Res. 2018, 49, 1512–1520. [Google Scholar] [CrossRef]
- Parillo, F.; Gargiulo, A.M.; Fagioli, O. Complex carbohydrates occurring in the digestive apparatus of Umbrina cirrosa (L.) fry. Vet. Res. Commun. 2004, 28, 267–268. [Google Scholar] [CrossRef] [PubMed]
- Carrassón, M.; Grau, A.; Dopazo, L.R.; Crespo, S. A histological, histochemical and ultrastructural study of the digestive tract of Dentex dentex (Pisces, Sparidae). Histol. Histopathol. 2006, 21, 579–593. [Google Scholar] [PubMed]
- Ogasawara, Y.; Namai, T.; Yoshino, F.; Lee, M.; Ishii, K. Sialic acid is an essential moiety of mucin as a hydroxyl radical scavenger. FEBS Lett. 2007, 581, 2473–2477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faccioli, C.K.; Alari Chedid, R.; do Amaral, A.C.; Bastos Franceschini Vicentini, I.; Vicentini, C.A. Morphology and histochemistry of the digestive tract in carnivorous freshwater Hemisorubim platyrhynchos (Siluriformes: Pimelodidae). Micron 2014, 64, 10–19. [Google Scholar] [CrossRef]
- Díaz, A.O.; García, A.M.; Devincenti, C.V.; Goldemberg, A.L. Morphological and histochemical characterization of the pharyngeal cavity and oesophagus of mucosa of the digestive tract in Engraulis anchoita (Hubbs and Martini, 1935). Anat. Histol. Embryol. 2003, 32, 341–346. [Google Scholar] [CrossRef]
- Díaz, A.O.; Escalante, A.H.; García, A.M.; Goldemberg, A.L. Histology and histochemistry of the pharyngeal cavity and oesophagus of the silverside Odontesthes bonariensis (Cuvier and Valenciennes). Anat. Histol. Embryol. 2006, 35, 42–46. [Google Scholar] [CrossRef]
- Cardoso, N.D.N.; Firmiano, E.M.D.S.; Gomes, I.D.; Nascimento, A.A.D.; Sales, A.; Araújo, F.G. Histochemical and immunohistochemical study on endocrine cells (5-HT, GAS and SST) of the gastrointestinal tract of a teleost, the characin Astyanax bimaculatus. Acta Histochem. 2015, 117, 595–604. [Google Scholar] [CrossRef]
- Pedini, V.; Dall’Aglio, C.; Parillo, F.; Scocco, P. A lectin histochemical study of the esophagus of shi drum. J. Fish Biol. 2004, 64, 625–631. [Google Scholar] [CrossRef]
- Murray, H.M.; Wright, G.M.; Goff, G.P. A study of the posterior esophagus in winter flounder, Pleuronectes americanus and yellowtail flounder, Pleuronectes ferruginea: Morphological evidence for pregastric digestion? Can. J. Zool. 1994, 72, 1191–1198. [Google Scholar] [CrossRef]
- Domeneghini, C.; Pannelli Straini, R.; Veggetti, A. Gut glycoconjugates in Sparus aurata L. (Pisces, Teleostei). A comparative histochemical study in larval and adult ages. Histol. Histopathol. 1998, 13, 359–372. [Google Scholar] [PubMed]
- Kumari, U.; Mittal, S.; Mittal, A.K. Histological and histochemical investigations of the pharyngeal jaw apparatus of a carp Cirrhinus mrigala. Acta Histochem. 2014, 116, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, I.R. The distribution and function of mucous cells and their secretions in the alimentary tract of Arrhamphus sclerolepis krefftii. J. Fish Biol. 1997, 50, 809–820. [Google Scholar] [CrossRef]
- Yashpal, M.; Kumari, U.; Mittal, S.; Mittal, A.K. Histochemical characterization of glycoproteins in the buccal epithelium of a catfish Rita rita. Acta Histochem. 2007, 109, 285–303. [Google Scholar] [CrossRef] [PubMed]
- Spicer, S.S.; Schulte, B.A. Diversity of cell glycoconjugates shown histochemically: A perspective. J. Histochem. Cytochem. 1992, 40, 1–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arellano, J.M.; Dinis, T.; Sarasquete, C. Histomorphological characteristics of the intestine of the Senegal sole, Solea senegalensis. Eur. J. Histochem. 1999, 43, 121–133. [Google Scholar] [PubMed]
