Multidrug-Resistant Streptococcus agalactiae Strains Found in Human and Fish with High Penicillin and Cefotaxime Non-Susceptibilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Ethics
2.3. DNA Extraction and Serotyping
2.4. Antimicrobial Susceptibility Testing
2.5. Whole-Genome Sequencing
3. Results
3.1. Clinical Data, Serotyping, and Sequence Types (STs)
3.2. Antimicrobial Susceptibility Testing
3.3. Novel Amino Acid Substitutions Observed in Penicillin-Binding Proteins and GBS
3.4. Quinolone Resistance and Mutations of Quinolone Resistance Determinant Regions (QRDRs)
3.5. Comparison of Virulence Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ip, M.J.; Ang, I.J.; Fung, K.J.; Liyanapathirana, V.J.; Luo, M.J.; Lai, R.J. Hypervirulent Clone of Group B Streptococcus Serotype III Sequence Type 283, Hong Kong, 1993–2012. Emerg. Infect. Dis. 2016, 22, 1800–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Kan, Y.; Zhang, Z.; Lu, Z.; Li, Y.; Leng, C.; Ji, J.; Song, S.; Shi, H. New Mutations of Penicillin-Binding Proteins in Streptococcus agalactiae Isolates from Cattle with Decreased Susceptibility to Penicillin. Microb. Drug Resist. 2018, 24, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Kayansamruaj, P.; Pirarat, N.; Kondo, H.; Hirono, I.; Rodkhum, C. Genomic comparison between pathogenic Streptococcus agalactiae isolated from Nile tilapia in Thailand and fish-derived ST7 strains. Infect. Genet. Evol. 2015, 36, 307–314. [Google Scholar] [CrossRef]
- Kalimuddin, S.; Chen, S.L.; Lim, C.T.K.; Koh, T.H.; Tan, T.Y.; Kam, M.; Wong, C.W.; Mehershahi, K.S.; Chau, M.L.; Ng, L.C.; et al. 2015 Epidemic of Severe Streptococcus agalactiae Sequence Type 283 Infections in Singapore Associated with the Consumption of Raw Freshwater Fish: A Detailed Analysis of Clinical, Epidemiological, and Bacterial Sequencing Data. Clin. Infect. Dis. 2017, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doare, K.L.; O’Driscoll, M.; Turner, K.; Seedat, F.; Russell, N.J.; Seale, A.C.; Heath, P.T.; Lawn, J.E.; Baker, C.J.; Bartlett, L.; et al. Intrapartum Antibiotic Chemoprophylaxis Policies for the Prevention of Group B Streptococcal Disease Worldwide: Systematic Review. Clin. Infect. Dis. 2017, 65, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antimicrobials: OIE—World Organisation for Animal Health. Available online: https://www.oie.int/scientific-expertise/veterinary-products/antimicrobials/ (accessed on 3 June 2020).
- Simoni, S.; Vincenzi, C.; Brenciani, A.; Morroni, G.; Bagnarelli, P.; Giovanetti, E.; Varaldo, P.E.; Mingoia, M. Molecular Characterization of Italian Isolates of Fluoroquinolone-Resistant Streptococcus agalactiae and Relationships with Chloramphenicol Resistance. Microb. Drug Resist. 2018, 24, 225–231. [Google Scholar] [CrossRef]
- Imperi, M.; Pataracchia, M.; Alfarone, G.; Baldassarri, L.; Orefici, G.; Creti, R. A multiplex PCR assay for the direct identification of the capsular type (Ia to IX) of Streptococcus agalactiae. J. Microbiol. Methods 2010, 80, 212–214. [Google Scholar] [CrossRef]
- Wayne, P.A. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Zhu, C.; Liyanapathirana, V.; Li, C.; Pinto, V.; Hui, M.; Lo, N.; Wong, K.T.; Dissanayake, N.; Ip, M. Characterizing Mobilized Virulence Factors and Multidrug Resistance Genes in Carbapenemase-Producing Klebsiella pneumoniae in a Sri Lankan Hospital. Front. Microbiol. 2018, 9, 2044. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 3 June 2020).
