The Bacterial and Fungal Compositions in the Rhizosphere of Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag. in a Typical Planting Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Gathering and Preparation
2.2. Determination of Bioactive Ingredients, Soil Physicochemical Properties, and Enzyme Activities
2.3. DNA Extraction and Sequencing
2.4. Microbial Community Analysis
2.5. Network Analysis
2.6. Statistical Analysis
3. Results
3.1. Plant Bioactive Ingredients, Soil Physicochemical Properties, and Soil Enzyme Activities
3.2. Microbial Composition and Diversity in Rhizosphere Soil
3.3. Effects of Cropping Year and Collecting Month on Rhizosphere Microbiome Compositions
3.4. Environmental Factor Correlation Analysis
3.5. Bacterial and Fungal Taxa Correlated with Asarum Bioactive Ingredients and Soil Physicochemical Properties
3.6. Co-Occurrence Pattern in Asarum Rhizosphere Soil
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H.; et al. Structure and function of the global topsoil microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Maron, P.A.; Mougel, C.; Ranjard, L. Soil microbial diversity: Methodological strategy, spatial overview and functional interest. Comptes Rendus Biol. 2011, 334, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Armanhi, J.S.L.; de Souza, R.S.C.; Damasceno, N.B.; de Araujo, L.M.; Imperial, J.; Arruda, P. A Community-Based Culture Collection for Targeting Novel Plant Growth-Promoting Bacteria from the Sugarcane Microbiome. Front. Plant Sci. 2017, 8, 2191. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef] [PubMed]
- Li, H.P.; Han, Q.Q.; Liu, Q.M.; Gan, Y.N.; Rensing, C.; Rivera, W.L.; Zhao, Q.; Zhang, J.L. Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiol. Res. 2023, 272, 127375. [Google Scholar] [CrossRef]
- He, D.; Wan, W. Distribution of Culturable Phosphate Solubilizing Bacteria in Soil Aggregates and Their Potential for Phosphorus Acquisition. Microbiol. Spectr. 2022, 10, e00290-22. [Google Scholar] [CrossRef]
- Rousk, J.; Baath, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Liu, N.; He, H.; Cao, X.; Lv, C.; Zhang, K.; Dai, J. Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil. Environ. Sci. Pollut. Res. Int. 2021, 28, 23036–23047. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Q.; Chen, Y.; Su, Y.; Sun, S.; Chen, G. Different crop rotation systems change the rhizosphere bacterial community structure of Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge.) Hsiao. Appl. Soil Ecol. 2021, 166, 104003. [Google Scholar] [CrossRef]
- Zeng, Q.; Ding, X.; Wang, J.; Han, X.; Iqbal, H.M.N.; Bilal, M. Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria. Environ. Sci. Pollut. Res. Int. 2022, 29, 45089–45106. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Song, Z.; Li, Z.; Qiao, R.; Zhang, P.; Ding, C.; Xie, J.; Chen, Y.; Guo, H. Populus root exudates are associated with rhizosphere microbial communities and symbiotic patterns. Front. Microbiol. 2022, 13, 1042944. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Zhou, Z.; Guo, Y.; Yang, G.; Zhao, F.; Wei, G.; Han, X.; Feng, L.; Feng, Y.; Ren, G. Contrasting patterns of microbial community and enzyme activity between rhizosphere and bulk soil along an elevation gradient. Catena 2021, 196, 104921. [Google Scholar] [CrossRef]
