Matrine Attenuates Streptococcus agalactiae Virulence by Suppressing Capsular Polysaccharide Synthesis and Host Adhesion Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Bacteria Growth
2.2. Drugs and Chemicals
2.3. Cell Viability Assay
2.4. Determination of the Minimum Inhibitory Concentration
2.5. Time-Dependent Killing Curve
2.6. Evaluation of Cell Adhesion
2.7. Cow Whole-Blood Killing Assays
2.8. TEM Assays
2.9. Biofilm Inhibition
2.10. Transcriptional Profiling and Analysis
2.11. Quantitative Real-Time PCR Analysis
2.12. Statistical Analysis
3. Results
3.1. The Inhibition of GBS by Matrine in a Concentration-Dependent Manner
3.2. Effect of Matrine on the Adhesion of GBS
3.3. Effect of Matrine on Whole-Blood Viability of GBS
3.4. Effect of Matrine on Capsular Polysaccharides of GBS
3.5. Effect of Matrine on Biofilm of GBS
3.6. Mechanisms by Which Matrine Regulates the Expression of GBS-Associated Virulence Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Li, L.; Niu, H.; Zhan, J.; Tu, Y.; Jiang, L.; Zhao, Y. Matrine attenuates bovine mammary epithelial cells inflammatory responses induced by Streptococcus agalactiae through inhibiting NF-κB and MAPK signaling pathways. Int. Immunopharmacol. 2022, 112, 109206. [Google Scholar] [CrossRef] [PubMed]
- Brahmandam, S.; Brahmandam, B.S.; Brahmandam, S.; Brahmandam, S. GBS: A rare initial presentation of SLE. Chest 2024, 166, A3018–A3019. [Google Scholar] [CrossRef]
- Andrade, E.B.; Lorga, I.; Roque, S.; Geraldo, R.; Mesquita, P.; Castro, R.; Simões-Costa, L.; Costa, M.; Faustino, A.; Ribeiro, A.; et al. Maternal vaccination against Group B Streptococcus glyceraldehyde-3-phosphate dehydrogenase leads to gut dysbiosis in the offspring. Brain Behav. Immun. 2022, 103, 186–201. [Google Scholar] [CrossRef]
- Lu, J.; Guevara, M.A.; Francis, J.D.; Spicer, S.K.; Moore, R.E.; Chambers, S.A.; Craft, K.M.; Manning, S.D.; Townsend, S.D.; Gaddy, J.A. Analysis of Susceptibility to the Antimicrobial and Anti-Biofilm Activity of Human Milk Lactoferrin in Clinical Strains of Streptococcus agalactiae with Diverse Capsular and Sequence Types. Front. Cell. Infect. Microbiol. 2021, 11, 740872. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Yao, H.; Jiang, L.; Tong, J. Intramammary infusion of matrine-chitosan hydrogels for treating subclinical bovine mastitis—Effects on milk microbiome and metabolites. Front. Microbiol. 2022, 13, 950231. [Google Scholar] [CrossRef] [PubMed]
- Magann, N.L.; Westley, E.; Sowden, M.J.; Gardiner, M.G.; Sherburn, M.S. Total Synthesis of Matrine Alkaloids. J. Am. Chem. Soc. 2022, 144, 19695–19699. [Google Scholar] [CrossRef]
- Lu, D.; Wu, S.; Wang, X.; Zhang, J.; Xu, Y.; Tao, L.; Shen, X. Oxymatrine alleviates ALD-induced cardiac hypertrophy by regulating autophagy via activation Nrf2/SIRT3 signaling pathway. Phytomedicine 2025, 138, 156389. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, T.; Yan, J.; Li, X.; Xie, Y.; Chen, H. Fabrication and characterization of matrine-loaded konjac glucomannan/fish gelatin composite hydrogel as antimicrobial wound dressing. Food Hydrocoll. 2020, 104, 105702. [Google Scholar] [CrossRef]