- Bankevich, A.; Nurk, S.; Antippov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S. SPAdes: A new genome assembly algorithm and its applications to single cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for Big Data analysis—10 Years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, R.; Luo, F.-G.; Huang, Y.; Liang, W.-W.; Huang, T.; Lei, A.-Y.; Gan, X.; Li, L.-P. Streptococcus agalactiae Isolates of Serotypes Ia, III and V from Human and Cow are able to infect tilapia. Vet. Microbiol. 2015, 180, 129–135. [Google Scholar] [CrossRef]
- Nagano, N.; Nagano, Y.; Kimura, K.; Tamai, K.; Yanagisawa, H.; Arakawa, Y. Genetic Heterogeneity in pbp Genes among Clinically Isolated Group B Streptococci with Reduced Penicillin Susceptibility. Antimicrob. Agents Chemother. 2008, 52, 4258–4267. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, B.J.; Chochua, S.; GertzJr, R.E.; Hawkins, P.A.; Ricaldi, J.; Li, Z.; Walker, H.; Tran, T.; Rivers, J.; Mathis, S.; et al. Short-read whole genome sequencing for determination of antimicrobial resistance mechanisms and capsular serotypes of current invasive Streptococcus agalactiae recovered in the USA. Clin. Microbiol. Infect. 2017, 23, 574.e7–574.e14. [Google Scholar] [CrossRef] [Green Version]
- Piccinelli, G.; Carlentini, G.; Gargiulo, F.; Caruso, A.; Francesco, M.A.D. Analysis of Point Mutations in the pbp2x, pbp2b, and pbp1a Genes of Streptococcus agalactiae and Their Relation with a Reduced Susceptibility to Cephalosporins. Microb. Drug Resist. 2017, 23, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Sigaúque, B.; Kobayashi, M.; Vubil, D.; Nhacolo, A.; Chaúque, A.; Moaine, B.; Massora, S.; Mandomando, I.; Nhampossa, T.; Bassat, Q.; et al. Invasive bacterial disease trends and characterization of group B streptococcal isolates among young infants in southern Mozambique, 2001–2015. PLoS ONE 2018, 13, e0191193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moroi, H.; Kimura, K.; Kotani, T.; Tsuda, H.; Banno, H.; Jin, W.; Wachino, J.-I.; Yamada, K.; Mitsui, T.; Yamashita, M.; et al. Isolation of group B Streptococcus with reduced β-lactam susceptibility from pregnant women. Emerg. Microb. Infect. 2019, 8, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Linden, M.V.D.; Mamede, R.; Levina, N.; Helwig, P.; Vila-Cerqueira, P.; Carriço, J.A.; Melo-Cristino, J.; Ramirez, M.; Martins, E.R. Heterogeneity of penicillin-non-susceptible group B streptococci isolated from a single patient in Germany. J. Antimicrob. Chemother. 2019, 75, 296–299. [Google Scholar] [CrossRef]
- Piccinelli, G.; Gargiulo, F.; Corbellini, S.; Ravizzola, G.; Bonfanti, C.; Caruso, A.; Francesco, M.A.D. Emergence of the First Levofloxacin-Resistant Strains of Streptococcus agalactiae Isolated in Italy. Antimicrob. Agents Chemother. 2015, 59, 2466–2469. [Google Scholar] [CrossRef] [Green Version]
- Brodeur, B.R.; Boyer, M.; Charlebois, I.; Hamel, J.; Couture, F.; Rioux, C.R.; Martin, D. Identification of group B streptococcal Sip protein, which elicits cross-protective immunity. Infect. Immun. 2000, 68, 5610–5618. [Google Scholar] [CrossRef] [Green Version]
- Bergseng, H.; Bevanger, L.; Rygg, M.; Bergh, K. Real-time PCR targeting the sip gene for detection of group B Streptococcus colonization in pregnant women at delivery. J. Med. Microbiol. 2007, 56 Pt 2, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Hsueh, P.-R.; Teng, L.-J.; Lee, L.-N.; Ho, S.-W.; Yang, P.-C.; Luh, K.-T. High incidence of erythromycin resistance among clinical isolates of Streptococcus agalactiae in Taiwan. Antimicrob. Agents Chemother. 2001, 45, 3205–3208. [Google Scholar] [CrossRef] [Green Version]
