Characteristics and Mechanisms of Simultaneous Quinoline and Ammonium Nitrogen Removal by a Robust Bacterium Pseudomonas stutzeri H3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification
2.2. Effect of Culture Conditions on Nitrogen Removal
2.3. Assessment of Simultaneous Nitrogen Removal Capability
2.4. Removal Performance of Strain H3 for Quinoline and Different Inorganic Nitrogen
2.5. Whole Genome Sequencing and Gene Function Annotations of Strain H3
2.6. Determination of Quinoline Metabolic Intermediates
2.7. Analytical Methods
3. Results and Discussion
3.1. Identification of the Isolated Strain H3
3.2. Optimization of Nitrogen Removal Conditions
3.3. Simultaneous Nitrogen Removal Capability of Strain H3
3.4. Simultaneous Removal Performance of Quinolines and Different Inorganic Nitrogen
3.5. Whole Genome Sequencing and Gene Function Annotations
3.6. Nitrogen Metabolic Pathways and Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, H.; Wang, K.; Wang, Y.; Zhang, T.; Wang, X. Inhibition of denitrification and enhancement of microbial interactions in the AGS system by high concentrations of quinoline. J. Environ. Manag. 2024, 370, 122837. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zheng, M.; Wang, Y.; Shen, H.; Liu, Y.; Wang, J.; Mei, H.; Du, Y.; Zhou, Y.; Su, K.; et al. Enhanced removal of quinoline and nitrate in synthetic photovoltaic wastewater by non-aerating algae-bacteria symbiosis system: Microbial environmental response and nitrogen metabolism. J. Water Process Eng. 2024, 67, 106177. [Google Scholar] [CrossRef]
- Tan, C.; Chen, S.; Zhang, H.; Ma, Y.; Qu, Z.; Yan, N.; Zhang, Y.; Rittmann, B.E. The roles of Rhodococcus ruber in denitrification with quinoline as the electron donor. Sci. Total Environ. 2023, 902, 166128. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Wang, P.; Lv, Y. Assessing quinoline removal performances of an aerobic continuous moving bed biofilm reactor (MBBR) bioaugmented with Pseudomonas citronellolis LV1. Chin. J. Chem. Eng. 2023, 57, 132–140. [Google Scholar] [CrossRef]
- Ping, J.; Dong, Y.; Xie, L.; Zhou, Y.; Zhang, L.; Huang, Y.; Liao, L.; Cheng, W.; Peng, F.; Song, H. Effect of reactive oxygen species (ROS) produced by pyridine and quinoline on NH4+-N removal under phenol stress: The shift of nitrification pathway and its potential mechanisms. Water Res. 2024, 267, 122478. [Google Scholar] [CrossRef]
- Huang, J.; Wang, C.; Huang, X.; Zhang, Q.; Feng, R.; Wang, X.; Zhang, S.; Wang, J. Long-term effect of phenol, quinoline, and pyridine on nitrite accumulation in the nitrification process: Performance, microbial community, metagenomics and molecular docking analysis. Bioresour. Technol. 2024, 412, 131407. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, F.; Xu, S.; Yang, P.; Wang, X.; Zhang, X.; Hong, Q.; Qiu, J.; Chu, C.; He, J. Biodegradation of Quinoline by a Newly Isolated Salt-Tolerating Bacterium Rhodococcus gordoniae Strain JH145. Microorganisms 2022, 10, 797. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Z.; Tang, Q.; Wu, M.; Zhou, H.; Liu, L.; Qu, Y. Performance and microbial community analysis of bioaugmented activated sludge for nitrogen-containing organic pollutants removal. J. Environ. Sci. 2021, 101, 373–381. [Google Scholar] [CrossRef]
- Shi, J.; Zheng, M.; Zhang, Z.; Han, H.; Xu, C. Enhanced anaerobic degradation of quinoline and indole with dried Chlorella pyrenoidos powder as co-metabolic substance. J. Clean. Prod. 2021, 285, 124909. [Google Scholar] [CrossRef]
- Hu, J.; Yan, J.; Wu, L.; Bao, Y.; Tu, D.; Li, J. Insight into halotolerance of a robust heterotrophic nitrifying and aerobic denitrifying bacterium Halomonas salifodinae. Bioresour. Technol. 2022, 351, 126925. [Google Scholar] [CrossRef]
