Avian Haemosporidian Parasites in Three Wild Columbids from Germany
Abstract
:1. Introduction
- (I).
- Congruent with the pattern in samples from different European countries, Turtle Doves and Woodpigeons, sampled in Germany, possess a similar haemosporidian parasite prevalence, whereas Stock Doves have a lower infection prevalence.
- (II).
- Turtle Doves along a west–east gradient within Germany, across the presumed migratory divide, have a similar prevalence but different haemoproteid parasite lineages, reflecting differences in nonbreeding regions.
- (III).
- The H/L ratio of individuals with and without haemosporidian parasite infection does not vary significantly if only chronic infections, characterized by a low parasitemia (i.e., proportion of erythrocytes infected with haemosporidian parasites), are diagnosed.
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Parasite Detection via PCR Method
2.3. Phylogenetic and Statistical Analyses
2.4. Parasite Evidence via Examination of Blood Smears
3. Results
3.1. Haemosporidian Parasite Prevalence
3.2. Lineage Diversity Based on Nested PCR Assay
3.3. Comparison of the Detection Methods
3.4. H/L Ratio and Parasitemia
4. Discussion
4.1. Pattern of Infection and Lineage Diversity
4.2. Differences in Haemosporidian Parasite Detection Methods
4.3. H/L Ratio and Infection Status
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Emerging infectious diseases of wildlife—Threats to biodiversity and human health. Science 2000, 287, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Marcogliese, D.J. Parasites of the superorganism: Are they indicators of ecosystem health? Int. J. Parasitol. 2005, 35, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Paxton, K.L.; Cassin-Sackett, L.; Atkinson, C.T.; Videvall, E.; Campana, M.G.; Fleischer, R.C. Gene expression reveals immune response strategies of naïve Hawaiian honeycreepers experimentally infected with introduced avian malaria. J. Hered. 2023, 114, 326–340. [Google Scholar] [CrossRef]
- Robinson, R.A.; Lawson, B.; Toms, M.P.; Peck, K.M.; Kirkwood, J.K.; Chantrey, J.; Clatworthy, I.R.; Evans, A.D.; Hughes, L.A.; Hutchinson, O.C.; et al. Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 2010, 5, e12215. [Google Scholar] [CrossRef] [PubMed]
- Marcogliese, D.J. Parasites: Small players with crucial roles in the ecological theatre. EcoHealth 2004, 1, 151–164. [Google Scholar] [CrossRef]
- Garamszegi, L.Z.; Zagalska-Neubauer, M.; Canal, D.; Markó, G.; Szász, E.; Zsebők, S.; Szöllősi, E.; Herczeg, G.; Török, J. Malaria parasites, immune challenge, MHC variability, and predator avoidance in a passerine bird. Behav. Ecol. 2015, 26, 1292–1302. [Google Scholar] [CrossRef]
- Mukhin, A.; Palinauskas, V.; Platonova, E.; Kobylkov, D.; Vakoliuk, I.; Valkiūnas, G. The strategy to survive primary malaria infection: An experimental study on behavioural changes in parasitized birds. PLoS ONE 2016, 11, e0159216. [Google Scholar] [CrossRef]
- Fecchio, A.; Clark, N.J.; Bell, J.A.; Skeen, H.R.; Lutz, H.L.; De La Torre, G.M.; Vaughan, J.A.; Tkach, V.V.; Schunck, F.; Ferreira, F.C.; et al. Global drivers of avian haemosporidian infections vary across zoogeographical regions. Glob. Ecol. Biogeogr. 2021, 30, 2392–2406. [Google Scholar] [CrossRef]
