Effect of Yeast Culture (Saccharomyces cerevisiae) on Broilers: A Preliminary Study on the Effective Components of Yeast Culture
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of YCs
2.2. Metabolomics Analysis of YCs
2.2.1. Metabolites Derivatization
2.2.2. Metabolites Identification by GC-MS
2.2.3. Screening of Differentially Expressed Metabolites
2.2.4. Pathway Characterization
2.3. Preparation of Diets
2.4. Animal Production Trials
2.4.1. Trial 1
2.4.2. Trial 2
2.4.3. Growth Performance
2.4.4. Blood Sample Collection and Analyses
2.5. Statistical Analysis
3. Results
3.1. Analysis of YC Components
3.2. Trial 1
3.2.1. Growth Performance
3.2.2. Biochemical Profiles
3.2.3. Serum Immunoglobulins
3.3. Identification of Effective Metabolites of YC
3.4. Trial 2
3.4.1. Growth Performance
3.4.2. Biochemical Profiles
3.4.3. Serum Immunoglobulins
4. Discussion
4.1. Analysis of YC Components
4.2. Effect of YCs on Growth Performance of Broilers
4.3. Biochemical Profiles
4.4. Serum Immunoglobulins
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hutjens, M.F. Feed additives. Vet. Clin. N. Am. Food Anim. Pract. 1991, 7, 525–540. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.; Yun, S.J.; Kwon, J.W.; Son, S.W. Evaluation of PCDD/Fs characterization in animal feed and feed additives. Chemosphere 2007, 69, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, R.; Peinado, M.J.; Aranda-Olmedo, I.; Abecia, L.; Suarez-Pereira, E.; Ortiz Mellet, C.; Garcia Fernandez, J.M.; Rubio, L.A. Effects of feed additives on ileal mucosa-associated microbiota composition of broiler chickens. J. Anim. Sci. 2015, 93, 3410–3420. [Google Scholar] [CrossRef]
- Santovito, E.; Greco, D.; Logrieco, A.F.; Avantaggiato, G. Eubiotics for food security at farm level: Yeast cell wall products and their antimicrobial potential against pathogenic bacteria. Foodborne Pathog. Dis. 2018, 15, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhang, H.J.; Yu, S.H.; Wu, S.G.; Yoon, I.; Quigley, J.; Gao, Y.P.; Qi, G.H. Effects of yeast culture in broiler diets on performance and immunomodulatory functions. Poult. Sci. 2008, 87, 1377–1384. [Google Scholar] [CrossRef]
- Afsharmanesh, M.; Barani, M.; Silversides, F.G. Evaluation of wet-feeding wheat-based diets containing Saccharomyces cerevisiae to broiler chickens. Br. Poult. Sci. 2010, 51, 776–783. [Google Scholar] [CrossRef]
- Shurson, G.C. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Anim. Feed Sci. Technol. 2018, 235, 60–76. [Google Scholar] [CrossRef]
- Brake, J. Research note: Lack of effect of a live yeast culture on broiler breeder and progeny performance. Poult. Sci. 1991, 70, 1037–1039. [Google Scholar] [CrossRef]
- Callaway, E.S.; Martin, S.A. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. J. Dairy Sci. 1997, 80, 2035–2044. [Google Scholar] [CrossRef]