- Hu, J.; Yan, J.; Wu, L.; Bao, Y.; Yu, D.; Li, J. Simultaneous nitrification and denitrification of hypersaline wastewater by a robust bacterium Halomonas salifodinae from a repeated-batch acclimation. Bioresour. Technol. 2021, 341, 125818. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wei, C.; Chen, A.; Ke, X.; Li, Z.; Qin, Z.; Tian, Y.; Wu, H.; Qiu, G.; Zhu, S. Pre-aerobic treatment and dissolved oxygen regulation in full-scale aerobic-hydrolysis and denitrification-aerobic process for achieving simultaneous detoxification and nitrification of coking wastewater. Bioresour. Technol. 2025, 416, 131754. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.; Qian, Z.; Chen, Y.; Cheng, X.; Li, F.; Ding, M.; Tian, Y.; Li, J. Two-way role of iron-carbon in biochemical reactions: Microelectrolysis and enhanced activity of aerobic granular sludge for efficient refractory wastewater treatment. Water Res. 2024, 264, 122222. [Google Scholar] [CrossRef]
- An, X.; Li, N.; Zhang, L.; Xu, Z.; Zhang, S.; Zhang, Q. New insights into the typical nitrogen-containing heterocyclic compound-quinoline degradation and detoxification by microbial consortium: Integrated pathways, meta-transcriptomic analysis and toxicological evaluation. J. Hazard. Mater. 2024, 465, 133158. [Google Scholar] [CrossRef]
- Luo, Y.; Yue, X.; Wei, P.; Zhou, A.; Kong, X.; Alimzhanova, S. A state-of-the-art review of quinoline degradation and technical bottlenecks. Sci. Total Environ. 2020, 747, 141136. [Google Scholar] [CrossRef]
- Deng, M.; Yu, F.; Wang, J.; Yu, J.; Jin, W. Bio-augmentation effect of Achromobacter sp. strain JWJ-09 on quinoline and real coking wastewater under methanol co-metabolism. J. Water Process Eng. 2023, 53, 103611. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, R.; Li, Z.; Ning, F.; Wang, J.; Gao, M.; Zhang, A.; Liu, Y. Role of cycle duration on the formation of quinoline-degraded aerobic granules in the aspect of sludge characteristics, extracellular polymeric substances and microbial communities. Environ. Res. 2023, 216, 114589. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, H.; Yuan, R.; Huang, M.; Liu, F.; Li, M.; Zhang, Y.; Rittmann, B.E. How Comamonas testosteroni and Rhodococcus ruber enhance nitrification in the presence of quinoline. Water Res. 2023, 229, 119455. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, J.; Wang, J.; Cui, C.-X.; Wang, B.; Zhang, Y. Impact of Active Chlorines and •OH Radicals on Degradation of Quinoline Using the Bipolar Electro-Fenton Process. Water 2021, 13, 128. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Z.; Wang, S.; Zhou, A.; Lv, X.; Yue, X. Exploring the promoting behavior of weak electric mediation on indole and pyridine biodegradation under anaerobic condition. Sci. Total Environ. 2024, 951, 175599. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Chen, H.; Wang, Y.; Lyu, Y.-K. Quinoline biodegradation characteristics of a new quinoline-degrading strain, Pseudomonas citronellolis PY1. J. Chem. Technol. Biotechnol. 2020, 95, 2171–2179. [Google Scholar] [CrossRef]
- An, X.; Li, N.; Zhang, S.; Han, Y.; Zhang, Q. Integration of proteome and metabolome profiling to reveal heat stress response and tolerance mechanisms of Serratia sp. AXJ-M for the bioremediation of papermaking black liquor. J. Hazard. Mater. 2023, 450, 131092. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, G.; Wu, B.; Mi, Y.; Zhou, Y.; Ma, T.; Zang, H.; Xi, C.; Yi, C.; Li, C. Papermaking wastewater treatment coupled to 2,3-butanediol production by engineered psychrotrophic Raoultella terrigena. J. Hazard. Mater. 2023, 458, 131994. [Google Scholar]
- Yu, M.; Wang, J.; Tang, L.; Feng, C.; Liu, H.; Zhang, H.; Peng, B.; Chen, Z.; Xie, Q. Intimate coupling of photocatalysis and biodegradation for wastewater treatment: Mechanisms, recent advances and environmental applications. Water Res. 2020, 175, 115673. [Google Scholar] [CrossRef]
- Tian, H.; Li, Y.; Chen, H.; Zhang, J.; Hui, M.; Xu, X.; Su, Q.; Smets, B.F. Aerobic biodegradation of quinoline under denitrifying conditions in membrane-aerated biofilm reactor. Environ. Pollut. 2023, 326, 121507. [Google Scholar] [CrossRef]