- Hartman, K.; Tringe, S.G. Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochem. J. 2019, 476, 2705–2724. [Google Scholar] [CrossRef] [PubMed]
- Reinhold-Hurek, B.; Bunger, W.; Burbano, C.S.; Sabale, M.; Hurek, T. Roots shaping their microbiome: Global hotspots for microbial activity. Annu. Rev. Phytopathol. 2015, 53, 403–424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, N.; Liu, Y.X.; Zhang, X.; Hu, B.; Qin, Y.; Xu, H.; Wang, H.; Guo, X.; Qian, J.; et al. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci. China Life Sci. 2018, 61, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Waghmode, T.R.; Sun, R.; Kuramae, E.E.; Hu, C.; Liu, B. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 2019, 7, 136. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, C. The genus Asarum: A review on phytochemistry, ethnopharmacology, toxicology and pharmacokinetics. J. Ethnopharmacol. 2022, 282, 114642. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, X.; Tong, B.; Wang, D.; Liu, J.; Liao, X.; Sun, Q. Effects of rhizosphere fungi on the chemical composition of fruits of the medicinal plant Cinnamomum migao endemic to southwestern China. BMC Microbiol. 2021, 21, 206. [Google Scholar] [CrossRef]
- Cao, P.; Wang, G.; Wei, X.M.; Chen, S.L.; Han, J.P. How to improve CHMs quality: Enlighten from CHMs ecological cultivation. Chin. Herb. Med. 2021, 13, 301–312. [Google Scholar] [CrossRef]
- Chen, Q.-L.; Ding, J.; Zhu, D.; Hu, H.-W.; Delgado-Baquerizo, M.; Ma, Y.-B.; He, J.-Z.; Zhu, Y.-G. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 2020, 141, 107686. [Google Scholar] [CrossRef]
- Liu, S.; Xian, Z.; Zhao, Y.; Wang, L.; Tian, J.; Pan, C.; Han, J.; Zhang, Y.; Li, C.; Yi, Y.; et al. Quantitative Determination and Toxicity Evaluation of Aristolochic Acid Analogues in Asarum heterotropoides F. Schmidt (Xixin) and Traditional Chinese Patent Medicines. Front. Pharmacol. 2021, 12, 761593. [Google Scholar] [CrossRef]
- Lei, H.; Liu, A.; Hou, Q.; Zhao, Q.; Guo, J.; Wang, Z. Diversity patterns of soil microbial communities in the Sophora flavescens rhizosphere in response to continuous monocropping. BMC Microbiol. 2020, 20, 272. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yin, H.; Li, X.; Li, X.; Fan, C.; Chen, G.; Feng, M.; Chen, Y. Short-Term Thinning Influences the Rhizosphere Fungal Community Assembly of Pinus massoniana by Altering the Understory Vegetation Diversity. Front. Microbiol. 2021, 12, 620309. [Google Scholar] [CrossRef] [PubMed]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of highthroughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- van der Heijden, M.G.; Hartmann, M. Networking in the Plant Microbiome. PLoS Biol. 2016, 14, e1002378. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Bergelson, J.; Mittelstrass, J.; Horton, M.W. Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Sci. Rep. 2019, 9, 24. [Google Scholar] [CrossRef]