- Barroso, P.; López-Olvera, J.R.; Kiluba, T.K.W.; Gortázar, C. Overcoming the Limitations of Wildlife Disease Monitoring. Res. Dir. One Health 2024, 2, e3. [Google Scholar] [CrossRef]
- Alava, J.J.; Tirapé, A.; Denkinger, J.; Calle, P.; Rosero, P.R.; Salazar, S.; Fair, P.A.; Raverty, S. Endangered Galápagos sea lions and fur seals under the siege of lethal avian flu: A cautionary note on emerging infectious viruses in endemic pinnipeds of the Galápagos Islands. Front. Anim. Sci. 2024, 11, 1457035. [Google Scholar] [CrossRef]
- Bunbury, N.; Jones, C.G.; Greenwood, A.G.; Bell, D.J. Epidemiology and conservation implications of Trichomonas gallinae infection in the endangered Mauritian pink pigeon. Biol. Conserv. 2008, 141, 153–161. [Google Scholar] [CrossRef]
- Lees, A.C.; Haskell, L.; Allinson, T.; Bezeng, S.B.; Burfield, I.J.; Renjifo, L.M.; Rosenberg, K.V.; Viswanathan, A.; Butchart, S.H.M. State of the World’s Birds. Annu. Rev. Environ. Resour. 2022, 47, 231–260. [Google Scholar] [CrossRef]
- Valkiūnas, G.; Ilgūnas, M.; Bukauskaitė, D.; Fragner, K.; Weissenböck, H.; Atkinson, C.T.; Iezhova, T.A. Characterization of Plasmodium relictum, a cosmopolitan agent of avian malaria. Malar. J. 2018, 17, 184. [Google Scholar] [CrossRef] [PubMed]
- Dadam, D.; Robinson, R.A.; Clements, A.; Peach, W.J.; Bennett, M.; Rowcliffe, J.M.; Cunningham, A.A. Avian malaria-mediated population decline of a widespread iconic bird species. R. Soc. Open Sci. 2019, 6, 182197. [Google Scholar] [CrossRef]
- LaPointe, D.A.; Atkinson, C.T.; Samuel, M.D. Ecology and conservation biology of avian malaria. Ann. N. Y. Acad. Sci. 2012, 1249, 211–226. [Google Scholar] [CrossRef]
- Videvall, E. Genomic advances in avian malaria research. Trends Parasitol. 2019, 35, 254–266. [Google Scholar] [CrossRef]
- Neumann, A.E.; Suarez-Rubio, M.; Renner, S.C. Haemosporidian intensity and nestlings’ life-history along an urban-to-rural gradient. Sci. Rep. 2024, 14, 17018. [Google Scholar] [CrossRef]
- Palinauskas, V.; Martínez-de la Puente, J.; Hernández-Soto, S.R.; Marzal, A. Experimental parasitology and ecoimmunology: Concepts and opportunities in avian haemosporidian studies. In Avian Malaria and Related Parasites in the Tropics; Santiago-Alarcon, D., Marzal, A., Eds.; Springer: Cham, Switzerland, 2020; pp. 527–558. [Google Scholar] [CrossRef]
- Dehnhard, N.; Quillfeldt, P.; Hennicke, J.C. Leucocyte profiles and HL ratios in Red-tailed Tropic-birds reflect the ontogeny of the immune system. J. Comp. Physiol. B 2011, 181, 641–648. [Google Scholar] [CrossRef]
- Davis, A.K.; Maney, D.L.; Maerz, J.C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Funct. Ecol. 2008, 22, 760–772. [Google Scholar] [CrossRef]
- Lüdtke, B.; Moser, I.; Santiago-Alarcon, D.; Fischer, M.; Kalko, E.K.; Schaefer, H.M.; Suarez-Rubio, M.; Tschapka, M.; Renner, S.C. Associations of Forest Type, Parasitism and Body Condition of Two European Passerines, Fringilla coelebs and Sylvia atricapilla. PLoS ONE 2013, 8, e81395. [Google Scholar] [CrossRef]
