Enhancing Teak (Tectona grandis) Seedling Growth by Rhizosphere Microbes: A Sustainable Way to Optimize Agroforestry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth-Promoting Microbes and Their Sources
2.2. Identification and Classification of Teak Rhizobacteria
2.3. In Vitro Plant Growth-Promoting Trait Assessments of Teak Rhizobacteria
2.4. Pot-Scale Plant-Growth-Promoting Activity Assessments of Teak Rhizosphere Microbes
2.5. Statistical Analysis
3. Results
3.1. Teak Rhizobacteria and Their Plant Growth-Promoting Traits
3.2. Plant-Growth-Promoting Activity of Teak Rhizosphere Microbes in Pot-Scale Assessments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wehr, J.B.; Blamey, F.P.C.; Smith, T.E.; Menzies, N.W. Growth and physiological responses of teak (Tectona grandis Linn. f.) clones to Ca, H and Al stresses in solution and acid soils. New For. 2017, 48, 137–152. [Google Scholar] [CrossRef]
- Kollert, W.; Cherubini, L. Teak resources and market assessment 2010. In FAO Planted Forests and Trees Working Paper FP/47/E; FAO: Rome, Italy, 2012. [Google Scholar]
- Keogh, R.M. The future of teak and the high-grade tropical hardwood sector. In Planted Forests and Trees Working Paper FP/44E; FAO: Rome, Italy, 2009. [Google Scholar]
- Rajan, S.K.; Reddy, B.J.D.; Bagyaraj, D.J. Screening of arbuscular mycorrhizal fungi for their symbiotic efficiency with Tectona grandis. For. Ecol. Manag. 2000, 126, 91–95. [Google Scholar] [CrossRef]
- Moya, R.; Bond, B.; Quesada, H. A review of heartwood properties of Tectona grandis trees from fast-growth plantations. Wood Sci. Technol. 2014, 48, 411–433. [Google Scholar] [CrossRef]
- Vongkhamho, S.; Imaya, A.; Takenaka, C.; Yamamoto, K.; Yamamoto, H. Correlations among tree quality, stand characteristics, and site characteristics in plantation teak in mountainous areas of Lao PDR. Forests 2020, 11, 777. [Google Scholar] [CrossRef]
- Firmino, A.C.; Tozze, H.J., Jr.; Furtado, E.L. First report of Ceratocystis fimbriata causing wilt in Tectona grandis in Brazil. New Dis. Rep. 2012, 25, 24. [Google Scholar] [CrossRef] [Green Version]
- Ai, C.; Wu, F.; Sun, S.; Shan, T.; Wang, J. First report of brown leaf spot caused by Alternaria alternate on Teak in China. Plant Dis. 2015, 99, 887. [Google Scholar] [CrossRef]
- Borges, R.C.F.; Rossato, M.; Albuquerque, G.M.R.; Ferreira, M.A.; Brasileiro, A.C.M.; Fonseca, M.E.N.; Boiteux, L.S. Crown gall caused by Agrobacterium tumefaciens species complex: A novel nursery disease of Tectona grandis in Brazil. J. Plant Pathol. 2019, 101, 445. [Google Scholar] [CrossRef] [Green Version]
- Alfenas, R.F.; Arenhart, M.L.; Alexandre, F.S.; Maitan-Alfenas, G.P. Root collar rot, a new lethal disease on Tectona grandis caused by Kretzschmaria zonata in Brazil. Plant Dis. 2020, 105, 221. [Google Scholar] [CrossRef] [PubMed]
- Wehr, J.B.; Smith, T.E.; Menzies, N.W. Influence of soil characteristics on teak (Tectona grandis L. f.) establishment and early growth in tropical northern Australia. J. For. Res. 2017, 22, 153–159. [Google Scholar] [CrossRef]
- Huy, B.; Tri, P.C.; Triet, T. Assessment of enrichment planting of teak (Tectona grandis) in degraded dry deciduous dipterocarp forest in the central highland, Vietnam. South. For. J. For. Sci. 2018, 80, 75–84. [Google Scholar] [CrossRef]
- Kayama, M.; Nimpila, S.; Hongthong, S.; Yoneda, R.; Himmapan, W.; Noda, I. Effect of bentonite on the early growth characteristics of teak seedlings planted in sandy soil in northeast Thailand—A pilot study. Forests 2021, 12, 26. [Google Scholar] [CrossRef]