- Nemeth, M.A. Multi- and Megavariate Data Analysis. Technometrics 2003, 45, 362. [Google Scholar] [CrossRef]
- Lindon, J.C.; Holmes, E.; Nicholson, J.K. So what’s the deal with metabonomics? Anal. Chem. 2003, 75, 384a–391a. [Google Scholar] [CrossRef] [PubMed]
- Kondo, E.; Marriott, P.J.; Parker, R.M.; Kouremenos, K.A.; Morrison, P.; Adams, M. Metabolic profiling of yeast culture using gas chromatography coupled with orthogonal acceleration accurate mass time-of-flight mass spectrometry: Application to biomarker discovery. Anal. Chim. Acta 2014, 807, 135–142. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics 2006, 7, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, Y.; Zhao, W.; Chen, X.; Li, L.; Lee, H.; Zhang, X.; Wang, T. Effects of yeast culture on broiler growth performance, nutrient digestibility and caecal microbiota. S. Afr. J. Anim. Sci. 2019, 49, 99–108. [Google Scholar] [CrossRef]
- Jarosz, L.; Kwiecien, M.; Marek, A.; Gradzki, Z.; Winiarska-Mieczan, A.; Kalinowski, M.; Laskowska, E. Effects of feed supplementation with glycine chelate and iron sulfate on selected parameters of cell-mediated immune response in broiler chickens. Res. Vet. Sci. 2016, 107, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, L.; Marek, A.; Gradzki, Z.; Kwiecien, M.; Zylinska, B.; Kaczmarek, B. Effect of feed supplementation with zinc glycine chelate and zinc sulfate on cytokine and immunoglobulin gene expression profiles in chicken intestinal tissue. Poult. Sci. 2017, 96, 4224–4235. [Google Scholar] [CrossRef]
- Corzo, A.; Kidd, M.T.; Burnham, D.J.; Kerr, B.J. Dietary glycine needs of broiler chicks. Poult. Sci. 2004, 83, 1382–1384. [Google Scholar] [CrossRef]
- Hofmann, P.; Siegert, W.; Kenez, A.; Naranjo, V.D.; Rodehutscord, M. Very Low Crude Protein and Varying Glycine Concentrations in the Diet Affect Growth Performance, Characteristics of Nitrogen Excretion, and the Blood Metabolome of Broiler Chickens. J. Nutr. 2019, 149, 1122–1132. [Google Scholar] [CrossRef]
- Siegert, W.; Rodehutscord, M. The relevance of glycine and serine in poultry nutrition: A review. Br. J. Nutr. 2019, 579–588. [Google Scholar] [CrossRef]
- Miles, R.D.; Campbell, D.R.; Yates, J.A.; White, C.E. Effect of dietary fructose on broiler chick performance. Poult. Sci. 1987, 66, 1197–1201. [Google Scholar] [CrossRef]
- Damron, B.L.; Williams, S.K.; Eldred, A.R. Unhydrolyzed vegetable sucrose polyester in broiler diets. Poult. Sci. 2001, 80, 1506–1508. [Google Scholar] [CrossRef] [PubMed]
- Waldroup, P.W.; Adams, M.H. Utilization of hydrolyzed sucrose polyester (olestra) in broiler diets. Poult. Sci. 1995, 74, 957–967. [Google Scholar] [CrossRef]
- Wei, J.J.; Coon, C.N.; Swanson, B.G. Weight gain and feed efficiency of chicks fed sucrose fatty acid esters. Poult. Sci. 1984, 63, 378–380. [Google Scholar] [CrossRef]