- Dunn, J.C.; Goodman, S.J.; Benton, T.G.; Hamer, K.C. Avian blood parasite infection during the non-breeding season: An overlooked issue in declining populations? BMC Ecol. 2013, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Norte, A.; Araújo, P.; Sampaio, H.; Sousa, J.; Ramos, J. Haematozoa infections in a great tit Parus major population in Central Portugal: Relationships with breeding effort and health. Ibis 2009, 151, 677–688. [Google Scholar] [CrossRef]
- Cornelius, E.A.; Davis, A.K.; Altizer, S.A. How important are hemoparasites to migratory songbirds? Evaluating physiological measures and infection status in three neotropical migrants during stopover. Physiol. Biochem. Zool. 2014, 87, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Alarcon, D.; Carbó-Ramírez, P.; Macgregor-Fors, I.; Chávez-Zichinelli, C.A.; Yeh, P.J. The prevalence of avian haemosporidian parasites in an invasive bird is lower in urban than in non-urban environments. Ibis 2018, 162, 201–214. [Google Scholar] [CrossRef]
- Valkiūnas, G. Avian Malaria Parasites and Other Haemosporidia; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- Bell, J.A.; Bell, L.E.; Achatz, T.J.; Bates, K.; White, R.D.; Tkach, V.V. Haemosporidian infection risk and community structure determined by duck feeding guild. Parasitology 2025, 152, 217–228. [Google Scholar] [CrossRef]
- Clark, N.J.; Clegg, S.M.; Lima, M.R. A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): New insights from molecular data. Int. J. Parasitol. 2014, 44, 329–338. [Google Scholar] [CrossRef]
- Ilgūnas, M.; Himmel, T.; Harl, J.; Dagys, M.; Valkiūnas, G.; Weissenböck, H. Exo-Erythrocytic development of avian haemosporidian parasites in European owls. Animals 2022, 12, 2212. [Google Scholar] [CrossRef]
- Pacheco, M.A.; Escalante, A.A. Origin and diversity of malaria parasites and other Haemosporida. Trends Parasitol. 2023, 39, 501–516. [Google Scholar] [CrossRef]
- Dunn, J.C.; Stockdale, J.E.; Bradford, E.L.; McCubbin, A.; Morris, A.J.; Grice, P.V.; Goodman, S.J.; Hamer, K.C. High rates of infection by blood parasites during the nestling phase in UK Columbids with notes on ecological associations. Parasitology 2017, 144, 622–628. [Google Scholar] [CrossRef]
- Salazar-Borunda, M.; Martínez-Guerrero, J.; Martínez-Montoya, J.; Vargas-Duarte, D.; Sierra-Franco, D.; Pereda-Solís, M. Prevalence and blood parasitaemia of Eurasian Collared Doves (Streptopelia decaocto) and Mourning Dove (Zenaida macroura) in Durango, Mexico. Abanico vet. 2022, 12, 1–15. [Google Scholar] [CrossRef]
- Schumm, Y.R.; Bakaloudis, D.; Barboutis, C.; Cecere, J.G.; Eraud, C.; Fischer, D.; Hering, J.; Hillerich, K.; Lormée, H.; Mader, V.; et al. Prevalence and genetic diversity of avian haemosporidian parasites in wild bird species of the order Columbiformes. Parasitol. Res. 2021, 120, 1405–1420. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.C.; Dunn, J.C.; Dawson, D.A.; Hipperson, H.; Horsburgh, G.J.; Morris, A.J.; Orsman, C.; Mallord, J.; Grice, P.V.; Hamer, K.C.; et al. Assessing rates of parasite coinfection and spatiotemporal strain variation via metabarcoding: Insights for the conservation of European turtle doves Streptopelia turtur. Mol. Ecol. 2022, 31, 2730–2751. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.E.R.; Novak, B.J.; Haile, J.; Heupink, T.H.; Fjeldså, J.; Gilbert, M.T.P.; Poinar, H.; Church, G.M.; Shapiro, B. Complete mitochondrial genomes of living and extinct pigeons revise the timing of the columbiform radiation. BMC Ecol. Evol. 2016, 16, 230. [Google Scholar] [CrossRef] [PubMed]