- Swaminathan, C.; Srinivasan, V.M. Influence of microbial inoculants on seedling production in teak (Tectona grandis L.f.). J. Sustain. For. 2006, 22, 63–76. [Google Scholar] [CrossRef]
- Aditya, B.; Ghosh, A.; Chattopadhyay, D. Co-inoculation effects of nitogen fixing and phosphate solublising microorganisms on teak (Tectona grandis) and Indian redwood (Chukrasia tubularis). J. Biol. Sci. 2009, 1, 23–32. [Google Scholar]
- Raghu, H.B.; Ashwin, R.; Ravi, J.E.; Bagyaraj, D.J. Microbial consortium improved growth and performance of teak (Tectona grandis L.f.) in nursery and field trials. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 903–909. [Google Scholar] [CrossRef]
- Alexandre, F.S.; Della Flora, L.V.; Henrique, I.G.; da Silva, D.C.; Mercedes, A.P.; Cardoso Silva, A.; Silva de Oliveira, A.; Bondespacho da Silva, M.P.; Formelh Ronning, B.P.; Dreher, D.R.; et al. Arbuscular mycorrhizal fungi (Rhizophagus clarus) and rhizobacteria (Bacillus subtilis) can improve the clonal propagation and development of teak for commercial plantings. Front. Plant Sci. 2021, 12, 628769. [Google Scholar] [CrossRef] [PubMed]
- de Gannes, V.; Bekele, I.; Dipchansingh, D.; Wuddivira, M.N.; Cairies, S.D.; Boman, M.; Hickey, W.J. Microbial community structure and function of soil following ecosystem conversion from native forests to teak plantation forests. Front. Microbiol. 2016, 7, 1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madhaiyan, M.; Poonguzhali, S.; Lee, J.S.; Senthilkumar, M.; Lee, K.C.; Sundaram, S. Leifsonia soli sp. nov., a yellow-pigmented actinobacterium isolated from teak rhizosphere soil. Int. J. Syst. Evol. 2010, 60, 1322–1327. [Google Scholar] [CrossRef] [Green Version]
- Mohanan, C.; Sheeba, K.K. Productivity of teak stands in Kerala: Role of arbuscular mycorrhizal association and diversity of AM fungi. In Proceedings of the International Conference on Quality Timber Product of Teak from Sustainable Forest Management, Peechi, India, 2–5 December 2003; Bhat, K.M., Nair, K.K.N., Bhat, K.V., Muralidharan, E.M., Sharma, J.K., Eds.; Kerala Forest Research Institute: Kerala, India; International Tropical Timber Organization: Yokohama, Japan, 2003; pp. 472–484. [Google Scholar]
- Chaiyasen, A.; Young, J.P.W.; Teaumroong, N.; Gavinlertvatana, P.; Lumyong, S. Characterization of arbuscular mycorrhizal fungus communities of Aquilaria crassna and Tectona grandis roots and soils in Thailand plantations. PLoS ONE 2014, 9, e112591. [Google Scholar] [CrossRef] [PubMed]
- Irianto, R.S.B.; Santoso, E. Effect of arbuscular mycorrhiza fungi inoculation on teak (Tectona grandis Linn. F) at Cikampek, West Java. Indones. J. For. Res. 2005, 2, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.A.; Barroso, D.G.; Figueredo, F.A.M. Fungos micorrízicos arbusculares no crescimento e na nutrição mineral de mudas de Tectona grandis L. F. Ciênc. Florest. 2018, 28, 25–34. [Google Scholar] [CrossRef]
- Rangjaroen, C.; Rerkasem, B.; Teaumroong, N.; Noisangiam, R.; Lumyong, S. Promoting plant growth in a commercial rice cultivar by endophytic diazotrophic bacteria isolated from rice landraces. Ann. Microbiol. 2014, 65, 253–266. [Google Scholar] [CrossRef]
- Park, M.; Kim, C.; Yang, J.; Lee, H.; Shin, W.; Kim, S.; Sa, T. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 2005, 160, 127–133. [Google Scholar] [CrossRef]