- Douglas, M.W.; Persia, M.; Parsons, C.M. Impact of galactose, lactose, and Grobiotic-B70 on growth performance and energy utilization when fed to broiler chicks. Poult. Sci. 2003, 82, 1596–1601. [Google Scholar] [CrossRef] [PubMed]
- Cowieson, A.J.; Ptak, A.; Mackowiak, P.; Sassek, M.; Pruszynska-Oszmalek, E.; Zyla, K.; Swiatkiewicz, S.; Kaczmarek, S.; Jozefiak, D. The effect of microbial phytase and myo-inositol on performance and blood biochemistry of broiler chickens fed wheat/corn-based diets. Poult. Sci. 2013, 92, 2124–2134. [Google Scholar] [CrossRef] [PubMed]
- Zeller, E.; Schollenberger, M.; Kuhn, I.; Rodehutscord, M. Dietary effects on inositol phosphate breakdown in the crop of broilers. Arch. Anim. Nutr. 2016, 70, 57–71. [Google Scholar] [CrossRef]
- Ospina-Rojas, I.C.; Murakami, A.E.; Moreira, I.; Picoli, K.P.; Rodrigueiro, R.J.; Furlan, A.C. Dietary glycine+serine responses of male broilers given low-protein diets with different concentrations of threonine. Br. Poult. Sci. 2013, 54, 486–493. [Google Scholar] [CrossRef]
- Zhang, A.W.; Lee, B.D.; Lee, S.K.; Lee, K.W.; An, G.H.; Song, K.B.; Lee, C.H. Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks. Poult. Sci. 2005, 84, 1015–1021. [Google Scholar] [CrossRef]
- Mathew, A.G.; Chattin, S.E.; Robbins, C.M.; Golden, D.A. Effects of a direct-fed yeast culture on enteric microbial populations, fermentation acids, and performance of weanling pigs. J. Anim. Sci. 1998, 76, 2138–2145. [Google Scholar] [CrossRef]
- Onifade, A.A. Growth performance, carcass characteristics, organs measurement and haematology of broiler chickens fed a high fibre diet supplemented with antibiotics or dried yeast. Food Nahr. 1997, 41, 370–374. [Google Scholar] [CrossRef]
- Özsoy, B.; Yalçin, S. The effects of dietary supplementation of yeast culture on performance, blood parameters and immune system in broiler turkeys. Ankara Üniv. Vet. Fak. Derg. 2011, 58, 117–122. [Google Scholar]
- Owens, B.; McCracken, K.J. A comparison of the effects of different yeast products and antibiotic on broiler performance. Br. Poult. Sci. 2007, 48, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Chen, S.W.; Wang, H.T. Effect of supplementation of yeast with bacteriocin and Lactobacillus culture on growth performance, cecal fermentation, microbiota composition, and blood characteristics in broiler chickens. Asian Australas. J. Anim. Sci. 2017, 30, 211–220. [Google Scholar] [CrossRef]
- Aristides, L.G.A.; Venancio, E.J.; Alfieri, A.A.; Otonel, R.A.A.; Frank, W.J.; Oba, A. Carcass characteristics and meat quality of broilers fed with different levels of Saccharomyces cerevisiae fermentation product. Poult. Sci. 2018, 97, 3337–3342. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.; Hashim, M.; Haq, A.; Bailey, C.A. Yeast cell wall and live yeast products and their combination in broiler diets formulated with weekly ingredient variations. J. Anim. Physiol. Anim. Nutr. 2015, 99, 932–937. [Google Scholar] [CrossRef] [PubMed]