- Struthers, J.D. Doves and pigeons. In Pathology of Pet and Aviary Birds; Schmidt, R.E., Struthers, J.D., Phalen, D.N., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2024; Chapter 15; pp. 481–512. [Google Scholar] [CrossRef]
- Shurulinkov, P.; Ilieva, M. Spatial and temporal differences in the blood parasite fauna of passerine birds during the spring migration in Bulgaria. Parasitol. Res. 2009, 104, 1453–1458. [Google Scholar] [CrossRef]
- Lormée, H.; Barbraud, C.; Peach, W.; Carboneras, C.; Lebreton, J.D.; Moreno-Zarate, L.; Bacon, L.; Eraud, C. Assessing the sustainability of harvest of the European Turtle-dove along the European western flyway. Bird Conserv. Int. 2020, 30, 506–521. [Google Scholar] [CrossRef]
- Marx, M.; Korner-Nievergelt, F.; Quillfeldt, P. Analysis of ring recoveries of European turtle doves Streptopelia turtur—Flyways, timing of migration and origins of hunted birds. Acta Ornithol. 2016, 51, 55–70. [Google Scholar] [CrossRef]
- Martínez, J.; Martínez-de La Puente, J.; Herrero, J.; Del Cerro, S.; Lobato, E.; Rivero-De Aguilar, J.; Vásquez, R.A.; Merino, S. A restriction site to differentiate Plasmodium and Haemoproteus infections in birds: On the inefficiency of general primers for detection of mixed infections. Parasitology 2009, 136, 713722. [Google Scholar] [CrossRef]
- Griffiths, R.; Double, M.C.; Orr, K.; Dawson, R.J.G. A DNA test to sex most birds. Mol. Ecol. 1998, 7, 1071–1075. [Google Scholar] [CrossRef]
- Hellgren, O.; Waldenström, J.; Bensch, S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J. Parasitol. 2004, 90, 797–802. [Google Scholar] [CrossRef]
- Ciloglu, A.; Ellis, V.A.; Bernotienė, R.; Valkiūnas, G.; Bensch, S. A new one-step multiplex PCR assay for simultaneous detection and identification of avian haemosporidian parasites. Parasitol. Res. 2019, 118, 191–201. [Google Scholar] [CrossRef]
- Ferreira Junior, F.C.; Rodrigues, R.A.; Ellis, V.A.; Leite, L.O.; Borges, M.A.Z.; Braga, E.M. Habitat modification and seasonality influence avian haemosporidian parasite distributions in southeastern Brazil. PLoS ONE 2017, 12, e0178791. [Google Scholar] [CrossRef] [PubMed]
- Bensch, S.; Hellgren, O.; Peréz-Tris, J. MalAvi: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 2009, 9, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Leigh, J.W.; Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Clark, P.; Boardman, W.; Raidal, S. Atlas of Clinical Avian Hematology; Wiley-Blackwell: New York, USA, 2009. [Google Scholar]
- Bråthen, V.S.; Skomsø, D.B.; Bech, C. The Heterophil-to-Lymphocyte (H/L) ratio indicates varying physiological characteristics in nestlings compared to adults in a long-lived seabird. Birds 2025, 6, 4. [Google Scholar] [CrossRef]
- MalAvi. MalAvi: A Database for Avian Haemosporidian Parasites. Download of the ‘Hosts and Sites Table’. Available online: https://130.235.244.92/Malavi/ (accessed on 20 March 2025).
