Dynamic Response Mechanisms of Anammox Reactors Under Nitrogen-Loading Fluctuations: Nitrogen Removal Performance, Microbial Community Succession, and Metabolic Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anammox Reactor Configuration
2.2. Synthetic Wastewater and Operational Strategy
2.3. Analytical Methods
2.4. High-Throughput Sequencing
3. Results and Discussion
3.1. Performance Variation of Anammox Bioreactor
3.2. Evolution of Microbial Communities in Bioreactors Under the Influence of Nitrogen Loading
3.3. Co-Occurrence Network Analysis
3.4. Metabolic Pathway Analysis of Microorganisms in the Reactor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.; Li, Z.; Yu, J.; Feng, J.; Hou, H.; Chi, R. Vertical distribution and occurrence state of the residual leaching agent (ammonium sulfate) in the weathered crust elution-deposited rare earth ore. J. Environ. Manag. 2021, 299, 113642. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, W.; Zhang, Y.; Chen, C.; Wu, W.; Zhang, T.C. Microbial communities in rare earth mining soil after in-situ leaching mining. Sci. Total Environ. 2021, 755 Pt 1, 142521. [Google Scholar] [CrossRef]
- Tang, J.; Xue, Q.; Chen, H.; Li, W. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment. Environ. Sci. Pollut. Res. 2017, 24, 12918–12926. [Google Scholar] [CrossRef]
- Yang, X.J.; Lin, A.; Li, X.L.; Wu, Y.; Zhou, W.; Chen, Z. China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ. Dev. 2013, 8, 131–136. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Z.; Yu, J.; Xu, Z.; Chi, R. Process optimization of rare earth and aluminum leaching from weathered crust elution-deposited rare earth ore with compound ammonium salts. J. Rare Earths 2016, 34, 413–419. [Google Scholar] [CrossRef]
- Zhang, Q.; Ren, F.; Li, F.; Chen, G.; Yang, G.; Wang, J.; Du, K.; Liu, S.; Li, Z. Ammonia nitrogen sources and pollution along soil profiles in an in-situ leaching rare earth ore. Environ. Pollut. 2020, 267, 115449. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, Z.; Yang, L.; Ren, Z.; Shao, P.; Shi, H.; Xiao, X.; Pavlostathis, S.G.; Fang, L.; Luo, X. Successful isolation of a tolerant co-flocculating microalgae towards highly efficient nitrogen removal in harsh rare earth element tailings (REEs) wastewater. Water Res. 2019, 166, 115076. [Google Scholar] [CrossRef]
- Ren, Z.Q.; Wang, H.; Zhang, L.-G.; Du, X.-N.; Huang, B.-C.; Jin, R.-C. A review of anammox-based nitrogen removal technology: From microbial diversity to engineering applications. Bioresour. Technol. 2022, 363, 127896. [Google Scholar] [CrossRef]
- Mai, W.; Chen, J.; Liu, H.; Liang, J.; Tang, J.; Wei, Y. Advances in Studies on Microbiota Involved in Nitrogen Removal Processes and Their Applications in Wastewater Treatment. Front. Microbiol. 2021, 12, 746293. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, S.; Yuan, Q.; Liu, Y.; Meng, Y.; Luan, F. Formation of iron-rich encrustation layer on anammox granules for high load stress resistance: Performance, advantages, and mechanisms. Bioresour. Technol. 2024, 406, 131046. [Google Scholar] [CrossRef]
- Ali, M.; Okabe, S. Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues. Chemosphere 2015, 141, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Dou, Q.; Zhang, L.; Lan, S.; Hao, S.; Guo, W.; Sun, Q.; Wang, Y.; Peng, Y.; Wang, X.; Yang, J. Metagenomics illuminated the mechanism of enhanced nitrogen removal and vivianite recovery induced by zero-valent iron in partial-denitrification/anammox process. Bioresour. Technol. 2022, 356, 127317. [Google Scholar] [CrossRef]
