KI and WU Polyomavirus in Respiratory Samples of SARS-CoV-2 Infected Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Sample Collection
2.2. Virological Analysis
2.3. Amplification, Sequencing and Analysis of KIPyV and WUPyV NCCRs
2.4. Statistical Analysis
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report-51; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Prezioso, C.; Marcocci, M.E.; Palamara, A.T.; De Chiara, G.; Pietropaolo, V. The “Three Italy” of the COVID-19 epidemic and the possible involvement of SARS-CoV-2 in triggering complications other than pneumonia. J. Neurovirol. 2020, 26, 311–323. [Google Scholar] [CrossRef]
- Musuuza, J.S.; Watson, L.; Parmasad, V.; Putman-Buehler, N.; Christensen, L.; Safdar, N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251170. [Google Scholar] [CrossRef]
- Zhu, X.; Ge, Y.; Wu, T.; Zhao, K.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020, 285, 198005. [Google Scholar] [CrossRef] [PubMed]
- Allander, T.; Andreasson, K.; Gupta, S.; Bjerkner, A.; Bogdanovic, G.; Persson, M.A.; Dalianis, T.; Ramqvist, T.; Andersson, B. Identification of a third human polyomavirus. J. Virol. 2007, 81, 4130–4136. [Google Scholar] [CrossRef] [Green Version]
- Gaynor, A.M.; Nissen, M.D.; Whiley, D.M.; Mackay, I.M.; Lambert, S.B.; Wu, G.; Brennan, D.C.; Storch, G.A.; Sloots, T.P.; Wang, D. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog. 2007, 3, e64. [Google Scholar] [CrossRef] [PubMed]
- Babakir-Mina, M.; Ciccozzi, M.; Perno, C.F.; Ciotti, M. The human polyomaviruses KI and WU: Virological background and clinical implications. APMIS 2013, 121, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Dehority, W.N.; Eickman, M.M.; Schwalm, K.C.; Gross, S.M.; Schroth, G.P.; Young, S.A.; Dinwiddie, D.L. Complete genome sequence of a KI polyomavirus isolated from an otherwise healthy child with severe lower respiratory tract infection. J. Med. Virol. 2017, 89, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, S.; Koseki, N.; Yoshioka, M.; Matsunami, Y.; Yanazume, N.; Nawate, M.; Shikano, T.; Takahashi, Y.; Kikuta, H.; Ishiguro, N. WU polyomavirus infection confirmed by genetic and serologic tests in an infant with Bronchitis. Pediatr. Infect. Dis. J. 2011, 30, 918. [Google Scholar] [CrossRef] [PubMed]
- Moens, U.; Prezioso, C.; Pietropaolo, V. Genetic Diversity of the Noncoding Control Region of the Novel Human Polyomaviruses. Viruses 2020, 12, 1406. [Google Scholar] [CrossRef]
- Moens, U.; Krumbholz, A.; Ehlers, B.; Zell, R.; Johne, R.; Calvignac-Spencer, S.; Lauber, C. Biology, evolution, and medical importance of polyomaviruses: An update. Infect. Genet. Evol. 2017, 54, 18–38. [Google Scholar] [CrossRef] [PubMed]
- Ciotti, M.; Prezioso, C.; Pietropaolo, V. An overview on human polyomaviruses biology and related diseases. Future Virol. 2019, 14, 487–501. [Google Scholar] [CrossRef]
- Turriziani, O.; Sciandra, I.; Mazzuti, L.; Di Carlo, D.; Bitossi, C.; Calabretto, M.; Guerrizio, G.; Oliveto, G.; Riveros Cabral, R.J.; Viscido, A.; et al. SARS-CoV-2 diagnostics in the virology laboratory of a University Hospital in Rome during the lockdown period. J. Med. Virol. 2021, 93, 886–891. [Google Scholar] [CrossRef]
- Saiki, R.K.; Bugawan, T.L.; Horn, G.T.; Mullis, K.B.; Erlich, H.A. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 1986, 324, 163–166. [Google Scholar] [CrossRef]
- Kuypers, J.; Campbell, A.P.; Guthrie, K.A.; Wright, N.L.; Englund, J.A.; Corey, L.; Boeckh, M. WU and KI polyomaviruses in respiratory samples from allogeneic hematopoietic cell transplant recipients. Emerg. Infect. Dis. 2012, 18, 1580–1588. [Google Scholar] [CrossRef]
- Prezioso, C.; Ciotti, M.; Obregon, F.; Ambroselli, D.; Rodio, D.M.; Cudillo, L.; Gaziev, J.; Mele, A.; Nardi, A.; Favalli, C.; et al. Polyomaviruses shedding in stool of patients with hematological disorders: Detection analysis and study of the non-coding control region’s genetic variability. Med. Microbiol. Immunol. 2019, 208, 845–854. [Google Scholar] [CrossRef] [Green Version]
- ClustalW2-Multiple Sequence Alignment. Available online: http://www.ebi.ac.uk/clustalw/ (accessed on 13 May 2021).