- Borchers, A.; Pieler, T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes 2010, 1, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Wang, L.; Song, X.; Zhang, X.; Wang, Z.; Lei, J.; Yan, M. Assessment of the rhizosphere fungi and bacteria recruited by sugarcane during smut invasion. Braz. J. Microbiol. 2023, 54, 385–395. [Google Scholar]
- Cui, X.; He, H.; Zhu, F.; Liu, X.; Ma, Y.; Xie, W.; Meng, H.; Zhang, L. Community structure and co-occurrence network analysis of bacteria and fungi in wheat fields vs fruit orchards. Arch. Microbiol. 2022, 204, 453. [Google Scholar] [CrossRef] [PubMed]
- Tkalec, V.; Mahnic, A.; Gselman, P.; Rupnik, M. Analysis of seed-associated bacteria and fungi on staple crops using the cultivation and metagenomic approaches. Folia Microbiol. 2022, 67, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-de-Aldana, B.R.; Cuesta, M.J.; Zabalgogeazcoa, I. Cultivation and growth dynamics of endophytic fungi in a solid culture medium based on sugar beet pulp. J. Sci. Food Agric. 2020, 100, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Chen, M.; Grin, I.; Ma, C. Mechanisms of Sugar Beet Response to Biotic and Abiotic Stresses. Adv. Exp. Med. Biol. 2020, 1241, 167–194. [Google Scholar] [PubMed]
- Ayilara, M.S.; Adeleke, B.S.; Babalola, O.O. Bioprospecting and Challenges of Plant Microbiome Research for Sustainable Agriculture, a Review on Soybean Endophytic Bacteria. Microb. Ecol. 2023, 85, 1113–1135. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Liang, H.; Huang, R.; Ke, C.; Tao, B.; Zhang, W. Mechanism underlying the response of fungi and their Fusarium symbiotic networks to the rotations of soybean and corn. Fungal Biol. 2022, 126, 609–619. [Google Scholar] [CrossRef]
- Tian, F.; Woo, S.Y.; Lee, S.Y.; Park, S.B.; Im, J.H.; Chun, H.S. Mycotoxins in soybean-based foods fermented with filamentous fungi: Occurrence and preventive strategies. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5131–5152. [Google Scholar] [CrossRef]
- Durr, J.; Reyt, G.; Spaepen, S.; Hilton, S.; Meehan, C.; Qi, W.; Kamiya, T.; Flis, P.; Dickinson, H.G.; Feher, A.; et al. A Novel Signaling Pathway Required for Arabidopsis Endodermal Root Organization Shapes the Rhizosphere Microbiome. Plant Cell Physiol. 2021, 62, 248–261. [Google Scholar] [CrossRef]
- Seitz, V.A.; McGivern, B.B.; Borton, M.A.; Chaparro, J.M.; Daly, R.A.; Sheflin, A.M.; Kresovich, S.; Shields, L.; Schipanski, M.E.; Wrighton, K.C.; et al. Variation in root exudate composition influences soil microbiome membership and function. Appl. Environ. Microbiol. 2021, 88, e00226-22. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, S.H.; Jo, H.Y.; Finneran, K.T.; Kwon, M.J. Diversity and composition of soil Acidobacteria and Proteobacteria communities as a bacterial indicator of past land-use change from forest to farmland. Sci. Total Environ. 2021, 797, 148944. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Perez, J.M.; Gonzalez-Garcia, S.; Cobos, R.; Olego, M.A.; Ibanez, A.; Diez-Galan, A.; Garzon-Jimeno, E.; Coque, J.J.R. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline. Appl. Environ. Microbiol. 2017, 83, e01564-17. [Google Scholar] [CrossRef] [PubMed]