- Bei, J.; Wu, J.; Liu, J. Re-N-acetylation of group B Streptococcus type Ia capsular polysaccharide improves the immunogenicity of glycoconjugate vaccines. Carbohydr. Polym. 2024, 330, 121848. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, D.; Ren, L.; Wang, N.; Jia, Y.; Zheng, Z.; Cai, W.; Fu, H.; Li, G. Sialylation Shields Glycoproteins from Oxidative Stress: Mechanistic Insights into Sialic Acid Oxidation and Structural Stability. J. Am. Chem. Soc. 2025, 147, 5828–5838. [Google Scholar] [CrossRef]
- Alsheim, E.; Thet, N.T.; Laabei, M.; Jenkins, A.T.A. Development and early testing of a simple, low cost, fast sensor for maternal and neonatal group B Streptococcus. Biosens. Bioelectron. 2024, 247, 115923. [Google Scholar] [CrossRef] [PubMed]
- Sainatham, C.; Devender, H.M.; Jinka, C.; Goel, S.; Babu, A.D. GBS in the setting of SLE and dengue: A case report. Chest 2023, 164, A2640–A2641. [Google Scholar] [CrossRef]
- Yi, J.; Li, M.; Wu, X.; He, J. Isolation, Identification and Drug Resistance Analysis of Streptococcus agalactiae from Cattle. Prog. Vet. Med. 2022, 43, 40–43. [Google Scholar] [CrossRef]
- Hou, X.; Gao, J.; Jin, J.; Li, Y.; Gao, Y.; Liu, M.; Jiang, L.; Tong, J. Antibacterial Activity of Martine against Bovine Streptococcus agalactiae in vitro. Acta Vet. Zootech. Sin. 2023, 54, 1300–1309. [Google Scholar] [CrossRef]
- Jia, F.; Ma, W.; Zhang, X.; Wang, D.; Zhou, X. Matrine and baicalin inhibit apoptosis induced by Panton-Valentine leukocidin of Staphylococcus aureus in bovine mammary epithelial cells. J. Dairy Sci. 2020, 103, 2731–2742. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, S.; Ye, L.; Tong, J.; Jiang, L. Chitosan-derivative nanoparticles loaded with dihydromyricetin: Characterization, antibacterial and antioxidant activities. Carbohydr. Polym. Technol. Appl. 2024, 8, 100532. [Google Scholar] [CrossRef]
- Wang, T.; Cui, X.; Cai, S.; Zou, X.; Zheng, S.; Li, Y.; Zhang, Z. Multifunctional phytochemical nanoplatform for comprehensive treatment of all-stage MRSA biofilm associated infection and its accompanying inflammation. Chem. Eng. J. 2024, 480, 147951. [Google Scholar] [CrossRef]
- Whidbey, C.; Harrell, M.I.; Burnside, K.; Ngo, L.; Becraft, A.K.; Iyer, L.M.; Aravind, L.; Hitti, J.; Waldorf, K.M.A.; Rajagopal, L. A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta. J. Exp. Med. 2013, 210, 1265–1281. [Google Scholar] [CrossRef]
- Patras, K.A.; Derieux, J.; Al-Bassam, M.M.; Adiletta, N.; Vrbanac, A.; Lapek, J.D.; Zengler, K.; Gonzalez, D.J.; Nizet, V. Group B Streptococcus Biofilm Regulatory Protein A Contributes to Bacterial Physiology and Innate Immune Resistance. J. Infect. Dis. 2018, 218, 1641–1652. [Google Scholar] [CrossRef]
- Ehrnström, B.; Kojen, J.F.; Giambelluca, M.; Ryan, L.; Moen, S.H.; Hu, Z.; Yin, H.; Mollnes, T.E.; Damås, J.K.; Espevik, T.; et al. TLR8 and complement C5 induce cytokine release and thrombin activation in human whole blood challenged with Gram-positive bacteria. J. Leukoc. Biol. 2020, 107, 673–683. [Google Scholar] [CrossRef]
- Uchiyama, S.; Sun, J.; Fukahori, K.; Ando, N.; Wu, M.; Schwarz, F.; Siddiqui, S.S.; Varki, A.; Marth, J.D.; Nizet, V. Dual actions of group B Streptococcus capsular sialic acid provide resistance to platelet-mediated antimicrobial killing. Proc. Natl. Acad. Sci. USA 2019, 116, 7465–7470. [Google Scholar] [CrossRef] [PubMed]