- Luo, Z.; Li, Y.; Chen, B.; Lei, M.; Zhang, N.; Zhang, X.; Li, J. Effect of free ammonia on partial denitrification: Long-term performance, mechanism, and feasibility of PD/Anammox-FBBR for mature landfill leachate treatment. Water Res. 2023, 243, 120238. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Qian, J.; Jin, X.; Zhang, L.; You, K.; Yu, P.-F.; Fu, J.-X. How phenol stresses anammox for the treatment of ammonia-rich wastewater: Phenomena, microbial community evolution and molecular modeling. Bioresour. Technol. 2022, 347, 126747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-Q.; Zhao, Y.-H.; Wang, C.-J.; Bai, Y.-H.; Wu, D.; Wu, J.; Tian, G.-M.; Shi, M.-L.; Mahmood, Q.; Jin, R.-C. Expression of the nirS, hzsA, and hdh genes and antibiotic resistance genes in response to recovery of anammox process inhibited by oxytetracycline. Sci. Total Environ. 2019, 681, 56–65. [Google Scholar] [CrossRef]
- Su, H.; Zhang, D.; Antwi, P.; Xiao, L.; Zhang, Z.; Deng, X.; Lai, C.; Zhao, J.; Deng, Y.; Liu, Z.; et al. Adaptation, restoration and collapse of anammox process to La(III) stress: Performance, microbial community, metabolic function and network analysis. Bioresour. Technol. 2021, 325, 124731. [Google Scholar] [CrossRef]
- Xu, L.Z.; Wu, J.; Xia, W.J.; Jin, L.Y.; Zhao, Y.H.; Fan, N.S.; Huang, B.C.; Jin, R.C. Adaption and restoration of anammox biomass to Cd(II) stress: Performance, extracellular polymeric substance and microbial community. Bioresour. Technol. 2019, 290, 121766. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Liu, W. Effect of metal and metal oxide engineered nano particles on nitrogen bio-conversion and its mechanism: A review. Chemosphere 2022, 287, 132097. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, X.M.; Jin, R.C. How anammox responds to the emerging contaminants: Status and mechanisms. J. Environ. Manag. 2021, 293, 112906. [Google Scholar] [CrossRef]
- Wang, X.; Han, Q.; Yu, H.; Lin, S. Enhancement of the reactivation process of long-term starved anammox granular sludge with gravel balls: Microbial succession and metabolic impact. Environ. Res. 2024, 263 Pt 3, 120227. [Google Scholar] [CrossRef]
- Wang, Q.; Song, K.; Hao, X.; Wei, J.; Pijuan, M.; van Loosdrecht, M.C.M.; Zhao, H. Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation. Chemosphere 2018, 201, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.C.; Yang, G.-F.; Yu, J.-J.; Zheng, P. The inhibition of the Anammox process: A review. Chem. Eng. J. 2012, 197, 67–79. [Google Scholar] [CrossRef]
- Huang, D.Q.; Fu, J.J.; Li, Z.Y.; Fan, N.S.; Jin, R.C. Inhibition of wastewater pollutants on the anammox process: A review. Sci. Total Environ. 2022, 803, 150009. [Google Scholar] [CrossRef]
- Zhao, J.; Zuo, J.; Li, P.; Lin, J. The performance of high-loading composite anammox reactor and its long-term recovery from extreme substrates inhibition. Bioresour. Technol. 2014, 172, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Li, J.; Zhang, J.; Peng, Y.; Li, Y.; Zhang, K.; Zhang, Y.; Wei, P.; Luo, R. Enhancing the treatment performance of partial denitrification/Anammox process at high nitrogen load: Effects of immobilized strain HFQ8(C/N)on the sludge characteristics. Bioresour. Technol. 2021, 341, 125870. [Google Scholar] [CrossRef]
- Chen, H.; Ma, C.; Yang, G.F.; Wang, H.Z.; Yu, Z.M.; Jin, R.C. Floatation of flocculent and granular sludge in a high-loaded anammox reactor. Bioresour. Technol. 2014, 169, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhang, Z.; Sun, Z.; Song, Z.; Bai, Y.; Hu, J. Responses of simultaneous anammox and denitrification (SAD) process to nitrogen loading variation: Start-up, performance, sludge morphology and microbial community dynamics. Sci. Total Environ. 2021, 795, 148911. [Google Scholar] [CrossRef]
- Wu, J.; Kong, Z.; Luo, Z.; Qin, Y.; Rong, C.; Wang, T.; Hanaoka, T.; Sakemi, S.; Ito, M.; Kobayashi, S.; et al. A successful start-up of an anaerobic membrane bioreactor (AnMBR) coupled mainstream partial nitritation-anammox (PN/A) system: A pilot-scale study on in-situ NOB elimination, AnAOB growth kinetics, and mainstream treatment performance. Water Res. 2021, 207, 117783. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA; AWWA: Washington, DC, USA; WPCF: Washington, DC, USA, 2005. [Google Scholar]