- Gao, Y.; Kong, X.; Zhou, A.; Yue, X.; Luo, Y.; Defemur, Z. Enhanced degradation of quinoline by coupling microbial electrolysis cell with anaerobic digestion simultaneous. Bioresour. Technol. 2020, 306, 123077. [Google Scholar] [CrossRef]
- Hou, Z.; Zhou, X.; Zhao, Z.; Dong, W.; Wang, H.; Liu, H.; Zeng, Z.; Xie, J. Advanced aromatic organic compounds removal from refractory coking wastewater in a step-feed three-stage integrated A/O bio-filter: Spectrum characterization and biodegradation mechanism. J. Environ. Manag. 2022, 322, 116140. [Google Scholar] [CrossRef]
- Chawley, P.; Jagadevan, S. Biodegradation of quinoline by Nitrosomonas mobilis Ms1 through nitrification: A mechanistic study. Biochem. Eng. J. 2023, 196, 108933. [Google Scholar] [CrossRef]
- Ren, J.; Tang, J.; Min, H.; Tang, D.; Jiang, R.; Liu, Y.; Huang, X. Nitrogen removal characteristics of novel bacterium Klebsiella sp. TSH15 by assimilatory/dissimilatory nitrate reduction and ammonia assimilation. Bioresour. Technol. 2024, 394, 130184. [Google Scholar] [CrossRef]
- Shao, Y.-H.; Wu, J.-H.; Chen, H.-W. Comammox Nitrospira cooperate with anammox bacteria in a partial nitritation−anammox membrane bioreactor treating low-strength ammonium wastewater at high loadings. Water Res. 2024, 257, 121698. [Google Scholar] [CrossRef]
- Wen, X.; Cui, L.; Lin, H.; Zhu, W.; Shao, Z.; Wang, Y. Comparison of nitrification performance in SBR and SBBR with response to NaCl salinity shock: Microbial structure and functional genes. Environ. Res. 2024, 252, 118917. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, Y.; Bohu, T.; Wu, S.; Bai, Z.; Zhuang, X. Nitrogen Removal Characteristics and Constraints of an Alphaproteobacteria with Potential for High Nitrogen Content Heterotrophic Nitrification-Aerobic Denitrification. Microorganisms 2022, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Huang, M.; Dong, S.; Jin, Y.; Zhou, R.; Wu, C. Comprehensive Transcriptomic Analysis of Heterotrophic Nitrifying Bacterium Klebsiella sp. TN-10 in Response to Nitrogen Stress. Microorganisms 2022, 10, 353. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zhou, M.; Chen, Y.; Hu, Y.; Luo, J. Insight into short-cut of simultaneous nitrification and denitrification process in moving bed biofilm reactor: Effects of carbon to nitrogen ratio. Chem. Eng. J. 2020, 400, 125905. [Google Scholar] [CrossRef]
- Lan, M.; Yang, P.; Xie, L.; Li, Y.; Liu, J.; Zhang, P.; Zhang, P.; Li, B. Start-up and synergistic nitrogen removal of partial nitrification and anoxic/aerobic denitrification in membrane aerated biofilm reactor. Environ. Res. 2022, 214, 113901. [Google Scholar] [CrossRef]
- Lin, L.; Pratt, S.; Crick, O.; Xia, J.; Duan, H.; Ye, L. Salinity effect on freshwater Anammox bacteria: Ionic stress and ion composition. Water Res. 2021, 188, 116432. [Google Scholar] [CrossRef]
- Tan, C.; Zhang, W.; Wei, Y.; Zhao, N.; Li, J. Insights into nitrogen removal and microbial response of marine anammox bacteria-based consortia treating saline wastewater: From high to moderate and low salinities. Bioresour. Technol. 2023, 382, 129220. [Google Scholar] [CrossRef]
- Hu, J.; Yan, J.; Wu, L.; Bao, Y.; Yu, D.; Li, J. Isolated heterotrophic nitrifying and aerobic denitrifying bacterium for treating actual refinery wastewater with low C/N ratio. J. Biosci. Bioeng. 2021, 132, 41–48. [Google Scholar] [CrossRef]
- Ke, X.; Liu, C.; Tang, S.-Q.; Guo, T.-T.; Pan, L.; Xue, Y.-P.; Zheng, Y.-G. Characterization of Acinetobacter indicus ZJB20129 for heterotrophic nitrification and aerobic denitrification isolated from an urban sewage treatment plant. Bioresour. Technol. 2022, 347, 126423. [Google Scholar] [CrossRef]
- Sui, X.; Wu, X.; Xiao, B.; Wang, C.; Tian, C. Denitrification Mechanism of Heterotrophic Aerobic Denitrifying Pseudomonas hunanensis Strain DC-2 and Its Application in Aquaculture Wastewater. Water 2024, 16, 1625. [Google Scholar] [CrossRef]
- Huan, C.; Lyu, Q.; Wang, Z.; Tian, X.; Yan, Z.; Ji, G. Conversion behavior of heterotrophic nitrification-aerobic denitrification bacterium Paracoccus denitrifican HY-1 in nitrogen and phosphorus removal. J. Water Process Eng. 2024, 62, 105347. [Google Scholar] [CrossRef]