- Teramoto, S.; Kaiho, M.; Takano, Y.; Endo, R.; Kikuta, H.; Sawa, H.; Ariga, T.; Ishiguro, N. Detection of KI polyomavirus and WU polyomavirus DNA by real-time polymerase chain reaction in nasopharyngeal swabs and in normal lung and lung adenocarcinoma tissues. Microbiol. Immunol. 2011, 55, 525–530. [Google Scholar] [CrossRef]
- Ren, L.; Gonzalez, R.; Xie, Z.; Zhang, J.; Liu, C.; Li, J.; Li, Y.; Wang, Z.; Kong, X.; Yao, Y.; et al. WU and KI polyomavirus present in the respiratory tract of children, but not in immunocompetent adults. J. Clin. Virol. 2008, 43, 330–333. [Google Scholar] [CrossRef]
- Mourez, T.; Bergeron, A.; Ribaud, P.; Scieux, C.; de Latour, R.P.; Tazi, A.; Socié, G.; Simon, F.; LeGoff, J. Polyomaviruses KI and WU in immunocompromised patients with respiratory disease. Emerg. Infect. Dis. 2009, 5, 107–109. [Google Scholar] [CrossRef]
- Lin, S.X.; Wang, W.; Guo, W.; Yang, H.J.; Ma, B.C.; Fang, Y.L.; Xu, Y.S. A molecular epidemiological study of KI polyomavirus and WU polyomavirus in children with acute respiratory infection in Tianjin, China. Chin. J. Contemp. Pediatr. 2017, 19, 763–769. [Google Scholar]
- Bergallo, M.; Terlizzi, M.E.; Astegiano, S.; Ciotti, M.; Babakir-Mina, M.; Perno, C.F.; Cavallo, R.; Costa, C. Real time PCR TaqMan assays for detection of polyomaviruses KIV and WUV in clinical samples. J. Virol. Methods 2009, 162, 69–74. [Google Scholar] [CrossRef]
- Comar, M.; Zanotta, N.; Rossi, T.; Pelos, G.; D’Agaro, P. Secondary lymphoid tissue as an important site for WU polyomavirus infection in immunocompetent children. J. Med. Virol. 2011, 83, 1446–1450. [Google Scholar] [CrossRef] [Green Version]
- Makoti, P.; Fielding, B.C. HIV and Human Coronavirus Coinfections: A Historical Perspective. Viruses 2020, 12, 937. [Google Scholar] [CrossRef]
- Barton, E.S.; White, D.W.; Cathelyn, J.S.; Brett-McClellan, K.A.; Engle, M.; Diamond, M.S.; Miller, V.L.; Virgin, H.W., IV. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 2007, 447, 326–329. [Google Scholar] [CrossRef]
- Granados, A.; Peci, A.; McGeer, A.; Gubbay, J.B. Influenza and rhinovirus viral load and disease severity in upper respiratory tract infections. J. Clin. Virol. 2017, 86, 14–19. [Google Scholar] [CrossRef]
- Van der Hoek, L.; Pyrc, K.; Berkhout, B. Human coronavirus NL63, a new respiratory virus. FEMS Microbiol. Rev. 2006, 30, 760–773. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Quinn, J.; Pinsky, B.; Shah, N.H.; Brown, I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA 2020, 323, 2085–2086. [Google Scholar] [CrossRef] [Green Version]
- Peci, A.; Tran, V.; Guthrie, J.L.; Li, Y.; Nelson, P.; Schwartz, K.L.; Eshaghi, A.; Buchan, S.A.; Gubbay, J.B. Prevalence of Co-Infections with Respiratory Viruses in Individuals Investigated for SARS-CoV-2 in Ontario, Canada. Viruses 2021, 13, 130. [Google Scholar] [CrossRef]
- Singh, V.; Upadhyay, P.; Reddy, J.; Granger, J. SARS-CoV-2 respiratory co-infections: Incidence of viral and bacterial co-pathogens. Int. J. Infect. Dis. 2021, 105, 617–620. [Google Scholar] [CrossRef]