- Mountzouris, K.C.; Dalaka, E.; Palamidi, I.; Paraskeuas, V.; Demey, V.; Theodoropoulos, G.; Fegeros, K. Evaluation of yeast dietary supplementation in broilers challenged or not with Salmonella on growth performance, cecal microbiota composition and Salmonella in ceca, cloacae and carcass skin. Poult. Sci. 2015, 94, 2445–2455. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, S.; Özsoy, B.; Erol, H. Yeast Culture Supplementation to Laying Hen Diets Containing Soybean Meal or Sunflower Seed Meal and Its Effect on Performance, Egg Quality Traits, and Blood Chemistry. J. Appl. Poult. Res. 2008, 17, 229–236. [Google Scholar] [CrossRef]
- Shareef, A.M.; Al-Dabbagh, A.S.A. Effect of probiotic (Saccharomyces cerevisiae) on performance of broiler chicks. Iraqi. J. Vet. Sci. 2009, 23, 23–29. [Google Scholar]
- Onifade, A.A.; Obiyan, R.I.; Onipede, E.; Adejumo, D.O.; Abu, O.A.; Babatunde, G.M. Assessment of the effects of supplementing rabbit diets with a culture of Saccharomyces cerevisiae using growth performance, blood composition and clinical enzyme activities. Anim. Feed Sci. Technol. 1999, 77, 25–32. [Google Scholar] [CrossRef]
- Zhang, S.; Liao, B.; Li, X.; Li, L.; Ma, L.; Yan, X. Effects of yeast cell walls on performance and immune responses of cyclosporine A-treated, immunosuppressed broiler chickens. Br. J. Nutr. 2012, 107, 858–866. [Google Scholar] [CrossRef]
- Yitbarek, A.; Echeverry, H.; Brady, J.; Hernandez-Doria, J.; Camelo-Jaimes, G.; Sharif, S.; Guenter, W.; House, J.D.; Rodriguez-Lecompte, J.C. Innate immune response to yeast-derived carbohydrates in broiler chickens fed organic diets and challenged with Clostridium perfringens. Poult. Sci. 2012, 91, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
Ingredient (g/kg) | Starter (1–21 Days) | Finisher (22–42 Days) |
---|---|---|
Corn | 52.07 | 55.57 |
Soybean meal | 35.50 | 34.00 |
Fish meal | 5.00 | 3.60 |
Soybean oil | 4.00 | 3.50 |
phosphate | 1.00 | 0.70 |
Limestone | 1.00 | 1.20 |
Salt | 0.30 | 0.30 |
DL-methionine | 0.09 | 0.09 |
1% premix a | 1.0 | 1.0 |
Total | 100 | 100 |
Nutrition value | ||
Metabolizable Energy (ME) MJ/kg | 12.75 | 12.72 |
Protein % | 20.72 | 19.61 |
Calcium % | 0.91 | 0.87 |
Total phosphorus % | 0.68 | 0.58 |
Available phosphorus | 0.45 | 0.36 |
Lysine % | 1.35 | 1.25 |
Methionine % | 0.46 | 0.43 |
Name | Relative Peak Area of Fermented Product | ||||||
---|---|---|---|---|---|---|---|
YC12 | YC24 | YC36 | YC48 | YC60 | SZ1 | ||
1 | Styrene | N/A | N/A | N/A | N/A | N/A | 4.4 × 106 |
2 | Propanoic acid | 1.1 × 109 | 1.3 × 109 | 1.1 × 109 | 1.3 × 109 | 1.7 × 109 | 5015342 |
3 | Mercaptoacetic acid | N/A | N/A | N/A | N/A | 5.8 × 107 | N/A |
4 | Acetic acid | 7.1 × 107 | 8.7 × 107 | 5.9 × 107 | 7.7 × 107 | 6.6 × 107 | 6.9 × 106 |
5 | L-Valine | 2.2 × 107 | 7.4 × 107 | 8.5 × 107 | 1.3 × 108 | 3.7 × 107 | 1.8 × 107 |