- Shi, J.; Han, Y.; Xu, C.; Han, H. Enhanced anaerobic degradation of selected nitrogen heterocyclic compounds with the assistance of carboxymethyl cellulose. Sci. Total Environ. 2019, 689, 781–788. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examinations of Water and Wastewater; APHA: Washington, DC, USA, 1998. [Google Scholar]
- He, T.; Chen, M.; Ding, C.; Wu, Q.; Zhang, M. Hypothermia Pseudomonas taiwanensis J488 exhibited strong tolerance capacity to high dosages of divalent metal ions during nitrogen removal process. Bioresour. Technol. 2021, 341, 125785. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shen, L.; Li, Y.; Cao, H.; Chen, C.; Zhang, G.; Xu, Z.; Lu, Y. Insights into the nitrogen transformation mechanism of Pseudomonas sp. Y15 capable of heterotrophic nitrification and aerobic denitrification. Environ. Res. 2024, 240, 117595. [Google Scholar] [CrossRef]
- Wang, J.; Gao, P.; Pan, X.; Fan, K.; Li, Y.; Gao, Y.; Gao, Y. An aerobic denitrifier Pseudomonas stutzeri Y23 from an oil reservoir and its heterotrophic denitrification performance in laboratory-scale sequencing batch reactors. Int. Biodeterior. Biodegradation 2022, 174, 105471. [Google Scholar] [CrossRef]
- Jiang, G.; Liu, Y.; Liu, X.; Shen, Y.; Zhang, A.; Li, Z. Enhanced efficiency and mechanism of low-temperature biochar on simultaneous removal of nitrogen and phosphorus by combined heterotrophic nitrification-aerobic denitrification bacteria. Bioresour. Technol. 2023, 373, 128720. [Google Scholar] [CrossRef]
- Araujo, J.M.; Berzio, S.; Gehring, T.; Nettmann, E.; Florencio, L.; Wichern, M. Influence of temperature on aerobic granular sludge formation and stability treating municipal wastewater with high nitrogen loadings. Environ. Res. 2022, 212, 113578. [Google Scholar] [CrossRef]
- Gao, Y.-J.; Zhang, T.; Hu, L.-K.; Liu, S.-Y.; Li, C.-C.; Jin, Y.-S.; Liu, H.-B. Denitrification Characteristics of the Low-Temperature Tolerant Denitrification Strain Achromobacter spiritinus HS2 and Its Application. Microorganisms 2024, 12, 451. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, H.; Wu, P.; Lei, Y.; Deng, L.; Wang, W. Enhanced narH gene expression contributing to nitrite accumulation in simultaneous nitrification and denitrification under Na+ stress instead of K+ stress. Chem. Eng. J. 2024, 479, 147637. [Google Scholar] [CrossRef]
- Shi, S.; He, X.; He, L.; Fan, X.; Shu, B.; Zhou, J.; He, Q. Overlooked pathways of endogenous simultaneous nitrification and denitrification in anaerobic/aerobic/anoxic sequencing batch reactors with organic supplementation. Water Res. 2023, 230, 119493. [Google Scholar] [CrossRef]
- Asamoto, C.K.; Rempfert, K.R.; Luu, V.H.; Younkin, A.D.; Kopf, S.H. Enzyme-Specific Coupling of Oxygen and Nitrogen Isotope Fractionation of the Nap and Nar Nitrate Reductases. Environ. Sci. Technol. 2021, 55, 5537–5546. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Xu, B.; Yan, J.; Fan, G. Characteristics and Mechanisms of Simultaneous Quinoline and Ammonium Nitrogen Removal by a Robust Bacterium Pseudomonas stutzeri H3. Microorganisms 2025, 13, 687. https://doi.org/10.3390/microorganisms13030687
Hu J, Xu B, Yan J, Fan G. Characteristics and Mechanisms of Simultaneous Quinoline and Ammonium Nitrogen Removal by a Robust Bacterium Pseudomonas stutzeri H3. Microorganisms. 2025; 13(3):687. https://doi.org/10.3390/microorganisms13030687
Chicago/Turabian StyleHu, Jie, Bing Xu, Jiabao Yan, and Guozhi Fan. 2025. "Characteristics and Mechanisms of Simultaneous Quinoline and Ammonium Nitrogen Removal by a Robust Bacterium Pseudomonas stutzeri H3" Microorganisms 13, no. 3: 687. https://doi.org/10.3390/microorganisms13030687
APA StyleHu, J., Xu, B., Yan, J., & Fan, G. (2025). Characteristics and Mechanisms of Simultaneous Quinoline and Ammonium Nitrogen Removal by a Robust Bacterium Pseudomonas stutzeri H3. Microorganisms, 13(3), 687. https://doi.org/10.3390/microorganisms13030687