- Rodriguez, M.D.; Doherty, P.F.; Piaggio, A.J.; Huyvaert, K.P. Sex and nest type influence avian blood parasite prevalence in a high-elevation bird community. Parasit. Vectors 2021, 14, 145. [Google Scholar] [CrossRef]
- Fecchio, A.; Dias, R.I.; Ferreira, T.V.; Reyes, A.O.; Dispoto, J.H.; Weckstein, J.D.; Bell, J.A.; Tkach, V.V.; Pinho, J.B. Host foraging behavior and nest type influence prevalence of avian haemosporidian parasites in the Pantanal. Parasitol. Res. 2022, 121, 1407–1417. [Google Scholar] [CrossRef]
- Bielański, W. Afro-Palaearctic migrant birds rid themselves of haemoparasite infections when breeding in the temperate zone. Sci. Rep. 2024, 14, 28114. [Google Scholar] [CrossRef]
- Hasselquist, D.; Östman, Ö.; Waldenström, J.; Bensch, S. Temporal patterns of occurrence and transmission of the blood parasite Haemoproteus payevskyi in the great reed warbler Acrocephalus arundinaceus. J. Ornithol. 2007, 148, 401–409. [Google Scholar] [CrossRef]
- Svoboda, A.; Marthinsen, G.; Pavel, V.; Chutný, B.; Turčoková, L.; Lifjeld, J.T.; Johnsen, A. Blood parasite prevalence in the Bluethroat is associated with subspecies and breeding habitat. J. Ornithol. 2015, 156, 371–380. [Google Scholar] [CrossRef]
- Dimitrov, D.; Ilieva, M.; Ivanova, K.; Brlík, V.; Zehtindjiev, P. Detecting local transmission of avian malaria and related haemosporidian parasites (Apicomlexa, Haemosporida) at a Special Protection Area of Natura 2000 network. Parasitol. Res. 2018, 117, 2187–2199. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, N.M.R. Manifold habitat effects on the prevalence and diversity of avian blood parasites. Int. J. Parasitol. Parasites Wildl. 2015, 4, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Murdock, C.C.; Foufopoulos, J.; Simon, C.P. A transmission model for the ecology of an avian blood parasite in a temperate ecosystem. PLoS ONE 2013, 8, e76126. [Google Scholar] [CrossRef] [PubMed]
- Altizer, A.; Bartel, R.; Han, B.B. Animal migration and infectious disease risk. Science 2011, 331, 296–302. [Google Scholar] [CrossRef]
- Clark, N.J.; Clegg, S.M.; Klaassen, M. Migration strategy and pathogen risk: Non-breeding distribution drives malaria prevalence in migratory waders. Oikos 2016, 125, 1358–1368. [Google Scholar] [CrossRef]
- Ishtiaq, F.; Renner, S.C. Bird migration and vector-borne parasite transmission. In Avian Malaria and Related Parasites in the Tropics; Santiago-Alarcon, D., Marzal, A., Eds.; Springer: Cham, Switzerland, 2020; pp. 513–526. [Google Scholar] [CrossRef]
- Loehle, C. Social barriers to pathogen transmission in wild animal populations. Ecology 1995, 76, 326–335. [Google Scholar] [CrossRef]
- Piersma, T. Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variance in parasite pressure. Oikos 1997, 80, 623–631. [Google Scholar] [CrossRef]
- Waldenström, J.; Bensch, S.; Kiboi, S.; Hasselquist, D.; Ottosson, U. Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol. Ecol. 2002, 11, 1545–1554. [Google Scholar] [CrossRef]
- Hahn, S.; Briedis, M.; Barboutis, C.; Schmid, R.; Schulze, M.; Seifert, N.; Szép, T.; Emmenegger, T. Spatially different annual cycles but similar haemosporidian infections in distant populations of collared sand martins. BMC Zool. 2021, 6, 6. [Google Scholar] [CrossRef]