- Hemkemeyer, M.; Schwalb, S.A.; Heinze, S.; Joergensen, R.G.; Wichern, F. Functions of elements in soil microorganisms. Microbiol. Res. 2021, 252, 126832. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Efferth, T.; Hua, X.; Zhang, X.A. Medicinal plants and their secondary metabolites in alleviating knee osteoarthritis: A systematic review. Phytomedicine 2022, 105, 154347. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.Y.; Rao, M.P.N.; Liao, T.J.; Li, L.; Liu, Y.H.; Xiao, M.; Mohamad, O.A.A.; Tian, Y.Y.; Li, W.J. Diversity and function of rhizosphere microorganisms between wild and cultivated medicinal plant Glycyrrhiza uralensis Fisch under different soil conditions. Arch. Microbiol. 2021, 203, 3657–3665. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, J.; Jin, L.; Zhan, Z.; Guan, L.; Zheng, G.; Qiu, D.; Qiu, X. Deciphering bacterial community variation during soil and leaf treatments with biologicals and biofertilizers to control huanglongbing in citrus trees. J. Phytopathol. 2019, 167, 686–694. [Google Scholar] [CrossRef]
No. | Asarinin (%) | Volatile Oil (mg/g) | AAI (% × 10−3) |
---|---|---|---|
10_1 | 0.109 ± 0.001 n | 1.67 ± 0.005 k | 0.163 ± 0.005 o |
10_2 | 0.396 ± 0.015l l | 2.22 ± 0.002 i | 0.174 ± 0.001 n |
10_3 | 0.523 ± 0.003 k | 2.50 ± 0.004 g | 0.251 ± 0.001 m |
10_4 | 0.856 ± 0.002 e | 2.63 ± 0.002 f | 0.386 ± 0.002 l |
6_1 | 0.283 ± 0.001 m | 2.47 ± 0.003 g | 0.587 ± 0.003 k |
6_2 | 0.520 ± 0.004 k | 2.94 ± 0.004 d | 0.611 ± 0.004 j |
6_3 | 0.539 ± 0.001 i | 2.87 ± 0.001 e | 0.612 ± 0.004 j |
6_4 | 0.940 ± 0.006 d | 3.15 ± 0.001 b | 0.669 ± 0.001 i |
7_1 | 0.284 ± 0.001 m | 2.06 ± 0.001 j | 0.775 ± 0.001 h |
7_2 | 0.528 ± 0.005 j | 2.31 ± 0.003 h | 0.816 ± 0.001 g |
7_3 | 0.618 ± 0.007 h | 3.09 ± 0.001 c | 0.865 ± 0.001 f |
7_4 | 1.129 ± 0.017 b | 3.33 ± 0.003 a | 0.932 ± 0.002 d |
8_1 | 0.668 ± 0.001 g | 2.50 ± 0.002 g | 0.896 ± 0.002 e |
8_2 | 0.704 ± 0.006 f | 2.50 ± 0.009 g | 0.956 ± 0.005 c |
8_3 | 1.108 ± 0.018 c | 2.86 ± 0.005 e | 1.045 ± 0.006 b |
8_4 | 1.303 ± 0.005 a | 3.31 ± 0.004 a | 1.324 ± 0.011 a |
No. | pH | AP (mg/kg) | AN (mg/kg) | CAT (mg/g) | INT (mg/g) | APT (mg/g) |
---|---|---|---|---|---|---|
10_1 | 6.41 ± 0.13 a | 29.09 ± 1.20 d | 76.46 ± 4.62 fg | 2.45 ± 0.02 c | 76.68 ± 2.16 d | 109.11 ± 13.17 ab |
10_2 | 6.32 ± 0.06 a | 19.03 ± 1.26 f | 96.76 ± 5.37 e | 2.16 ± 0.08 e | 52.93 ± 0.75 g | 104.16 ± 10.38 ab |
10_3 | 6.16 ± 0.12 b | 20.70 ± 3.48 ef | 98.17 ± 7.57 e | 2.25 ± 0.05 de | 55.76 ± 2.93 fg | 102.29 ± 2.16 ab |
10_4 | 5.81 ± 0.07 c | 17.82 ± 1.77 f | 76.76 ± 1.68 fg | 3.22 ± 0.04 a | 97.93 ± 2.21 a | 121.90 ± 17.33 ab |
6_1 | 5.82 ± 0.04 c | 36.13 ± 2.48 b | 92.52 ± 10.51 ef | 1.28 ± 0.02 g | 97.81 ± 1.81 a | 96.48 ± 8.44 b |
6_2 | 5.61 ± 0.04 de | 30.75 ± 1.25 d | 129.71 ± 6.73 bc | 2.14 ± 0.14 e | 76.11 ± 1.78 d | 121.22 ± 12.64 ab |