- Madrid, J.F.; Ballesta, J.; Castells, M.T.; Marin, J.A.; Pastor, L.M. Characterization of glycoconjugates in the intestinal mucosa of vertebrates by lectin histochemistry. Acta Histochem. Cytochem. 1989, 22, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ferraris, R.P.; Tan, J.D.; De La Cruz, M.C. Development of the digestive tract of milkfish Chanos chanos (Forskal): Histology and histochemistry. Aquaculture 1987, 61, 241–257. [Google Scholar] [CrossRef]
- Purushothaman, K.; Lau, D.; Saju, J.M.; Musthaq, S.; Lunny, D.P.; Vij, S.; Orbn, L. Morpho-histological characterization of the alimentary canal of an important food fish, Asian seabass (Lates calcarifer). PeerJ 2016. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.S. Digestive functions in teleost fishes. In Fish Nutr.; Halver, J.E., Ed.; Academic Press: New York, NY, USA, 1989; pp. 331–421. [Google Scholar]
- Pedini, V.; Dall’Aglio, C.; Parillo, F.; Scocco, P. Glycoconjugate distribution in gastric fundic mucosa of Umbrina cirrosa L. revealed by lectin histochemistry. J. Fish Biol. 2005, 66, 222–229. [Google Scholar] [CrossRef]
- Wang, Y.X.; Sun, J.F.; Lv, A.J.; Zhang, S.L.; Sung, Y.Y.; Shi, H.Y.; Hu, X.C.; Chen, S.J.; Xing, K.Z. Histochemical distribution of four types of enzymes and mucous cells in the gastrointestinal tract of reared half-smooth tongue sole Cynoglossus semilaevis. J. Fish Biol. 2018, 92, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Bohórquez, D.V.; Liddle, R.A. Gastrointestinal hormones and neurotransmitters. In Sleisenger and Fortran’s Gastrointestinal and Liver Disease, 10th ed.; Feldman, M., Friedman, L.S., Brandt, L.J., Eds.; Saunders/Elsevier: Philadelphia, PA, USA, 2015; pp. 36–54. [Google Scholar]
- Sayyaf Dezfuli, B.; DePasquale, J.A.; Castaldelli, G.; Giari, L.; Bosi, G. A fish model for the study of the relationship between neuroendocrine and immune cells in the intestinal epithelium: Silurus glanis infected with a tapeworm. Fish. Shellfish Immunol. 2017, 64, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Schubert, M.L. Gastric secretion. Curr. Opin. Gastroenterol. 2013, 29, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.T.; Costa, L.S.; Oliveira, I.R.C.; Araújo, J.C.; Aerts, M.; Vigliano, F.A.; Rosa, P.V. Relative distribution of gastrin, CCK-8, NPY and CGRP-immunoreactive cells in the digestive tract of dorado (Salminus brasiliensis). Tissue Cell 2015, 47, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Q.S.; Fang, Z.P.; Huang, F.J. Identification, localization and morphology of APUD cells in gastroenteropancreatic system of stomach-containing teleosts. World J. Gastroenterol. 2000, 6, 842–847. [Google Scholar] [CrossRef]
- Larsson, L.-I. Developmental biology of gastrin and somatostatin cells in the antropyloric mucosa of the stomach. Microsc. Res. Tech. 2000, 48, 272–281. [Google Scholar] [CrossRef]
- Lin, X.; Wang, P.; Ou, Y.; Li, J.; Wen, J. An immunohistochemical study on endocrine cells in the neuroendocrine system of the digestive tract of milkfish Chanos chanos (Forsskal, 1775). Aquac. Res. 2017, 48, 1439–1449. [Google Scholar] [CrossRef]
- Groff, K.E.; Youson, J.H. An immunohistochemical study of the endocrine cells within the pancreas, intestine and stomach of the gar (Lepisosteus osseus L.). Gen. Comp. Endocrinol. 1997, 106, 1–16. [Google Scholar] [CrossRef]
- Vieira-Coelho, M.A.; Soares-da-Silva, P. Dopamine formation, from its immediate precursor 3,4-dihydroxyphenylalanine, along the rat digestive tract. Fundam. Clin. Pharmacol. 1993, 7, 235–243. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Aneman, Å.; Friberg, P.; Hooper, D.; Fåndriks, L.; Lonroth, H.; Hunyady, B.; Mezey, E. Substantial production of dopamine in the human gastrointestinal tract. J. Clin. Endocr. Metab. 1997, 82, 3864–3871. [Google Scholar] [CrossRef]