- Bai, L.; Zhao, Y.; Dong, J.; Liang, S.; Guo, M.; Liu, X.; Wang, X.; Huang, Z.; Sun, X.; Zhang, Z.; et al. Coinfection with influenza A virus enhances SARS-CoV-2 infectivity. Cell Res. 2021, 31, 395–403. [Google Scholar] [CrossRef]
- Wang, C.; Wei, T.; Huang, Y.; Guo, Q.; Xie, Z.; Song, J.; Chen, A.; Zheng, L. Isolation and characterization of WUPyV in polarized human airway epithelial cells. BMC Infect. Dis. 2020, 20, 488. [Google Scholar] [CrossRef]
FEATURES | POPULATION | ||
---|---|---|---|
Enrolled Population,n | 150 | ||
Sex, n (M/F) | M | F | |
79/150 (52.7%) | 71/150 (47.3%) | ||
Mean age, years (SD) | 59.06 (±16.52) | ||
Median age, years (Range) | 60.71 (92.84–22.1) | ||
SARS-CoV-2 patients | Enrolled population,n | 112 | |
Sex, n (M/F) | M | F | |
51/112 (45.5%) | 61/112 (54.5%) | ||
Mean age, years (SD) | 61.42 (±16.22) | ||
Median age, years (Range) | 62.45 (22.1–92.84) | ||
Healthcare workers | Enrolled population,n | 38 | |
Sex, n (M/F) | M | F | |
18/38 (47.4%) | 20/38 (52.6%) | ||
Mean age, years (SD) | 52.11 (±15.42) | ||
Median age, years (Range) | 49.35 (23.94–89.0) |
Polyomavirus | Total Population | SARS-CoV-2 + | SARS-CoV-2 − | χ2 | OR | |
---|---|---|---|---|---|---|
KIPyV, n | P | 27/150 (18%) | 27/112 (24.11%) | 0/38 (0%) | p < 0.05 | >1 |
N | 123/150 (82%) | 85/112 (75.89%) | 38/38 (100%) | |||
WUPyV, n | P | 5/150 (3.33%) | 5/112 (4.46%) | 0/38 (0%) | p > 0.05 | >1 |
N | 145/150 (96.67%) | 107/112 (95.54%) | 38/38 (100%) | |||
KIPyV-WUPyV co-infection, n | 3/150 (2%) | 3/112 (2.68%) | 0/38 (0%) | p > 0.05 | >1 |
Polyomavirus | Ct Median Values (Range) | |
---|---|---|
KIPyV | P | 25.63 (12.88–38.62) |
N | 26.75 (14.02–39.53) | |
WUPyV | P | 21.66 (12.88–25.75) |
N | 26.86 (14.02–39.53) | |
KIPyV-WUPyV co-infection | 18.00 (12.88–22.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prezioso, C.; Moens, U.; Oliveto, G.; Brazzini, G.; Piacentini, F.; Frasca, F.; Viscido, A.; Scordio, M.; Guerrizio, G.; Rodio, D.M.; et al. KI and WU Polyomavirus in Respiratory Samples of SARS-CoV-2 Infected Patients. Microorganisms 2021, 9, 1259. https://doi.org/10.3390/microorganisms9061259
Prezioso C, Moens U, Oliveto G, Brazzini G, Piacentini F, Frasca F, Viscido A, Scordio M, Guerrizio G, Rodio DM, et al. KI and WU Polyomavirus in Respiratory Samples of SARS-CoV-2 Infected Patients. Microorganisms. 2021; 9(6):1259. https://doi.org/10.3390/microorganisms9061259
Chicago/Turabian StylePrezioso, Carla, Ugo Moens, Giuseppe Oliveto, Gabriele Brazzini, Francesca Piacentini, Federica Frasca, Agnese Viscido, Mirko Scordio, Giuliana Guerrizio, Donatella Maria Rodio, and et al. 2021. "KI and WU Polyomavirus in Respiratory Samples of SARS-CoV-2 Infected Patients" Microorganisms 9, no. 6: 1259. https://doi.org/10.3390/microorganisms9061259
APA StylePrezioso, C., Moens, U., Oliveto, G., Brazzini, G., Piacentini, F., Frasca, F., Viscido, A., Scordio, M., Guerrizio, G., Rodio, D. M., Pierangeli, A., d’Ettorre, G., Turriziani, O., Antonelli, G., Scagnolari, C., & Pietropaolo, V. (2021). KI and WU Polyomavirus in Respiratory Samples of SARS-CoV-2 Infected Patients. Microorganisms, 9(6), 1259. https://doi.org/10.3390/microorganisms9061259