6_3 | 5.75 ± 0.04 cd | 24.09 ± 0.68 e | 101.45 ± 4.62 de | 2.37 ± 0.03 cd | 90.50 ± 5.05 bc | 108.29 ± 4.60 ab |
6_4 | 5.48 ± 0.08 ef | 32.50 ± 0.06 cd | 126.73 ± 0.84 bc | 1.20 ± 0.05 gh | 93.06 ± 4.73 ab | 118.57 ± 12.37 ab |
7_1 | 5.27 ± 0.07 gh | 45.62 ± 0.12 a | 133.87 ± 5.89 ab | 2.21 ± 0.06 e | 84.81 ± 3.05 c | 133.74 ± 15.92 ab |
7_2 | 5.42 ± 0.07 fg | 36.75 ± 0.74 b | 115.13 ± 15.56 cd | 2.99 ± 0.10 b | 75.61 ± 1.21 d | 152.20 ± 14.15 a |
7_3 | 5.40 ± 0.04 fg | 35.27 ± 1.47 bc | 146.07 ± 0.42 a | 2.38 ± 0.07 cd | 61.36 ± 2.90 f | 112.86 ± 21.54 ab |
7_4 | 5.18 ± 0.10 h | 43.27 ± 2.02 a | 108.29 ± 6.73 de | 2.46 ± 0.06 c | 56.55 ± 2.00 fg | 121.22 ± 23.88 ab |
8_1 | 4.87 ± 0.01 i | 19.73 ± 1.73 f | 77.15 ± 2.99 fg | 1.05 ± 0.01 i | 58.18 ± 2.86 fg | 127.19 ± 41.14 ab |
8_2 | 4.97 ± 0.04 i | 19.10 ± 1.67 f | 66.24 ± 5.78 g | 1.10 ± 0.07 hi | 56.30 ± 6.93 fg | 125.55 ± 33.55 ab |
8_3 | 5.41 ± 0.08 fg | 23.48 ± 2.36 e | 75.56 ± 2.52 g | 1.60 ± 0.06 f | 69.30 ± 6.16 e | 118.16 ± 27.15 ab |
8_4 | 4.91 ± 0.19 i | 32.39 ± 3.57 cd | 65.05 ± 13.11 g | 1.20 ± 0.01 g | 38.10 ± 2.36 h | 132.39 ± 36.13 ab |
No. | Shannon | Simpson | Sobs | ACE | Chao 1 |
---|---|---|---|---|---|
10_1 | 6.18 ± 0.04 a | 0.009 ± 0.001 b | 2649 ± 60 abcd | 4329 ± 455 ab | 3870 ± 182 a |
10_2 | 6.34 ± 0.06 a | 0.006 ± 0.001 b | 2712 ± 55 abc | 3918 ± 85 ab | 3853 ± 92 a |
10_3 | 6.43 ± 0.03 a | 0.004 ± 0.000 b | 2727 ± 20 ab | 4174 ± 355 a | 3913 ± 96 a |
10_4 | 4.40 ± 0.49 c | 0.111 ± 0.047 a | 2107 ± 109 fg | 3706 ± 234 ab | 3182 ± 92 cde |
6_1 | 6.40 ± 0.08 a | 0.005 ± 0.001 b | 2689 ± 133 abc | 3747 ± 145 ab | 3727 ± 150 ab |
6_2 | 6.40 ± 0.01 a | 0.004 ± 0.000 b | 2668 ± 14 abc | 3816 ± 28 ab | 3795 ± 28 ab |
6_3 | 6.27 ± 0.06 a | 0.005 ± 0.001 b | 2497 ± 69 abcde | 4078 ± 244 ab | 3636 ± 121 ab |
6_4 | 6.38 ± 0.02 a | 0.004 ± 0.000 b | 2334 ± 38 ef | 3169 ± 68 b | 3142 ± 67 de |
7_1 | 6.33 ± 0.06 a | 0.004 ± 0.000 b | 2481 ± 111 bcde | 4233 ± 187 a | 3696 ± 191 ab |
7_2 | 6.20 ± 0.04 a | 0.005 ± 0.001 b | 2460 ± 53 bcde | 4200 ± 461 ab | 3623 ± 196 abc |
7_3 | 6.31 ± 0.06 a | 0.004 ± 0.000 b | 2444 ± 97 cde | 3926 ± 327 ab | 3591 ± 171 abc |
7_4 | 5.65 ± 0.21 b | 0.013 ± 0.002 b | 2001 ± 126 g | 3164 ± 212 b | 2918 ± 80 e |
8_1 | 6.42 ± 0.03 a | 0.004 ± 0.000 b | 2627 ± 24 abcd | 3962 ± 42 ab | 3722 ± 64 ab |
8_2 | 6.42 ± 0.01 a | 0.004 ± 0.000 b | 2643 ± 18 abcd | 4359 ± 381 a | 3855 ± 36 a |
8_3 | 6.25 ± 0.01 a | 0.005 ± 0.000 b | 2391 ± 47 de | 3703 ± 306 ab | 3434 ± 86 bcd |
8_4 | 6.44 ± 0.01 a | 0.004 ± 0.000 b | 2751 ± 25 a | 3976 ± 7 ab | 3957 ± 27 a |
No. | Shannon | Simpson | Sobs | ACE | Chao 1 |
---|---|---|---|---|---|
10_1 | 4.23 ± 0.01 ab | 0.042 ± 0.003 b | 724 ± 30 abcde | 966 ± 52 abc | 943 ± 51 abc |
10_2 | 3.82 ± 0.03 ab | 0.058 ± 0.002 b | 621 ± 2 def | 983 ± 87 abc | 868 ± 27 cd |
10_3 | 3.60 ± 0.04 abc | 0.074 ± 0.006 b | 541 ± 4 f | 790 ± 11 c | 731 ± 23 c |
10_4 | 1.84 ± 0.17 d | 0.370 ± 0.053 a | 289 ± 26 g | 619 ± 108 c | 481 ± 60 e |
6_1 | 3.49 ± 0.73 bc | 0.135 ± 0.111 b | 675 ± 135 bcdef | 1015 ± 59 ab | 918 ± 116 abc |