6 | Phenylpropanolamine | N/A | N/A | N/A | N/A | N/A | 1.8 × 107 |
7 | Ethanimidic acid | 4.4 × 106 | N/A | N/A | 1.0 × 106 | 1.0 × 106 | N/A |
8 | L-(+)-Lactic acid | 1.7 × 108 | 2.1 × 108 | 1.6 × 108 | 2.0 × 108 | 1.9 × 108 | 2.1 × 109 |
9 | l-Alanine | 3.8 × 107 | 9.7 × 107 | 1.3 × 108 | 1.9 × 108 | 7.4 × 107 | 1.7 × 106 |
10 | l-Proline | N/A | 1.0 × 106 | 2.2 × 107 | N/A | N/A | N/A |
11 | Propanedioic acid | 1.3 × 107 | 1.0 × 106 | N/A | 1.0 × 106 | 1.1 × 107 | 6.4 × 106 |
12 | Ethyl phosphoric acid | N/A | 1.0 × 106 | 1.0 × 106 | 1.7 × 107 | N/A | 2.8 × 106 |
13 | Urea | 2.0 × 109 | 2.8 × 109 | 9.1 × 108 | 2.1 × 109 | 2.3 × 109 | 1.9 × 106 |
14 | L-Leucine | 5.3 × 108 | 6.5 × 108 | 3.5 × 108 | 5.0 × 108 | 6.7 × 108 | 3.2 × 107 |
15 | l-Threonine | N/A | 1.0 × 106 | N/A | 1.0 × 106 | 1.0 × 106 | N/A |
16 | Butane | N/A | N/A | N/A | N/A | N/A | 4.1 × 106 |
17 | Glycine | 3.6 × 108 | 1.3 × 109 | 9.9 × 108 | 1.4 × 109 | 1.4 × 109 | 8.2 × 106 |
18 | Butanedioic acid | 1.5 × 108 | 2.0 × 108 | 1.7 × 108 | 2.0 × 108 | 3.0 × 108 | 6.8 × 107 |
19 | Glycerol | N/A | N/A | N/A | N/A | N/A | 2.2 × 109 |
20 | Pyrimidine | 1.2 × 108 | 1.8 × 108 | 1.2 × 108 | 1.9 × 108 | 2.0 × 108 | N/A |
21 | 2-Butenedioic acid | 1.6 × 107 | 2.7 × 107 | 1.8 × 107 | 2.2 × 107 | 1.0 × 106 | 4.8 × 107 |
22 | Serine | 1.5 × 108 | 2.8 × 108 | 9.9 × 107 | 2.5 × 108 | 1.0 × 106 | 1.4 × 107 |
23 | l-Methionine | 1.0 × 106 | 1.0 × 106 | 7.3 × 107 | 1.0 × 106 | 1.0 × 106 | N/A |
24 | beta-Alanine | 1.0 × 106 | 1.0 × 106 | 1.6 × 107 | N/A | N/A | N/A |
25 | ketobutyrate | N/A | N/A | N/A | N/A | 6.3 × 107 | N/A |
26 | 2-Hydroxycyclohexane-1-carboxylic acid | 4.01 × 107 | 1.03 × 106 | 1.0 × 106 | 6.6 × 107 | N/A | N/A |
27 | L-Homoserine | 3.00 × 107 | N/A | 1.9 × 107 | 3.8 × 107 | N/A | N/A |
28 | Aminomalonic acid | 7.69 × 107 | 7.59 × 107 | 6.5 × 107 | 6.8 × 107 | 9.8 × 107 | N/A |
29 | oxalate | N/A | N/A | N/A | N/A | N/A | 3.0 × 106 |
30 | L-Proline | 7.2 × 108 | 1.0 × 109 | 7.3 × 108 | 1.2 × 109 | 1.3 × 109 | 7.9 × 107 |
31 | L-Aspartic acid | 1.3 × 108 | 2.2 × 108 | 5.8 × 107 | 1.2 × 108 | 1.8 × 108 | 2.3 × 107 |
32 | Naphthalene | N/A | N/A | N/A | N/A | N/A | 4.0 × 107 |
33 | Alanine | 8.4 × 107 | 1.1 × 108 | 1.5 × 108 | 1.5 × 108 | 9.5 × 107 | N/A |
34 | 2-Furancarboxylic acid | N/A | 1.0 × 106 | 1.2 × 107 | 2.2 × 107 | 2.2 × 107 | N/A |
35 | L-Threonic acid | 1.3 × 107 | 5.6 × 107 | 2.8 × 107 | 5.0 × 107 | 5.0 × 107 | 3.2 × 107 |
36 | 2-Pentenoic acid | 1.0 × 106 | N/A | 9.0 × 106 | 1.0 × 106 | N/A | N/A |
37 | Xylonic acid | N/A | N/A | N/A | N/A | N/A | 2.2 × 106 |
38 | L-Sorbose | N/A | N/A | N/A | N/A | N/A | 1.4 × 107 |
39 | Carbamoylglycine | 9.9 × 107 | 1.0 × 106 | 4.7 × 107 | 1.1 × 108 | 1.1 × 108 | N/A |
40 | Ornithine | N/A | 1.7 × 108 | N/A | 7.0 × 107 | N/A | N/A |
41 | Glutamic acid | N/A | N/A | N/A | N/A | N/A | 6.4 × 106 |
42 | Xylitol | N/A | N/A | N/A | N/A | N/A | 1.3 × 107 |