- Nagano, N.; Koide, S.; Hayashi, W.; Taniguchi, Y.; Tanaka, H.; Maeyama, Y.; Suzuki, M.; Kimura, K.; Arakawa, Y.; Nagano, Y. Population–level transition of capsular polysaccharide types among sequence type 1 group B Streptococcus isolates with reduced penicillin susceptibility during a long-term hospital epidemic. Int. J. Antimicrob. Agents 2019, 53, 203–210. [Google Scholar] [CrossRef]
- Chu, Y.W.; Tse, C.; Tsang, G.K.-L.; So, D.K.-S.; Fung, J.T.-L.; Lo, J.Y.-C. Invasive group B Streptococcus isolates showing reduced susceptibility to penicillin in Hong Kong. J. Antimicrob. Chemother. 2007, 60, 1407–1409. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cao, X.; Li, S.; Ou, Q.; Lin, D.; Yao, Z.; Chen, S.; Wu, C.; Wen, G.; Ye, X. Phenotypic and molecular characterization of Streptococcus agalactiae colonized in Chinese pregnant women: Predominance of ST19/III and ST17/III. Res. Microbiol. 2018, 169, 101–107. [Google Scholar] [CrossRef]
- Ran, R.; Li, L.P.; Huang, T.; Huang, Y.; Huang, W.; Yang, X.; Lei, A.; Chen, M. Phylogenetic, comparative genome and structural analyses of human Streptococcus agalactiae ST485 in China. BMC Genom. 2018, 19, 716. [Google Scholar]
- Yang, Y.; Liu, Y.; Ding, Y.; Yi, L.; Ma, Z.; Fan, H.; Lu, C. Molecular characterization of Streptococcus agalactiae isolated from bovine mastitis in Eastern China. PLoS ONE 2013, 8, e67755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramalingam, J.; Vennila, J.; Subbiah, P. Computational studies on the resistance of penicillin-binding protein 2B (PBP2B) of wild-type and mutant strains of Streptococcus pneumoniae against β-lactam antibiotics. Chem. Biol. Drug Des. 2013, 82, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Job, V.; Carapito, R.; Vernet, T.; Dessen, A.; Zapun, A. Common alterations in PBP1a from resistant Streptococcus pneumoniae decrease its reactivity toward beta-lactams: Structural insights. J. Biol. Chem. 2008, 283, 4886–4894. [Google Scholar] [CrossRef] [Green Version]
- de Aguiar, E.L.; Mariano, D.C.; Viana, M.V.; Benevides Lde, J.; de Souza Rocha, F.; de Castro Oliveira, L.; Pereira, F.L.; Dorella, F.A.; Leal, C.A.; de Carvalho, A.F.; et al. Complete genome sequence of Streptococcus agalactiae strain GBS85147 serotype of type Ia isolated from human oropharynx. Stand. Genom. Sci. 2016, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Neemuchwala, A.; Teatero, S.; Patel, S.N.; Fittipaldi, N. Fluoroquinolone Resistance among Clonal Complex 1 Group B Streptococcus Strains. Can. J. Infect. Dis. Med. Microbiol. 2016, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Isolate | H21 | F49 |
---|---|---|
Host | Human | Fish |
Year of isolation | 2015 | 2016 |
Gender | Male | NA |
Age (yr) | 61 | NA |
Host health status | Left foot infection | Healthy |
Specimen site | Wound | Flesh |
Serotype | Ib | Ia |
Sequence type (ST) | 651 | 7 |
Clonal cluster (CC) | 103 | 7 |
Isolate | MIC (mg/L) | MIC Breakpoints (mg/L) | |||
---|---|---|---|---|---|
Antibiotics | H21 | F49 | Sensitive | Intermediate | Resistant |
Penicillin (PEN) * | 2 | 0.5 | ≤0.12 | - | - |
Cefotaxime (CTX) # | 2 | 0.5 | ≤0.5 | - | - |
Vancomycin (VAN) | 1 | 0.5 | ≤1 | - | - |
Erythromycin (ERY) | >16 | ≤0.12 | ≤0.25 | 0.5 | ≥1 |
Clindamycin (CLI) | >16 | ≤0.12 | ≤0.25 | 0.5 | ≥1 |
Gentamicin (GEN) | 32 | 16 | ≤1 | - | - |
Ciprofloxacin (CIP) ^ | 32 | 4 | ≤1 | 2 | ≥4 |
Levofloxacin (LEV) | 32 | 1 | ≤2 | 4 | ≥8 |
Tetracycline (TET) | 16 | >16 | ≤2 | 4 | ≥8 |
Minocycline (MIN) | ≤0.12 | >16 | ≤2 | 4 | ≥8 |
Doxycycline (DOX) | 1 | >16 | ≤2 | 4 | ≥8 |
Linezolid (LNZ) | 1 | 1 | ≤2 | - | - |
Chloramphenicol (CHL) | 8 | ≤0.12 | ≤4 | 8 | ≥16 |
Inducible Clindamycin Resistance | NA | Neg |
Amino Acid Substitutions Identified in PBPs by Amino Acid Position | |||||||||||||||
Strain Name | PBP1A | ||||||||||||||
PEN MIC (mg/L) | 701 * | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 | 730 | |