- Schuchat, A. Group B streptococcus. Lancet 1999, 353, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Saucedo, A.M.; Bromwich, K.A.; Alvarez, M.; Ghartey, J.; Harper, L.M.; Levine, L.D.; Raghuraman, N.; Cahill, A.G. GBS colonization and risk of infection with foley catheter inductions. Am. J. Obstet. Gynecol. 2023, 228, S422. [Google Scholar] [CrossRef]
- Kokoulin, M.S.; Kuzmich, A.S.; Filshtein, A.P.; Prassolov, V.S.; Romanenko, L.A. Capsular polysaccharide from the marine bacterium Cobetia marina induces apoptosis via both caspase-dependent and mitochondria-mediated pathways in HL-60 cells. Carbohydr. Polym. 2025, 347, 122791. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, S.; Renaud, S.J.; Zhang, Q.; Qi, H.; Zhou, H.; Jin, Y.; Yu, H.; Xu, Y.; Huang, H.; et al. Structural elucidation of a capsular polysaccharide from Bacteroides uniformis and its ameliorative impact on DSS-induced colitis in mice. Int. J. Biol. Macromol. 2024, 279, 135119. [Google Scholar] [CrossRef]
- Nonne, F.; Iacono, L.D.; Bertuzzi, S.; Unione, L.; Proietti, D.; Norais, N.; Margarit, I.; Adamo, R.; Barbero, J.J.; Carboni, F.; et al. A Multidisciplinary Structural Approach to the Identification of the Haemophilus influenzae Type b Capsular Polysaccharide Protective Epitope. ACS Cent. Sci. 2024, 10, 978–987. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Olson, J.; Beasley, F.C.; Tung, C.; Zhang, J.; Crocker, P.R.; Varki, A.; Nizet, V. Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathog. 2014, 10, e1003846. [Google Scholar] [CrossRef]
- Noble, K.; Lu, J.; Guevara, M.A.; Doster, R.S.; Chambers, S.A.; Rogers, L.M.; Moore, R.E.; Spicer, S.K.; Eastman, A.J.; Francis, J.D.; et al. Group B Streptococcus cpsE Is Required for Serotype V Capsule Production and Aids in Biofilm Formation and Ascending Infection of the Reproductive Tract during Pregnancy. ACS Infect. Dis. 2021, 7, 2686–2696. [Google Scholar] [CrossRef]
- Jensen, P.A.; Zhu, Z.; van Opijnen, T. Antibiotics Disrupt Coordination between Transcriptional and Phenotypic Stress Responses in Pathogenic Bacteria. Cell Rep. 2017, 20, 1705–1716. [Google Scholar] [CrossRef]
- Hao, X.; Yan, W.; Yang, J.; Bai, Y.; Qian, H.; Lou, Y.; Ju, P.; Zhang, D. Matrine@chitosan-D-proline nanocapsules as antifouling agents with antibacterial properties and biofilm dispersibility in the marine environment. Front. Microbiol. 2022, 13, 950039. [Google Scholar] [CrossRef]
- Flores-Kim, J.; Dobihal, G.S.; Bernhardt, T.G.; Rudner, D.Z. WhyD tailors surface polymers to prevent premature bacteriolysis and direct cell elongation in Streptococcus pneumoniae. eLife 2022, 11, e76392. [Google Scholar] [CrossRef] [PubMed]
- Kolar, S.L.; Kyme, P.; Tseng, C.W.; Soliman, A.; Kaplan, A.; Liang, J.; Nizet, V.; Jiang, D.; Murali, R.; Arditi, M.; et al. Group B Streptococcus Evades Host Immunity by Degrading Hyaluronan. Cell Host Microbe 2015, 18, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Solano, C.; Echeverz, M.; Lasa, I. Biofilm dispersion and quorum sensing. Curr. Opin. Microbiol. 2014, 18, 96–104. [Google Scholar] [CrossRef]