43 | Tricarballylic acid | N/A | N/A | N/A | N/A | N/A | 3.4 × 107 |
44 | Adonitol | N/A | N/A | N/A | N/A | N/A | N/A |
45 | D-Arabino-Hexonic acid | N/A | N/A | N/A | N/A | N/A | N/A |
46 | L-Asparagine | 2.3 × 107 | 4.3 × 107 | 1.5 × 107 | 4.2 × 107 | 4.7 × 107 | N/A |
47 | D-(+)-Talose | N/A | N/A | N/A | N/A | N/A | N/A |
48 | D-(+)-Arabitol | 4.3 × 107 | 3.9 × 107 | 5.2 × 107 | 8.1 × 107 | 8.5 × 107 | N/A |
49 | D-Mannitol | N/A | N/A | N/A | N/A | N/A | N/A |
50 | Dulcitol | N/A | N/A | N/A | N/A | N/A | N/A |
51 | 1-Propene-1,2,3-tricarboxylic acid | 3.3 × 107 | 4.0 × 107 | 2.8 × 107 | 4.2 × 107 | 3.8 × 107 | N/A |
52 | Benzoic acid | 1.6 × 107 | 1.0 × 106 | 1.4 × 107 | 1.9 × 107 | 1.4 × 107 | N/A |
53 | Phosphoric acid | 2.0 × 108 | 2.7 × 108 | 2.5 × 108 | 3.5 × 108 | 2.4 × 108 | N/A |
54 | Glycylglycine | 1.0 × 106 | N/A | N/A | N/A | N/A | N/A |
55 | Ribonic acid | N/A | N/A | N/A | N/A | N/A | 9.7 × 106 |
56 | 2-Keto-l-gluconic acid | N/A | N/A | N/A | N/A | 1.0 × 106 | N/A |
57 | DL-Ornithine | 2.5 × 107 | 8.0 × 107 | 3.6 × 107 | 7.6 × 107 | 7.2 × 107 | N/A |
58 | 1,2,3-Propanetricarboxylic acid | 2.4 × 108 | 3.6 × 108 | N/A | 1.0 × 106 | 1.0 × 106 | 3.1 × 107 |
59 | l-Fucitol | 4.4 × 107 | 5.4 × 107 | 4.3 × 107 | 5.8 × 107 | 7.9 × 107 | N/A |
60 | d-Pinitol | 3.4 × 108 | 4.2 × 108 | 2.9 × 108 | 4.3 × 108 | 2.8 × 108 | N/A |
61 | d-(+)-Cellobiose | N/A | N/A | N/A | N/A | N/A | 1.0 × 107 |
62 | fructose | 1.6 × 108 | 2.2 × 108 | 1.9 × 108 | 2.8 × 108 | 2.5 × 108 | 4.3 × 107 |
63 | d-Mannose | N/A | 1.0 × 106 | N/A | N/A | 1.5 × 108 | N/A |
64 | l-Tyrosine | 3.1 × 108 | 4.4 × 108 | 3.0 × 108 | 4.7 × 108 | 6.4 × 108 | N/A |
65 | l-Lysine | N/A | 7.6 × 108 | N/A | N/A | N/A | N/A |
66 | d-(−)-Ribose | N/A | N/A | 1.0 × 106 | 1.7 × 108 | N/A | N/A |
67 | Phenol | 1.0 × 106 | 1.0 × 106 | 1.8 × 108 | 3.3 × 108 | 3.9 × 108 | N/A |
68 | Inositol | 5.8 × 107 | 8.6 × 107 | 6.4 × 107 | 4.8 × 108 | 3.7 × 108 | 6.7 × 106 |
69 | Hexanoic acid | N/A | N/A | N/A | 1.0 × 106 | N/A | N/A |
70 | d-(+)-Galactopyranose | 7.3 × 107 | 1.0 × 108 | 8.3 × 107 | 1.5 × 108 | 1.0 × 106 | N/A |
71 | d-Gluconic acid | 1.8 × 108 | 2.5 × 108 | 2.9 × 107 | 2.6 × 108 | 1.4 × 108 | 4.3 × 107 |
72 | Hexadecanoic acid | 1.5 × 108 | 1.5 × 108 | 1.2 × 108 | 2.0 × 108 | 2.6 × 108 | 5.2 × 108 |
73 | (Z)-4-Nitro-alpha-(p-nitrophenyl)cinnamic acid | N/A | N/A | N/A | 1.5 × 108 | N/A | N/A |
74 | alpha-d-(+)-Talopyranose | 2.4 × 107 | 4.0 × 107 | N/A | 1.0 × 106 | 1.3 × 108 | N/A |
75 | l-Tryptophan | N/A | 7.8 × 107 | 1.0 × 106 | N/A | N/A | N/A |
76 | Octadecanoic acid | 1.7 × 108 | 1.6 × 108 | 2.0 × 108 | 2.9 × 108 | 3.3 × 108 | N/A |
77 | Pentanoic acid | N/A | N/A | N/A | 1.0 × 106 | N/A | N/A |
78 | Arachidonic acid | N/A | N/A | 1.0 × 106 | 1.8 × 107 | 1.9 × 107 | N/A |
79 | Morphinan | N/A | 1.5 × 107 | N/A | N/A | 1.0 × 106 | N/A |