- Pagenkopp, K.M.; Klicka, J.; Durrant, K.; Garvin, J.C.; Fleischer, R.C. Geographic variation in malarial parasite lineages in the common yellowthroat (Geothlypis trichas). Conserv. Genet. 2008, 9, 1577–1588. [Google Scholar] [CrossRef]
- Calderon, L.; Campagna, L.; Wilke, T.; Lormee, H.; Eraud, C.; Dunn, J.C.; Rocha, G.; Zehtindjiev, P.; Bakaloudis, D.E.; Metzger, B.; et al. Genomic evidence of demographic fluctuations and lack of genetic structure across flyways in a long distance migrant, the European turtle dove. BMC Evol. Biol. 2016, 16, 237. [Google Scholar] [CrossRef] [PubMed]
- Prakas, P.; Butkauskas, D.; Švažas, S.; Bea, A.; Yanenko, V.; Ragauskas, A.; Vaitkuvienė, D. The genetic diversity and structure of the European Turtle Dove Streptopelia turtur. Animals 2021, 11, 1283. [Google Scholar] [CrossRef] [PubMed]
- Zwarts, L.; Bijlsma, R.G.; van der Kamp, J.; Wymenga, E. Living on the Edge: Wetlands and Birds in a Changing Sahel, 2nd ed.; KNNV Publishing: Zeist, The Netherlands, 2009; Chapter 32: European turtle dove Streptopelia turtur; pp. 378–389. [Google Scholar]
- Atkinson, C.T.; van Riper, C. Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon and Haemoproteus. In Bird–Parasite Interactions, Ecology, Evolution and Behaviour; Loye, J.E., Zuk, M., Eds.; Oxford University Press: Oxford, UK, 1991; pp. 19–48. [Google Scholar]
- Krams, R.; Krama, T.; Elferts, D.; Daukšte, J.; Raibarte, P.; Brūmelis, G.; Dauškane, I.; Strode, L.; Krams, I.A. High blood parasite infection rate and low fitness suggest that forest water bodies comprise ecological traps for pied flycatcher. Birds 2022, 3, 221–233. [Google Scholar] [CrossRef]
- Bensch, S.; Åkesson, S. Temporal and spatial variation of hematozoans in Scandinavian Willow Warblers. J. Parasitol. 2003, 89, 388–391. [Google Scholar] [CrossRef]
- Neto, M.J.; Mellinger, S.; Halupka, L.; Marzal, A.; Zehtindjiev, P.; Westerdahl, H. Seasonal dynamics of haemosporidian (Apicomplexa, Haemosporida) parasites in house sparrows Passer domesticus at four European sites: Comparison between lineages and the importance of screening methods. Int. J. Parasitol. 2020, 50, 523–532. [Google Scholar] [CrossRef]
- Santiago-Alarcon, D.; Bloch, R.; Rolshausen, G.; Schaefer, H.M.; Segelbacher, G. Prevalence, diversity, and interaction patterns of avian haemosporidians in a four-year study of blackcaps in a migratory divide. Parasitology 2011, 138, 824–835. [Google Scholar] [CrossRef]
- Fallon, S.M.; Ricklefs, R.E. Parasitemia in PCR-detected Plasmodium and Haemoproteus infections in birds. J. Avian Biol. 2008, 39, 514–522. [Google Scholar] [CrossRef]
- Markakis, G.; Palinauskas, V.; Aželytė, J.; Symeonidou, I.; Sutkaitytė, V.; Gelasakis, A.I.; Komnenou, A.; Papadopoulos, E. First assessment of the prevalence of haemosporidian infections in Accipitriformes raptors in Greece. Parasitol. Res. 2025, 124, 2. [Google Scholar] [CrossRef]
- Musa, S.; Mackenstedt, U.; Woog, F.; Dinkel, A. Untangling the actual infection status: Detection of avian haemosporidian parasites of three Malagasy bird species using microscopy, multiplex PCR, and nested PCR methods. Parasitol. Res. 2022, 121, 2817–2829. [Google Scholar] [CrossRef]
- Xuan, M.N.T.; Kaewlamun, W.; Saiwichai, T.; Thanee, S.; Poofery, J.; Tiawsirisup, S.; Channumsin, M.; Kaewthamasorn, M. Development and application of a novel multiplex PCR assay for the differentiation of four haemosporidian parasites in the chicken Gallus gallus domesticus. Vet. Parasitol. 2021, 293, 109431. [Google Scholar] [CrossRef]