6_2 | 4.08 ± 0.05 ab | 0.049 ± 0.002 b | 770 ± 24 abcd | 1036 ± 56 ab | 1007 ± 30 abc |
6_3 | 4.49 ± 0.03 a | 0.030 ± 0.002 b | 787 ± 28 abc | 971 ± 26 abc | 968 ± 23 abc |
6_4 | 3.80 ± 0.04 ab | 0.066 ± 0.003 b | 644 ± 16 cdef | 900 ± 17 bc | 852 ± 36 cd |
7_1 | 4.29 ± 0.24 ab | 0.048 ± 0.018 b | 843 ± 27 a | 1220 ± 41 a | 1147 ± 39 a |
7_2 | 3.74 ± 0.53 ab | 0.105 ± 0.082 b | 699 ± 40 abcdef | 944 ± 35 abc | 939 ± 39 abc |
7_3 | 4.15 ± 0.03 ab | 0.039 ± 0.003 b | 705 ± 3 abcde | 936 ± 12 abc | 911 ± 10 abc |
7_4 | 2.78 ± 0.12 c | 0.121 ± 0.017 b | 298 ± 25 g | 640 ± 60 c | 485 ± 58 e |
8_1 | 3.98 ± 0.05 ab | 0.063 ± 0.003 b | 825 ± 31 ab | 1116 ± 52 a | 1100 ± 59 a |
8_2 | 4.02 ± 0.04 ab | 0.053 ± 0.003 b | 761 ± 9 abcd | 1096 ± 116 ab | 1017 ± 43 ab |
8_3 | 4.07 ± 0.03 ab | 0.043 ± 0.002 b | 653 ± 8 cdef | 919 ± 34 bc | 872 ± 30 bcd |
8_4 | 3.58 ± 0.09 abc | 0.096 ± 0.012 b | 583 ± 8 ef | 914 ± 127 bc | 846 ± 38 cd |
Cropping Year | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Molecular ecological networks | Similarity threshold | 0.9 | 0.88 | 0.9 | 0.93 |
Nodes | 213 | 227 | 173 | 176 | |
Links | 507 | 333 | 278 | 210 | |
Module | 23 | 36 | 26 | 27 | |
Modularity | 0.608 | 0.758 | 0.787 | 0.854 | |
Average geodesic distance | 4.707 | 6.874 | 6.951 | 7.818 | |
Average clustering coefficient | 0.265 | 0.227 | 0.279 | 0.197 | |
Average connectivity | 4.761 | 2.934 | 3.214 | 2.386 | |
r2 | 0.871 | 0.844 | 0.791 | 0.865 | |
Random networks | Modularity | 0.420 ± 0.007 | 0.608 ± 0.010 | 0.561 ± 0.010 | 0.706 ± 0.010 |
Average geodesic distance | 3.453 ± 0.048 | 4.514 ± 0.104 | 4.232 ± 0.099 | 5.708 ± 0.214 | |
Average clustering coefficient | 0.047 ± 0.008 | 0.017 ± 0.007 | 0.021 ± 0.009 | 0.009 ± 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Zhao, Z.; Han, Y.; Li, S.; Bi, X.; Ren, S.; Pan, Y.; Wang, D.; Liu, X. The Bacterial and Fungal Compositions in the Rhizosphere of Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag. in a Typical Planting Region. Microorganisms 2024, 12, 692. https://doi.org/10.3390/microorganisms12040692
Wang F, Zhao Z, Han Y, Li S, Bi X, Ren S, Pan Y, Wang D, Liu X. The Bacterial and Fungal Compositions in the Rhizosphere of Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag. in a Typical Planting Region. Microorganisms. 2024; 12(4):692. https://doi.org/10.3390/microorganisms12040692
Chicago/Turabian StyleWang, Fuqi, Zilu Zhao, Yangyang Han, Shiying Li, Xinhua Bi, Shumeng Ren, Yingni Pan, Dongmei Wang, and Xiaoqiu Liu. 2024. "The Bacterial and Fungal Compositions in the Rhizosphere of Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag. in a Typical Planting Region" Microorganisms 12, no. 4: 692. https://doi.org/10.3390/microorganisms12040692
APA StyleWang, F., Zhao, Z., Han, Y., Li, S., Bi, X., Ren, S., Pan, Y., Wang, D., & Liu, X. (2024). The Bacterial and Fungal Compositions in the Rhizosphere of Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag. in a Typical Planting Region. Microorganisms, 12(4), 692. https://doi.org/10.3390/microorganisms12040692