- Wang, F.; Xu, S.; Liu, L.; Wang, S.; Ji, M. One-stage partial nitrification and anammox process in a sequencing batch biofilm reactor: Start-up, nitrogen removal performance and bacterial community dynamics in response to temperature. Sci. Total Environ. 2021, 772, 145529. [Google Scholar] [CrossRef]
- Ji, J.; Peng, Y.; Li, X.; Zhang, Q.; Liu, X. A novel partial nitrification-synchronous anammox and endogenous partial denitrification (PN-SAEPD) process for advanced nitrogen removal from municipal wastewater at ambient temperatures. Water Res. 2020, 175, 115690. [Google Scholar] [CrossRef]
- Li, B.; Ladipo-Obasa, M.; Romero, A.; Wadhawan, T.; Tobin, M.; Manning, E.; Higgins, M.; Al-Omari, A.; Murthy, S.; Novak, J.T.; et al. The inhibitory impact of ammonia on thermally hydrolyzed sludge fed anaerobic digestion. Water Environ. Res. 2021, 93, 1263–1275. [Google Scholar] [CrossRef]
- Wang, K.; Li, J.; Gu, X.; Wang, H.; Li, X.; Peng, Y.; Wang, Y. How to Provide Nitrite Robustly for Anaerobic Ammonium Oxidation in Mainstream Nitrogen Removal. Environ. Sci. Technol. 2023, 57, 21503–21526. [Google Scholar] [CrossRef] [PubMed]
- Fernández, I.; Dosta, J.; Fajardo, C.; Campos, J.L.; Mosquera-Corral, A.; Méndez, R. Short- and long-term effects of ammonium and nitrite on the Anammox process. J. Environ. Manag. 2012, 95, S170–S174. [Google Scholar] [CrossRef] [PubMed]
- Waki, M.; Tokutomi, T.; Yokoyama, H.; Tanaka, Y. Nitrogen removal from animal waste treatment water by anammox enrichment. Bioresour. Technol. 2007, 98, 2775–2780. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.; Ma, Y.; Zhao, J.; Chen, T.; Fu, H.; Zhai, H. Acute and persistent toxicity of Cd(II) to the microbial community of Anammox process. Bioresour. Technol. 2018, 261, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewski, M.; Cema, G.; Ziembińska-Buczyńska, A. Influence of temperature and pH on the anammox process: A review and meta-analysis. Chemosphere 2017, 182, 203–214. [Google Scholar] [CrossRef]
- Bastida, F.; Eldridge, D.J.; García, C.; Kenny Png, G.; Bardgett, R.D.; Delgado-Baquerizo, M. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 2021, 15, 2081–2091. [Google Scholar] [CrossRef]
- Louca, S.; Doebeli, M. Transient dynamics of competitive exclusion in microbial communities. Environ. Microbiol. 2015, 18, 1863–1874. [Google Scholar] [CrossRef]
- Ji, X.; Wu, Z.; Sung, S.; Lee, P.H. Metagenomics and metatranscriptomics analyses reveal oxygen detoxification and mixotrophic potentials of an enriched anammox culture in a continuous stirred-tank reactor. Water Res. 2019, 166, 115039. [Google Scholar] [CrossRef]
- Bovio-Winkler, P.; Guerrero, L.D.; Erijman, L.; Oyarzua, P.; Suarez-Ojeda, M.E.; Cabezas, A.; Etchebehere, C. Genome-centric metagenomic insights into the role of Chloroflexi in anammox, activated sludge and methanogenic reactors. BMC Microbiol. 2023, 23, 45. [Google Scholar] [CrossRef]
- Su, B.; Liu, Q.; Liang, H.; Zhou, X.; Zhang, Y.; Liu, G.; Qiao, Z. Simultaneous partial nitrification, anammox, and denitrification in an upflow microaerobic membrane bioreactor treating middle concentration of ammonia nitrogen wastewater with low COD/TN ratio. Chemosphere 2022, 295, 133832. [Google Scholar] [CrossRef]
- Cui, Y.; Gao, J.; Zhang, D.; Zhao, Y.; Wang, Y. Rapid start-up of partial nitrification process using benzethonium chloride—A novel nitrite oxidation inhibitor. Bioresour. Technol. 2020, 315, 123860. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, S.; Wang, Y.; Lan, S.; Dou, Q.; Peng, Y. Rapid start-up strategy of partial denitrification and microbially driven mechanism of nitrite accumulation mediated by dissolved organic matter. Bioresour. Technol. 2021, 340, 125663. [Google Scholar] [CrossRef] [PubMed]