- Wiriya, J.; Rangjaroen, C.; Teaumroong, N.; Sungthong, R.; Lumyong, S. Rhizobacteria and arbuscular mycorrhizal fungi of oil crops (physic nut and sacha inchi): A cultivable-based assessment for abundance, diversity, and plant growth-promoting potentials. Plants 2020, 9, 1773. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Li, J.; Chen, H.H.; Zhao, G.Z.; Zhu, W.Y.; Jiang, C.L.; Xu, L.H.; Li, W.J. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl. Environ. Microbiol. 2009, 75, 6176–6186. [Google Scholar] [CrossRef] [Green Version]
- Chaiyasen, A.; Chaiya, L.; Douds, D.D.; Lumyong, S. Influence of host plants and soil diluents on arbuscular mycorrhiza fungus propagation for on-farm inoculum production using leaf litter compost and agrowastes. Biol. Agric. Hortic. 2017, 33, 52–62. [Google Scholar] [CrossRef]
- Ser, H.L.; Palanisamy, U.D.; Yin, W.F.; Chan, K.G.; Bey-Hing Goh, B.H.; Lee, L.H. Streptomyces alaysiense sp. nov.: A novel Malaysian mangrove soil actinobacterium with antioxidative activity and cytotoxic potential against human cancer cell lines. Sci. Rep. 2016, 6, 24247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- dos Santos, H.R.M.; Argolo, C.S.; Argôlo-Filho, R.C.; Loguercio, L.L. A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiol. 2019, 19, 74. [Google Scholar] [CrossRef] [PubMed]
- Namwong, S.; Tanasupawat, S.; Smitinont, T.; Visessanguan, W.; Kudo, T.; Itoh, T. Isolation of Lentibacillus salicampi strains and Lentibacillus juripiscarius sp. nov. from fish sauce in Thailand. Int. J. Syst. Evol. Microbiol. 2005, 55, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Nunoura, T.; Takaki, Y.; Kazama, H.; Hirai, M.; Ashi, J.; Imachi, H.; Takai, K. Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes Environ. 2012, 27, 382–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kangale, L.J.; Raoult, D.; Ghigo, E.; Fournier, P.E. Pedobacter schmidteae sp. nov., a new bacterium isolated from the microbiota of the planarian Schmidtea mediterranea. Sci. Rep. 2020, 10, 6113. [Google Scholar] [CrossRef] [Green Version]
- Cappuccino, J.G.; Sherman, N. Microbiology: A Laboratory Manual, 6th ed.; Pearson Education Inc.: San Francisco, CA, USA, 2002; pp. 15–224. [Google Scholar]
- Borah, A.; Thakur, D. Phylogenetic and functional characterization of culturable endophytic actinobacteria associated with Camellia spp. for growth promotion in commercial tea cultivars. Front. Microbiol. 2020, 11, 318. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Johkan, M.; Hohjo, M.; Tsukagoshi, S.; Toru Maruo, T. A correlation analysis on chlorophyll content and SPAD value in tomato leaves. HortResearch 2017, 71, 37–42. [Google Scholar]
- Zhang, B.; Tang, G.; Yin, H.; Zhao, S.; Shareef, M.; Liu, B.; Gao, X.; Zeng, F. Groundwater depths affect phosphorus and potassium resorption but not their utilization in a desert phreatophyte in its hyper-arid environment. Front. Plant Sci. 2021, 12, 665168. [Google Scholar] [CrossRef]
- Dhar, P.P.; Mridha, M.A.U. Biodiversity of arbuscular mycorrhizal fungi in different trees of madhupur forest, Bangladesh. J. For. Res. 2006, 17, 201–205. [Google Scholar] [CrossRef]
- Verma, R.K.; Jamaluddin, D.V.S.; Thakur, A.K. Economics of biofertilizer application on production of planting propagules of teak in a commercial nursery. Indian For. 2008, 134, 923–929. [Google Scholar]