- Chagas, C.R.F.; de Oliveira Guimarães, L.; Monteiro, E.F. Hemosporidian parasites of free-living birds in the São Paulo Zoo, Brazil. Parasitol. Res. 2016, 115, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Valkiūnas, G.; Iezhova, T.A.; Loisseau, C.; Sehgal, R.N.M. Nested cytochrome b polymerase chain reaction diagnostics detect sporozoites of haemosporidian parasites in peripheral blood of naturally infected birds. J. Parasitol. 2009, 95, 1512–1515. [Google Scholar] [CrossRef] [PubMed]
- Wardjomto, M.B.; Ndlovu, M.; Pérez-Rodríguez, A.; Pori, T.; Nangammbi, T.C. Comparative performance of microscopy, nested PCR, and real-time PCR for screening avian haemosporidian parasites in Afrotropical starlings (family Sturnidae). Parasitol. Res. 2023, 122, 2393–2404. [Google Scholar] [CrossRef] [PubMed]
- Ciloglu, A.; Ergen, A.G.; Inci, A.; Dik, B.; Duzlu, O.; Onder, Z.; Yetismis, G.; Bensch, S.; Valkiūnas, G.; Yildirim, A. Prevalence and genetic diversity of avian haemosporidian parasites at an intersection point of bird migration routes: Sultan Marshes National Park, Turkey. Acta Trop. 2020, 210, 105465. [Google Scholar] [CrossRef]
- Valkiūnas, G.; Iezhova, T.A.; Križanauskienė, A.; Palinauskas, V.; Sehgal, R.N.M.; Bensch, S. A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J. Parasitol. 2008, 94, 1395–1401. [Google Scholar] [CrossRef]
- Bernotienė, R.; Palinauskas, V.; Iezhova, T.; Murauskaitė, D.; Valkiūnas, G. Avian haemosporidian parasites (Haemosporida): A comparative analysis of different polymerase chain reaction assays in detection of mixed infections. Exp. Parasitol. 2016, 163, 31–37. [Google Scholar] [CrossRef]
- Clark, P. Observed variation in the heterophil to lymphocyte ratio values of birds undergoing investigation of health status. Comp. Clin. Pathol. 2015, 24, 1151–1157. [Google Scholar] [CrossRef]
- Lashev, L.; Hubenov, H.; Nikolov, Y.; Lasheva, V.; Mihailo, R. Comparison of some haematological parameters between three bird species from Columbidae family—Short communication. Vet. Arhiv. 2009, 79, 409–414. [Google Scholar]
- Minias, P. Evolution of heterophil/lymphocyte ratios in response to ecological and life-history traits: A comparative analysis across the avian tree of life. J. Anim. Ecol. 2019, 88, 554–565. [Google Scholar] [CrossRef]
- Thiam, M.; Sánchez, A.L.B.; Zhang, J.; Wen, J.; Zhao, G.; Wang, Q. Investigation of the potential of heterophil/lymphocyte ratio as a biomarker to predict colonization resistance and inflammatory response to Salmonella enteritidis infection in chicken. Pathogens 2022, 11, 72. [Google Scholar] [CrossRef]
- Figuerola, J.; Munoz, E.; Gutierrez, R.; Ferrer, D. Blood parasites, leucocytes and plumage brightness in the Cirl Bunting, Emberiza cirlus. Funct. Ecol. 1999, 13, 594–601. [Google Scholar] [CrossRef]
- Minias, P.; Włodarczyk, R.; Meissner, W. Leukocyte profiles are associated with longevity and survival, but not migratory effort: A comparative analysis of shorebirds. Funct. Ecol. 2018, 32, 369–378. [Google Scholar] [CrossRef]
- Davis, A.K.; Maney, D.L. The use of glucocorticoid hormones or leucocyte profiles to measure stress in vertebrates: What’s the difference? Methods Ecol. Evol. 2018, 9, 1556–1568. [Google Scholar] [CrossRef]