80 | 1,5-Anhydro-d-sorbitol | 7.2 × 106 | 1.4 × 107 | 5.0 × 107 | 1.0 × 106 | 1.2 × 107 | N/A |
81 | Lactulose | 5.9 × 106 | N/A | 2.9 × 107 | N/A | N/A | N/A |
82 | Decanedioic acid | N/A | N/A | 5.4 × 107 | N/A | 1.0 × 106 | N/A |
83 | Sucrose | 3.0 × 107 | 3.8 × 107 | 2.5 × 107 | N/A | 2.7 × 108 | 6.4 × 106 |
84 | Maltose | 3.8 × 107 | 1.1 × 108 | 5.7 × 107 | 1.0 × 106 | 3.0 × 107 | N/A |
85 | Palatinose | 4.3 × 107 | 3.0 × 107 | N/A | N/A | N/A | N/A |
Experimental Diets | SEM | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Control | YC12 | YC24 | YC36 | YC 48 | YC 60 | SZ1 | |||
Initial BW (g) | 45 | 45 | 45 | 45 | 45 | 44 | 44 | 0.05 | 0.06 |
Day 21 BW (g) | 612 a | 699 b,c | 731 c | 718 b,c | 663 a,b | 632 a | 676 a,b,c | 9.21 | 0.00 |
Day 42 BW (g) | 2017 a | 2167 b | 2433 c | 2319 c | 2162 b | 2086 a,b | 2166 b | 26.63 | 0.00 |
0–3 week | |||||||||
BWG (g) | 567 a | 654 a,b,c | 686 b,c | 674 a,b,c | 619 a,b | 588 a | 628 a,b,c | 9.20 | 0.00 |
FI (g) | 1032 a | 1116 a,b | 1081 a,b | 1138 b | 1084 a,b | 1069 a,b | 1082 a,b | 9.47 | 0.08 |
FCR | 1.82 a | 1.7 a,b | 1.57 b | 1.69 a,b | 1.74 a | 1.81 a | 1.73 a | 0.02 | 0.03 |
4–6 week | |||||||||
BWG (g) | 1398 a,b | 1467 c,d | 1691 e | 1503 d | 1411 a,b,c | 1361 a | 1448 b,c,d | 17.02 | 0.00 |
FI (g) | 2452 a | 2488 a,b | 2588 b,c | 2483 a,b | 2643 c | 2570 a,b,c | 2470 a,b | 17.82 | 0.02 |
FCR | 1.75 a | 1.69 a,b | 1.53 c | 1.65 b | 1.87 d | 1.89 d | 1.7 a,b | 0.02 | 0.00 |
0–6 week | |||||||||
BWG (g) | 1972 a | 2123 b | 2388 c | 2275 c | 2118 b | 2043 a,b | 2122 b | 25.48 | 0.00 |
FI (g) | 3484 a | 3610 a,b | 3687 b,c,d | 3730 b,c,d | 3835 d | 3813 c,d | 3667 b,c | 24.99 | 0.00 |
FCR | 1.76 a,b,c | 1.7 a,b | 1.54 d | 1.64 c,d | 1.81 d,e | 1.86 e | 1.72 c,d | 0.02 | 0.00 |
Experimental Diets | SEM | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Control | YC12 | YC24 | YC36 | YC 48 | YC 60 | SZ1 | |||
TP (g/L) | 30.75 a | 31.64 b | 31 a,b | 32.66 c | 34.9 d | 30.14 a | 33.86 e | 0.26 | 0.00 |
ALP (U/L) | 1675.4 a | 1905.91 b | 2064.67 d | 1974.53 b | 1886.64 c | 1875.6 c | 1764.54 a,c | 18.56 | 0.00 |
AST (U/L) | 279.33 | 318.78 | 276.72 | 303.31 | 280.6 | 273.38 | 302.52 | 6.38 | 0.51 |
ALT (U/L) | 47.91 a | 48.51 a,b | 52.24 c | 52.69 c | 53.73 d | 56.02 e | 49.29 b | 0.44 | 0.00 |
BUN (m mol/L) | 0.73 a | 0.72 a | 0.52 b | 0.59 b,c | 0.63 c | 0.62 c | 0.6 c | 0.01 | 0.00 |
Name | VIP | p Value |
---|---|---|
Glycine | 3.9 | 0.049 |
fructose | 4.7 | 0.041 |
Inositol | 1.7 | 0.048 |
D-(+)-Galactopyranose | 2.1 | 0.049 |
sucrose | 3.4 | 0.002 |
The Proportion of Substances in YC % | |||||
---|---|---|---|---|---|
Combination | Glycine | Fructose | Inositol | Galactose | Sucrose |
Group A | 4.1 | 0.6 | 0.5 | 0.8 | 0.1 |
Group B | 3.7 | 0.6 | 0.5 | 0.8 | 0.1 |
Group C | 4.5 | 0.7 | 0.6 | 0.9 | 0.1 |
Experimental Diets | SEM | p Value | ||||||
---|---|---|---|---|---|---|---|---|