- Ya, T.; Liu, J.; Zhang, M.; Wang, Y.; Huang, Y.; Hai, R.; Zhang, T.; Wang, X. Metagenomic insights into the symbiotic relationship in anammox consortia at reduced temperature. Water Res. 2022, 225, 119184. [Google Scholar] [CrossRef]
- de Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Keith, A.M.; Kretzschmar, M.; et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 2018, 9, 3033. [Google Scholar] [CrossRef] [PubMed]
- Barberán, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012, 6, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Xu, L.; Montoya, L.; Madera, M.; Hollingsworth, J.; Chen, L.; Purdom, E.; Singan, V.; Vogel, J.; Hutmacher, R.B.; et al. Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nat. Commun. 2022, 13, 3867. [Google Scholar] [CrossRef]
- Liu, T.; Cui, C.; He, J.; Tang, J. Insights into the succession of the bacterial microbiota during biodrying of storage sludge mixed with beer lees: Studies on its biodiversity, structure, associations, and functionality. Sci. Total Environ. 2018, 644, 1088–1100. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, H.; Wang, N.; Sun, Y.; Zang, L.; Xue, R. Metagenomics uncovers the effect of nitrogen-doped graphene on anammox consortia and microbial function. Bioresour. Technol. 2022, 351, 126998. [Google Scholar] [CrossRef]
Composition | Concentration |
---|---|
(NH4)2SO4 | As request |
NaNO2 | As request |
NaHCO3 | 0.5 g/L |
KHCO3 | 0.5 g/L |
KH2PO4 | 0.027 g/L |
MgSO4·7H2O | 0.02 g/L |
CaCl2·2H2O | 0.136 g/L |
Trace element Solution I a | 1 mL/L |
Trace element Solution II b | 1.2 mL/L |
Phase | ACE | Shannon | Pielou | Good’s Coverage |
---|---|---|---|---|
P1 | 267.00 ± 13.61 a | 3.78 ± 0.10 a | 0.69 ± 0.02 a | 1.00 a |
P2 | 258.99 ± 8.71 a | 3.71 ± 0.07 ab | 0.69 ± 0.01 a | 1.00 a |
P3 | 269.63 ± 20.91 a | 3.63 ± 0.10 ab | 0.66 ± 0.01 a | 1.00 a |
P4 | 268.51 ± 10.79 a | 3.75 ± 0.05 b | 0.69 ± 0.01 b | 1.00 a |
P5 | 250.85 ± 17.96 a | 3.31 ± 0.15 c | 0.61 ± 0.02 c | 1.00 a |
Phase | Nodes | Edges | Positive Links (%) | Negative Links (%) | Average Degree | Clustering Coefficient | Modularity |
---|---|---|---|---|---|---|---|
P1 | 197 | 1355 | 57.05 | 42.95 | 6.878 | 0.507 | 0.499 |
P2 | 177 | 709 | 54.30 | 45.7 | 4.006 | 0.480 | 0.563 |
P3 | 154 | 2850 | 56.84 | 43.16 | 13.014 | 0.575 | 0.231 |
P4 | 197 | 943 | 53.02 | 46.98 | 4.787 | 0.520 | 0.545 |
P5 | 187 | 1135 | 52.78 | 47.22 | 6.07 | 0.541 | 0.473 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wan, K.; Xiao, C.; Hu, J.; Deng, X.; Chi, R. Dynamic Response Mechanisms of Anammox Reactors Under Nitrogen-Loading Fluctuations: Nitrogen Removal Performance, Microbial Community Succession, and Metabolic Functions. Microorganisms 2025, 13, 899. https://doi.org/10.3390/microorganisms13040899
Liu X, Wan K, Xiao C, Hu J, Deng X, Chi R. Dynamic Response Mechanisms of Anammox Reactors Under Nitrogen-Loading Fluctuations: Nitrogen Removal Performance, Microbial Community Succession, and Metabolic Functions. Microorganisms. 2025; 13(4):899. https://doi.org/10.3390/microorganisms13040899
Chicago/Turabian StyleLiu, Xuemei, Kai Wan, Chunqiao Xiao, Jingang Hu, Xiangyi Deng, and Ruan Chi. 2025. "Dynamic Response Mechanisms of Anammox Reactors Under Nitrogen-Loading Fluctuations: Nitrogen Removal Performance, Microbial Community Succession, and Metabolic Functions" Microorganisms 13, no. 4: 899. https://doi.org/10.3390/microorganisms13040899
APA StyleLiu, X., Wan, K., Xiao, C., Hu, J., Deng, X., & Chi, R. (2025). Dynamic Response Mechanisms of Anammox Reactors Under Nitrogen-Loading Fluctuations: Nitrogen Removal Performance, Microbial Community Succession, and Metabolic Functions. Microorganisms, 13(4), 899. https://doi.org/10.3390/microorganisms13040899