- Schultz, E. Catechol-O-methyltransferase and aromatic L-amino acid decarboxylase activities in human gastrointestinal tissues. Life Sci. 1991, 49, 721–725. [Google Scholar] [CrossRef]
- Eldrup, E.; Richter, E.A. DOPA, dopamine, and DOPAC concentrations in the rat gastrointestinal tract decrease during fasting. Am. J. Physiol.-Endocrinol. Metab. 2000, 279, E815–E822. [Google Scholar] [CrossRef] [PubMed]
- Mandic, S.; Volkoff, H. The effects of fasting and appetite regulators on catecholamine and serotonin synthesis pathways in goldfish (Carassius auratus). Comp. Biochem. Physiol. A.-Mol. Integr. Physiol. 2018, 223, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Day, R.; Salzet, M. The neuroendocrine phenotype, cellular plasticity, and the search for genetic switches: Redefining the diffuse neuroendocrine system. Neuro Endocrinol. Lett. 2002, 23, 447–451. [Google Scholar] [PubMed]
- Beorlegui, C.; Martínez, A.; Sesma, P. Endocrine cells and nerves in the pyloric ceca and the intestine of Oncorhynchus mykiss (Teleostei): An immunocytochemical study. Gen. Comp. Endocrinol. 1992, 86, 483–495. [Google Scholar] [CrossRef]
- Elbal, M.T.; Agulleiro, B. An immunocytochemical and ultrastructural study of endocrine cells in the gut of a teleost fish, Sparus auratus. Gen. Comp. Endocrinol. 1986, 64, 339–354. [Google Scholar] [CrossRef]
- Pederzoli, A.; Bertacchi, I.; Gambarelli, A.; Mola, L. Immunolocalization of vasoactive intestinal peptide and substance P in the developing gut of Dicentrarchis labrax (L.). Eur. J. Histochem. 2004, 48, 179–184. [Google Scholar] [CrossRef]
- Zizza, S.; Desantis, S. Morphology and lectin-binding sites of pyloric caeca epithelium in normal and GnRH-treated Atlantic bluefin tuna (Thunnus thynnus, Linnaeus 1758). Microsc. Res. Tech. 2011, 74, 863–873. [Google Scholar] [CrossRef]
- Shi, G.; Wang, J.X.; Liu, X.Z.; Wang, R.X. Study on histology and histochemistry of digestive tract in Sebastiscus marmoratus. Chin. J. Fish. 2007, 31, 293–302. [Google Scholar]
- Scocco, P.; Menghi, G.; Ceccarelli, P. Histochemical differentiation of glycoconjugates occurring in the tilapine intestine. J. Fish Biol. 1997, 51, 848–857. [Google Scholar] [CrossRef]
- Hernández, D.R.; Vigliano, F.A.; Sánchez, S.; Bermúdez, R.; Domitrovic, H.A.; Quiroga, M.I. Neuroendocrine system of the digestive tract in Rhamdia quelen juvenile: An immunohistochemical study. Tissue. Cell 2012, 44, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Nardocci, G.; Navarro, C.; Cortés, P.P.; Imarai, M.; Montoya, M.; Valenzuela, B.; Jara, P.; Acuña-Castillo, C.; Fernández, R. Neuroendocrine mechanisms for immune system regulation during stress in fish. Fish. Shellfish Immunol. 2014, 40, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Zoghbi, S.; Trompette, A.; Claustre, J.; El Homsi, M.; Garzón, J.; Jourdan, G.; Scoazec, J.-Y.; Plaisancié, P. Beta-Casomorphin-7 regulates the secretion and expression of gastrointestinal mucins through a mu-opioid pathway. Am. J. Physiol. 2006, 290, G1105–G1113. [Google Scholar]
- Anderson, T.A. Histological and cytological structure of the gastrointestinal tract of the luderick, Girella tricuspidata (Pisces, Kyphosidae), in relation to diet. J. Morphol. 1986, 190, 109–119. [Google Scholar] [CrossRef] [PubMed]
Acronym | Vector Laboratories Code | Lectin | Species Source: Latin Name (Common Name) | Major Carbohydrate Specificity |
---|---|---|---|---|