- Xie, S.; Romero, M.L.; Htut, Z.W.; McWhorter, T.J. Stress responses to heat exposure in three species of Australian desert birds. Physiol. Biochem. Zool. 2017, 90, 348–358. [Google Scholar] [CrossRef]
- Zediri, H.; Belabed, A.I.; Bouslama, Z. Immune status of the Eurasian Collared dove Streptopelia decaocto in northeastern Algeria. J. Wildlife Biodivers. 2024, 8, 1–26. [Google Scholar] [CrossRef]
- Pap, P.L.; Vagasi, C.I.; Czirjak, G.A.; Titilincu, A.; Pintea, A.; Osváth, G.; Fülöp, A.; Barta, Z. The effect of coccidians on the condition and immune profile of molting house sparrows (Passer domesticus). Auk 2011, 128, 330–339. [Google Scholar] [CrossRef]
- Fokidis, H.B.; Greiner, E.C.; Deviche, P. Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. J. Avian Biol. 2008, 39, 300–310. [Google Scholar] [CrossRef]
- Prompiran, P.; Poltep, K.; Chaisilp, N.; Chakritbudsabong, W.; Buamas, S.; Rungarunlert, S. Haemosporidian parasites of White-Breasted Waterhens (Amaurornis phoenicurus), with a report and molecular characterization of Haemoproteus gallinulae in Thailand. Animals 2023, 13, 2006. [Google Scholar] [CrossRef]
- Wojczulanis-Jakubas, K.; Jakubas, D.; Czujkowska, A.; Kulaszewicz, I.; Kruszewicz, A.G. Blood parasite infestation and the leukocyte profiles in adult and immature reed warblers (Acrocephalus scirpaceus) and sedge warblers (Acrocephalus schoenobaenus) during autumn migration. Ann. Zool. Fenn. 2012, 49, 341–349. [Google Scholar] [CrossRef]
- Dimitrov, D.; Marinov, M.P.; Bobeva, A.; Ilieva, M.; Bedev, K.; Atanasov, T.; Zehtindjiev, P. Haemosporidian parasites and leukocyte profiles of pre-migratory rosy starlings (Pastor roseus) brought into captivity. Anim. Migr. 2019, 6, 41–48. [Google Scholar] [CrossRef]
Host Species | Sampling Site a | Sample Size FTA | Prevalence Nested PCR | Prevalence One-Step Multiplex | Sample Size Blood Smear | Prevalence Blood Smear Examination |
---|---|---|---|---|---|---|
Stock Dove C. oenas | 13 | 0% | 0% | 13 | 0% | |
Hesse | 4 | 0% | 0% | 4 | 0% | |
Thuringia | 9 | 0% | 0% | 9 | 0% | |
Woodpigeon C. palumbus | Hesse | 7 | 85.7% | 85.7% | 7 | 42.9% |
Turtle Dove S. turtur | 47 | 53.2% | 46.8% | 46 | 45.7% | |
Brandenburg | 5 | 80.0% | 80.0% | 5 | 0% | |
Hesse | 19 | 47.4% | 36.8% | 18 | 44.4% | |
Saxony-Anhalt | 11 | 36.4% | 27.3% | 11 | 36.4% | |
Thuringia | 12 | 66.7% | 66.7% | 12 | 75.0% | |
All samples | 67 | 46.3% | 41.8% | 66 | 36.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schumm, Y.R.; Frank, C.; Gerz, U.; Ruß, H.; Metzger, B.; Quillfeldt, P. Avian Haemosporidian Parasites in Three Wild Columbids from Germany. Microorganisms 2025, 13, 1305. https://doi.org/10.3390/microorganisms13061305
Schumm YR, Frank C, Gerz U, Ruß H, Metzger B, Quillfeldt P. Avian Haemosporidian Parasites in Three Wild Columbids from Germany. Microorganisms. 2025; 13(6):1305. https://doi.org/10.3390/microorganisms13061305
Chicago/Turabian StyleSchumm, Yvonne R., Celine Frank, Uta Gerz, Hannes Ruß, Benjamin Metzger, and Petra Quillfeldt. 2025. "Avian Haemosporidian Parasites in Three Wild Columbids from Germany" Microorganisms 13, no. 6: 1305. https://doi.org/10.3390/microorganisms13061305
APA StyleSchumm, Y. R., Frank, C., Gerz, U., Ruß, H., Metzger, B., & Quillfeldt, P. (2025). Avian Haemosporidian Parasites in Three Wild Columbids from Germany. Microorganisms, 13(6), 1305. https://doi.org/10.3390/microorganisms13061305