- Pickering, A.C.; Vitry, P.; Prystopiuk, V.; Garcia, B.; Höök, M.; Schoenebeck, J.; Geoghegan, J.A.; Dufrêne, Y.F.; Fitzgerald, J.R. Host-specialized fibrinogen-binding by a bacterial surface protein promotes biofilm formation and innate immune evasion. PLoS Pathog. 2019, 15, e1007816. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Sun, L.; Yang, X.; Pan, X.; Huang, Z.; Zhang, X.; Gong, M.; Fan, Z.; Li, L.; Cui, X.; et al. Regulatory protein SrpA controls phage infection and core cellular processes in Pseudomonas aeruginosa. Nat. Commun. 2018, 9, 1846. [Google Scholar] [CrossRef]
- Li, J.; Nie, M.; Ma, H.; Tao, X.; Sun, Y.; Tu, X.; Zhang, P.; Zhang, L.Q.; Jia, R.; He, Y.X.; et al. Quorum Sensing Coordinates Carbon and Nitrogen Metabolism to Optimize Public Goods Production in Pseudomonas fluorescens 2P24. Adv. Sci. 2025, e2412224. [Google Scholar] [CrossRef]
- Zhang, X.L.; Báti, G.; Li, C.; Guo, A.; Yeo, C.; Ding, H.; Pal, K.B.; Xu, Y.; Qiao, Y.; Liu, X.W. GlcNAc-1,6-anhydro-MurNAc Moiety Affords Unusual Glycosyl Acceptor that Terminates Peptidoglycan Elongation. J. Am. Chem. Soc. 2024, 146, 7400–7407. [Google Scholar] [CrossRef]
- Ji, N.; Li, H.; Zhang, Y.; Li, Y.; Wang, P.; Chen, X.; Liu, Y.N.; Wang, J.Q.; Yang, Y.; Chen, Z.S.; et al. Lansoprazole (LPZ) reverses multidrug resistance (MDR) in cancer through impeding ATP-binding cassette (ABC) transporter-mediated chemotherapeutic drug efflux and lysosomal sequestration. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer Chemother. 2024, 76, 101100. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, T.; Gao, L.; Wang, Y.; Liu, L.; Tian, T.; Shi, Y.; Zhang, J.; Zhao, Z.; Lu, D.; et al. Extracellular fibrinogen-binding protein released by intracellular Staphylococcus aureus suppresses host immunity by targeting TRAF3. Nat. Commun. 2022, 13, 5493. [Google Scholar] [CrossRef]
- Thomas, S.; Arora, S.; Liu, W.; Churion, K.; Wu, Y.; Höök, M. vhp Is a Fibrinogen-Binding Protein Related to vWbp in Staphylococcus aureus. mBio 2021, 12, e0116721. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Wang, K.; Zhang, H.; Luo, C.; Zhao, Z.; Tong, J. Matrine Attenuates Streptococcus agalactiae Virulence by Suppressing Capsular Polysaccharide Synthesis and Host Adhesion Pathways. Microorganisms 2025, 13, 1192. https://doi.org/10.3390/microorganisms13061192
Guo S, Wang K, Zhang H, Luo C, Zhao Z, Tong J. Matrine Attenuates Streptococcus agalactiae Virulence by Suppressing Capsular Polysaccharide Synthesis and Host Adhesion Pathways. Microorganisms. 2025; 13(6):1192. https://doi.org/10.3390/microorganisms13061192
Chicago/Turabian StyleGuo, Shijiao, Kaiming Wang, Hua Zhang, Chaochao Luo, Zixuan Zhao, and Jinjin Tong. 2025. "Matrine Attenuates Streptococcus agalactiae Virulence by Suppressing Capsular Polysaccharide Synthesis and Host Adhesion Pathways" Microorganisms 13, no. 6: 1192. https://doi.org/10.3390/microorganisms13061192
APA StyleGuo, S., Wang, K., Zhang, H., Luo, C., Zhao, Z., & Tong, J. (2025). Matrine Attenuates Streptococcus agalactiae Virulence by Suppressing Capsular Polysaccharide Synthesis and Host Adhesion Pathways. Microorganisms, 13(6), 1192. https://doi.org/10.3390/microorganisms13061192