ConA | B-1005 | Concanavalin A | Canavalia ensiformis (Jack bean) | α-Mannose, α-Glucose |
DBA | B-1035 | Dolichos biflorus agglutinin | Dolichos biflorus (horse gram) | α-GalNAc |
PNA | B-1075 | Peanut agglutinin | Arachis hypogaea (peanut) | Gal β 1-3GalNAc |
DSL | B-1185 | Datura stramonius lectin | Datura stramonium (thorn apple) | (GlcNAc)n, Gal β 1-4GlcNAc |
WGA | B-1025 | Wheat germ agglutinin | Triticum vulgare (wheat germ) | (GlcNAc)n, Sia |
UEA I | B-1065 | Ulex europaeus agglutinin I | Ulex europaeus (gorse seed) | α-Fucose |
Antibody Anti- | Clonality | Host | Source, Code | Dilution and Incubation at Room Temperature |
---|---|---|---|---|
Somatostatin-14 | Polyclonal | Rabbit | Genosys Biotechnologies Inc., Cambridge, UK, CA-08-325 | 1:200; 24 h |
Monoclonal | Mouse | Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA, sc-74556 | 1:50; 24 h | |
Substance P | Polyclonal | Rabbit | Peninsula Labs. Int., Belmont, CA, USA, T-4170 | 1:200; 24 h |
Monoclonal | Mouse | Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA, sc-14184 | 1:50; 24 h | |
Leu-enkephalin | Polyclonal | Rabbit | Peninsula Labs. Int., Belmont, CA, USA, IHC 8601 | 1:500; 24 h |
Monoclonal | Mouse | Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA, sc-47705 | 1:200; 24 h | |
Tyrosine hydroxylase | Polyclonal | Rabbit | Millipore, Burlington, MA, USA, AB152 | 1:250; 24 h |
Monoclonal | Mouse | Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA, sc-25269 | 1:50; 24 h | |
Anti-biotinylated secondary antibodies | ||||
Anti-rabbit IgG | Goat | Vector Labs, Burlingame, CA, USA, BA-1000 | 1:1000; 2 h | |
Anti-mouse IgG | Goat | Vector Labs, Burlingame, CA, USA, BA-9200 | 1:1000; 2 h |
Morphometric Parameters | Esophagus | Stomach | Intestine | ||
---|---|---|---|---|---|
Proximal | Medial | Distal | |||
MFsH | 198.5 ± 4.2 | 163.2 ± 3.8 | 480.2 ± 15.0 | 536.1 ± 15.0 | 575.7 ± 11.6 |
MFsW | 167.3 ± 4.1 | 83.1 ± 2.7 | 123.3 ± 1.8 | 75.0 ± 1.3 | 123.1 ± 2.9 |
EpH | 66.3 ± 1.5 | 39.3 ± 1.1 | 54.7 ± 1.5 | 33.7 ± 0.8 | 44.1 ± 1.00 |
Mucous Cells | Esophagus | Stomach | Intestine | ||
---|---|---|---|---|---|
Proximal | Medial | Distal | |||
AB | 97.6 ± 2.8 | - | 97.7 ± 2.5 | 49.6 ± 1.0 | 46.3 ± 1.7 |
PAS | 199.2 ± 5.3 | 230.0 ± 7.1 | 6.3 ± 0.4 | 12.4 ± 0.4 | 24.8 ± 1.2 |
AB/PAS | 99.4 ± 2.8 | 504.2 ± 10.0 | 61.9 ± 2.3 | 33.6 ± 0.7 | 40.1 ± 1.1 |
Total | 377.6 ± 6.8 | 731.2 ± 13.6 | 167.7 ± 2.7 | 92.9 ± 1.1 | 109.3 ± 1.7 |
Mucous Cells | Esophagus | Stomach | Intestine | ||
---|---|---|---|---|---|
Proximal | Medial | Distal | |||
AB | 233.8 ± 6.3 | 710.7 ± 10.1 | 140.5 ± 3.7 | 78.4 ± 2.5 | 95.7 ± 1.4 |
HID | 172.3 ± 4.9 | - | 29.8 ± 1.4 | 0.9 ± 0.1 | - |
Total | 405.9 ± 8.2 | 710.7 ± 10.1 | 170.3 ± 4.1 | 79.3 ± 2.5 | 95.7 ± 1.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosi, G.; Lorenzoni, M.; Carosi, A.; Sayyaf Dezfuli, B. Mucosal Hallmarks in the Alimentary Canal of Northern Pike Esox lucius (Linnaeus). Animals 2020, 10, 1479. https://doi.org/10.3390/ani10091479
Bosi G, Lorenzoni M, Carosi A, Sayyaf Dezfuli B. Mucosal Hallmarks in the Alimentary Canal of Northern Pike Esox lucius (Linnaeus). Animals. 2020; 10(9):1479. https://doi.org/10.3390/ani10091479
Chicago/Turabian StyleBosi, Giampaolo, Massimo Lorenzoni, Antonella Carosi, and Bahram Sayyaf Dezfuli. 2020. "Mucosal Hallmarks in the Alimentary Canal of Northern Pike Esox lucius (Linnaeus)" Animals 10, no. 9: 1479. https://doi.org/10.3390/ani10091479
APA StyleBosi, G., Lorenzoni, M., Carosi, A., & Sayyaf Dezfuli, B. (2020). Mucosal Hallmarks in the Alimentary Canal of Northern Pike Esox lucius (Linnaeus). Animals, 10(9), 1479. https://doi.org/10.3390/ani10091479