2603V/R | 0.06 # | T | N | G | N | G | N | N | N | T | V | P | N | G | N |
NEM316 | 0.06 # | . | . | . | -- | -- | . | . | . | . | . | . | . | . | . |
H21 | 2.0 | P | -- | -- | -- | -- | . | . | . | . | A | . | . | . | . |
F49 | 0.5 | . | . | . | -- | -- | . | . | . | . | . | . | . | . | . |
NY1512 a | 2.0 | ||||||||||||||
SMX1626 a | 2.0 | ||||||||||||||
SQ1615 a | 2.0 | ||||||||||||||
NY1547 a | 1.0 | ||||||||||||||
Amino Acid Substitutions Identified in PBPs by Amino Acid Position | |||||||||||||||
Strain Name | PEN MIC (mg/L) | PBP1B | PBP2A | PBP2B | PBP2X | ||||||||||
41 | 95 | 63 | 80 | 147 | 160 | 192 * | 336 | 377 | 425 | 720 | |||||
2603V/R | 0.06 # | L | A | E | V | S | S | N | Y | I | K | T | |||
NEM316 | 0.06 # | . | D | . | . | . | . | . | . | V | . | . | |||
H21 | 2.0 | . | D | K | A | A | A | . | . | V | . | S | |||
F49 | 0.5 | S | D | K | . | . | . | S | . | . | . | . | |||
NY1512 a | 2.0 | . | D | A | A | A | . | F | V | M | S | ||||
SMX1626 a | 2.0 | . | D | A | A | A | . | ||||||||
SQ1615 a | 2.0 | . | D | F | V | M | S | ||||||||
NY1547 a | 1.0 | A | A | A | . |
Amino Acid Substitutions Identified in GyrA/B Proteins by Amino Acid Position | |||||||||||
Strain Name | MIC (mg/L) | GyrA | GyrB | ||||||||
CIP | LEV | 307 | 371 | 486 * | 5 * | 274 * | 498 | ||||
2603V/R | - | 0.5 # | A | G | I | T | Q | V | |||
NEM316 | - | 0.5 # | D | E | . | . | . | . | |||
H21 | 32 | 32 | D | E | V | I | H | A | |||
F49 | 4 | 1 | . | . | . | . | . | . | |||
Amino Acid Substitutions Identified in ParC/E Proteins by Amino Acid Position | |||||||||||
Strain Name | MIC (mg/L) | ParC | ParE | ||||||||
CIP | LEV | 639 | 640 | 641 | 18 * | 148 * | 196 * | 499 | 507 | ||
2603V/R | - | 0.5 # | S | V | E | D | I | T | L | I | |
NEM316 | - | 0.5 # | N | . | D | . | . | . | I | V | |
H21 | 32 | 32 | . | . | . | N | V | I | . | V | |
F49 | 4 | 1 | N | . | D | . | . | . | I | V |
Strain ID | H21 | F49 | |
---|---|---|---|
Source | Human | Tilapia | |
Serotype | Ib | Ia | |
ST | 651 | 7 | |
Adherence | pavA | ● | ○ |
fbsA | ● | ○ | |
PS-1 | ○ | ● | |
pilB | ● | ○ | |
plr/gapA | ● | ○ | |
Enzymes | hylB | ● | ● |
eno | ● | ○ | |
Immunoreactive antigen | sip | ● | ○ |
Manganese uptake | psaA | ● | ○ |
Protease | cppA | ● | ○ |
scpA/scpB | ● | ○ | |
htrA/degP | ● | ○ | |
Toxins | cylX | ● | ● |
cylD | ● | ● | |
cylG | ● | ● | |
acpC | ● | ● | |
cylZ | ● | ● | |
cylA | ● | ● | |
cylB | ● | ● | |
cylE | ● | ○ | |
cylF | ● | ● | |
cylI | ● | ● | |
cylJ | ● | ● | |
cylK | ● | ● |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Sapugahawatte, D.N.; Yang, Y.; Wong, K.T.; Lo, N.W.S.; Ip, M. Multidrug-Resistant Streptococcus agalactiae Strains Found in Human and Fish with High Penicillin and Cefotaxime Non-Susceptibilities. Microorganisms 2020, 8, 1055. https://doi.org/10.3390/microorganisms8071055
Li C, Sapugahawatte DN, Yang Y, Wong KT, Lo NWS, Ip M. Multidrug-Resistant Streptococcus agalactiae Strains Found in Human and Fish with High Penicillin and Cefotaxime Non-Susceptibilities. Microorganisms. 2020; 8(7):1055. https://doi.org/10.3390/microorganisms8071055
Chicago/Turabian StyleLi, Carmen, Dulmini Nanayakkara Sapugahawatte, Ying Yang, Kam Tak Wong, Norman Wai Sing Lo, and Margaret Ip. 2020. "Multidrug-Resistant Streptococcus agalactiae Strains Found in Human and Fish with High Penicillin and Cefotaxime Non-Susceptibilities" Microorganisms 8, no. 7: 1055. https://doi.org/10.3390/microorganisms8071055
APA StyleLi, C., Sapugahawatte, D. N., Yang, Y., Wong, K. T., Lo, N. W. S., & Ip, M. (2020). Multidrug-Resistant Streptococcus agalactiae Strains Found in Human and Fish with High Penicillin and Cefotaxime Non-Susceptibilities. Microorganisms, 8(7), 1055. https://doi.org/10.3390/microorganisms8071055