- Caro, M.I.R.; Bennett, I.; Malajczuk, N. Establishment of endomycorrhizal fungi on micropropagated teak (Tectona grandis L.f.). BMC Proc. 2011, 5, 149. [Google Scholar]
- Aujoulat, F.; Marchandin, H.; Zorgniotti, I.; Masnou, A.; Jumas-Bilak, E. Rhizobium pusense is the main human pathogen in the genus Agrobacterium/Rhizobium. Clin. Microbiol. Infect. 2015, 21, 472.e1–472.e5. [Google Scholar] [CrossRef] [Green Version]
- Macías, F.A.; Lacret, R.; Varela, R.M.; Nogueiras, C.; Molinillo, J.M. Bioactive apocarotenoids from Tectona grandis. Phytochemistry 2008, 69, 2708–2715. [Google Scholar] [CrossRef] [PubMed]
- Kole, R.K.; Karmakar, P.R.; Poi, R.; Mazumdar, D. Allelopathic inhibition of teak leaf extract: A potential pre-emergent herbicide. J. Crop Weed 2011, 7, 101–109. [Google Scholar]
- Lacret, R.; Varela, R.M.; Molinillo, J.M.; Nogueiras, C.; Macías, F.A. Tectonoelins, new norlignans from a bioactive extract of Tectona grandis. Phytochem. Lett. 2012, 5, 382–386. [Google Scholar] [CrossRef]
- Frey-Klett, P.; Garbaye, J.; Tarkka, M. The mycorrhiza helper bacteria revisited. New Phytol. 2007, 176, 22–36. [Google Scholar] [CrossRef] [PubMed]
Source Information and Characteristics | Isolate CGC-5 | Isolate TCM1-050 |
---|---|---|
Geographical location (latitude–longitude) | Muang Chiang Mai District, Chiang Mai, Thailand (18°50′15.6″ N, 98°57′58.0″ E) | Mae Chaem District, Chiang Mai, Thailand (18°18′18.7″ N, 98°21′47.3″ E) |
Age of host plant | ~25 years | ~15 years |
Date of isolation | November 2014 | November 2014 |
Colony color a | White | Ocher brown |
Cell/colony morphology | Short rod cells | Aerial mycelium-forming colony with ocher brown soluble pigment |
Gram staining | Gram-negative | Gram-positive |
Closest GenBank species (% identity of the 16S rRNA gene sequence) | Agrobacterium pusense NRCPB10T (99.02%) Agrobacterium salinitolerans YIC 5082T (99.02%) | Kitasatospora aureofaciens NBRC 12843T (99.63%) |
GenBank accession number for the 16S rRNA gene sequence | MW494884 | MW494883 |
Capability to produce auxins (µg mL−1) b | 106.29 ± 2.20 | 163.86 ± 1.01 |
Capability to produce ammonia | − | + |
Capability to produce catalase | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaiya, L.; Gavinlertvatana, P.; Teaumroong, N.; Pathom-aree, W.; Chaiyasen, A.; Sungthong, R.; Lumyong, S. Enhancing Teak (Tectona grandis) Seedling Growth by Rhizosphere Microbes: A Sustainable Way to Optimize Agroforestry. Microorganisms 2021, 9, 1990. https://doi.org/10.3390/microorganisms9091990
Chaiya L, Gavinlertvatana P, Teaumroong N, Pathom-aree W, Chaiyasen A, Sungthong R, Lumyong S. Enhancing Teak (Tectona grandis) Seedling Growth by Rhizosphere Microbes: A Sustainable Way to Optimize Agroforestry. Microorganisms. 2021; 9(9):1990. https://doi.org/10.3390/microorganisms9091990
Chicago/Turabian StyleChaiya, Leardwiriyakool, Paiboolya Gavinlertvatana, Neung Teaumroong, Wasu Pathom-aree, Amornrat Chaiyasen, Rungroch Sungthong, and Saisamorn Lumyong. 2021. "Enhancing Teak (Tectona grandis) Seedling Growth by Rhizosphere Microbes: A Sustainable Way to Optimize Agroforestry" Microorganisms 9, no. 9: 1990. https://doi.org/10.3390/microorganisms9091990
APA StyleChaiya, L., Gavinlertvatana, P., Teaumroong, N., Pathom-aree, W., Chaiyasen, A., Sungthong, R., & Lumyong, S. (2021). Enhancing Teak (Tectona grandis) Seedling Growth by Rhizosphere Microbes: A Sustainable Way to Optimize Agroforestry. Microorganisms, 9(9), 1990. https://doi.org/10.3390/microorganisms9091990