Control | A | B | C | YC 24 | SZ1 | |||
Initial BW (g) | 44.47 | 44.41 | 44.53 | 44.57 | 44.63 | 44.14 | 0.08 | 0.58 |
Day 21 BW (g) | 756.95 a | 845.08 b | 865.4 b | 853.3 b | 832.29 b | 838.63 b | 10.88 | 0.03 |
Day 42 BW (g) | 2091.18 a | 2221.49 a,b,c | 2280.8 b,c | 2375.6 c | 2330.78 b,c | 2189.04 a,b | 26.69 | 0.01 |
0–3 week | ||||||||
BWG (g) | 712.47 a | 800.67 b | 820.86 b | 808.73 b | 787.67 b | 794.48 b | 10.88 | 0.03 |
FI (g) | 1229.83 a,b | 1205.3 a | 1082.27 c | 1034.47 d | 1049.67 d,c | 1257.13 b | 17.01 | 0.00 |
FCR | 1.74 a | 1.55 b | 1.35 c | 1.31 c | 1.37 c | 1.63 a,b | 0.03 | 0.00 |
4–6 week | ||||||||
BWG (g) | 1272.27 | 1280.46 | 1316.31 | 1331.66 | 1380.01 | 1257.75 | 16.45 | 0.27 |
FI (g) | 2897.12 a | 2341.33 b | 2529.74 c | 2495.43 c | 2561.18 c | 2297.15 b | 38.88 | 0.00 |
FCR | 2.28 a | 1.83 b | 1.93 b | 1.88 b | 1.86 b | 1.82 b | 0.03 | 0.00 |
0–6 week | ||||||||
BWG (g) | 2046.7 a,b | 2177.08 a,b,c | 2236.27 b,c | 2331.03 c | 2286.15 b,c | 2144.89 a,b | 26.66 | 0.01 |
FI (g) | 3676.24 | 3588.21 | 3572.36 | 3626.69 | 3578.06 | 3611.59 | 22.62 | 0.79 |
FCR | 1.76 a | 1.65 a,b | 1.6 b | 1.55 b | 1.56 b | 1.68 a,b | 0.02 | 0.02 |
Experimental Diets | ||||||||
---|---|---|---|---|---|---|---|---|
Control | A | B | C | YC 24 | SZ1 | SEM | p Value | |
TP (g/L) | 31.68 | 30.26 | 32.05 | 32.16 | 31.12 | 31.47 | 0.33 | 0.62 |
ALP (U/L) | 3751.62 | 2732.07 | 3781.78 | 4193.26 | 2435.39 | 3034.93 | 274.77 | 0.45 |
AST (U/L) | 285.17 | 302.93 | 318.83 | 276.76 | 303.3 | 273.42 | 7.38 | 0.41 |
ALT (U/L) | 50.89 a | 48.7 b | 49.82 a,b | 48.77 b | 50.42 a | 49.59 a,b | 0.22 | 0.02 |
BUN (mmol/L) | 0.7 a,c | 0.53 b | 0.71 c | 0.52 b | 0.59 a,b | 0.54 b | 0.01 | 0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Wang, T.; Demelash, N.; Zheng, S.; Zhao, W.; Chen, X.; Zhen, Y.; Qin, G. Effect of Yeast Culture (Saccharomyces cerevisiae) on Broilers: A Preliminary Study on the Effective Components of Yeast Culture. Animals 2020, 10, 68. https://doi.org/10.3390/ani10010068
Sun Z, Wang T, Demelash N, Zheng S, Zhao W, Chen X, Zhen Y, Qin G. Effect of Yeast Culture (Saccharomyces cerevisiae) on Broilers: A Preliminary Study on the Effective Components of Yeast Culture. Animals. 2020; 10(1):68. https://doi.org/10.3390/ani10010068
Chicago/Turabian StyleSun, Zhe, Tao Wang, Natnael Demelash, Sen Zheng, Wei Zhao, Xue Chen, Yuguo Zhen, and Guixin Qin. 2020. "Effect of Yeast Culture (Saccharomyces cerevisiae) on Broilers: A Preliminary Study on the Effective Components of Yeast Culture" Animals 10, no. 1: 68. https://doi.org/10.3390/ani10010068
APA StyleSun, Z., Wang, T., Demelash, N., Zheng, S., Zhao, W., Chen, X., Zhen, Y., & Qin, G. (2020). Effect of Yeast Culture (Saccharomyces cerevisiae) on Broilers: A Preliminary Study on the Effective Components of Yeast Culture. Animals, 10(1), 68. https://doi.org/10.3390/ani10010068