Direct Impact of the Air on Mutant Cells for Mutagenicity Assessments in Urban Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Settings
2.2. Direct Method Development
2.3. Traditional PM10 Sampling and Extraction
2.4. Data Analysis and Statistics
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Ambient Air Quality Database, 2022 Update: Status Report; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- EEA. European Union Emission Inventory Report 1990–2014 under the UNECE Convention on Long-Range Transboundary Air Pollution (LRTAP); Publications Office of the European Union: Luxembourg, 2016; ISBN 978-92-9213-748-9. ISSN 1977-8449. [Google Scholar] [CrossRef]
- WHO. WHO Global Air Quality Guidelines; WHO European Centre for Environment and Health: Bonn, Germany, 2021; pp. 1–360. [Google Scholar]
- Keenan, C.E.; Kelleher, R.; Gray, S.G. Chapter 9—Environmental pollution, epigenetics, and cancer. In Translational Epigenetics, 2nd ed.; Gray, S.G., Ed.; Academic Press: Boston, MA, USA, 2023; pp. 175–194. ISBN 978-0-323-91367-6. [Google Scholar]
- EEA Europe’s Air Quality Status 2023. Available online: https://www.eea.europa.eu/publications/europes-air-quality-status-2023 (accessed on 15 December 2023).
- Ebrahimi, H.; Aryan, Z.; Saeedi Moghaddam, S.; Bisignano, C.; Rezaei, S.; Pishgar, F.; Force, L.M.; Abolhassani, H.; Abu-Gharbieh, E.; Advani, S.M.; et al. Global, regional, and national burden of respiratory tract cancers and associated risk factors from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Respir. Med. 2021, 9, 1030–1049. [Google Scholar] [CrossRef] [PubMed]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Outdoor Air Pollution; IARC: Lyon, France, 2015; Volume 109, ISBN 9789283201755. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Outdoor-Air-Pollution-2015 (accessed on 15 December 2023).
- European Commision. Proposal for a Directive of the European Parliament and of the Council on Ambient Air Quality and Cleaner Air for Europe; European Commision: Brussels, Belgium, 2023; Volume 0347, pp. 5–24. [Google Scholar]
- Zeiger, E. The test that changed the world: The Ames test and the regulation of chemicals. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 841, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Claxton, L.D.; Matthews, P.P.; Warren, S.H. The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat. Res. Rev. Mutat. Res. 2004, 567, 347–399. [Google Scholar] [CrossRef] [PubMed]
- Sugita, K.; Kin, Y.; Yagishita, M.; Ikemori, F.; Kumagai, K.; Ohara, T.; Kinoshita, M.; Nishimura, K.; Takagi, Y.; Nakajima, D. Evaluation of the genotoxicity of PM2.5 collected by a high-volume air sampler with impactor. Genes Environ. 2019, 41, 7. [Google Scholar] [CrossRef] [PubMed]
- Bocchi, C.; Bazzini, C.; Fontana, F.; Pinto, G.; Cassoni, F. Genotoxicity of airborne PM2.5 assessed by salmonella and comet assays in five cities of the Emilia-Romagna (Italy) mutagenicity monitoring network. Environ. Mol. Mutagen. 2017, 58, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.; Dolinoy, D.C.; Walker, C.L. A precision environmental health approach to prevention of human disease. Nat. Commun. 2023, 14, 2449. [Google Scholar] [CrossRef]
- DeMarini, D.M.; Linak, W.P. Mutagenicity and carcinogenicity of combustion emissions are impacted more by combustor technology than by fuel composition: A brief review. Environ. Mol. Mutagen. 2022, 63, 135–150. [Google Scholar] [CrossRef]
- Riedel, T.P.; DeMarini, D.M.; Zavala, J.; Warren, S.H.; Corse, E.W.; Offenberg, J.H.; Kleindienst, T.E.; Lewandowski, M. Mutagenic atmospheres resulting from the photooxidation of aromatic hydrocarbon and NOx mixtures. Atmos. Environ. 2018, 178, 164–172. [Google Scholar] [CrossRef]
- Cassoni, F.; Bocchi, C.; Martino, A.; Pinto, G.; Fontana, F.; Buschini, A. The Salmonella mutagenicity of urban airborne particulate matter (PM2.5) from eight sites of the Emilia-Romagna regional monitoring network (Italy). Sci. Total Environ. 2004, 324, 79–90. [Google Scholar] [CrossRef]
- Gea, M.; Macrì, M.; Marangon, D.; Pitasi, F.A.; Fontana, M.; Schilirò, T.; Bonetta, S. Biological effects of particulate matter samples during the COVID-19 pandemic: A comparison with the pre-lockdown period in Northwest Italy. Air Qual. Atmos. Health 2023, 16, 1931–1946. [Google Scholar] [CrossRef]
- Marangon, D.; Traversi, D.; D’Agostino, A.M.; Gea, M.; Fontana, M.; Schilirò, T. The North-western Italy air quality monitoring network: Improving experience of PM2.5 assessment with mutagenicity assay. Environ. Res. 2021, 195, 110699. [Google Scholar] [CrossRef] [PubMed]
- Gilli, G.; Pignata, C.; Schilirò, T.; Bono, R.; La Rosa, A.; Traversi, D. The mutagenic hazards of environmental PM2.5 in Turin. Environ. Res. 2007, 103, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Traversi, D.; Degan, R.; De Marco, R.; Gilli, G.; Pignata, C.; Ponzio, M.; Rava, M.; Sessarego, F.; Villani, S.; Bono, R. Mutagenic properties of PM2.5 air pollution in the Padana Plain (Italy) before and in the course of XX Winter Olympic Games of “Torino 2006”. Environ. Int. 2008, 34, 966–970. [Google Scholar] [CrossRef] [PubMed]
- Traversi, D.; Degan, R.; De Marco, R.; Gilli, G.; Pignata, C.; Villani, S.; Bono, R. Mutagenic properties of PM2.5 urban pollution in the Northern Italy: The nitro-compounds contribution. Environ. Int. 2009, 35, 905–910. [Google Scholar] [CrossRef] [PubMed]
- ARPA. Piemonte UNO Sguardo ALL’ARIA Anteprima 2022; ARPA: Cambridge, MA, USA, 2022. [Google Scholar]
- ARPA. Piemonte Uno Sguardo ALL’ARIA 2021; ARPA: Cambridge, MA, USA, 2021. [Google Scholar]
- Chen, R.; Hu, B.; Liu, Y.; Xu, J.; Yang, G.; Xu, D.; Chen, C. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim. Biophys. Acta-Gen. Subj. 2016, 1860, 2844–2855. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guideline for Testing of Chemicals Test No 471: Bacterial Reverse Mutation Test; OECD: Paris, France, 2020; p. 24. [Google Scholar]
- Väätänen, A.K.; Ridanpää, M.; Norppa, H.; Kociba, P. Spectrum of spontaneous and 2,4,6-trinitrotoluene (TNT)-induced mutations in Salmonella typhimurium strains with different nitroreductase and O-acetyltransferase activities. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 1997, 379, 185–190. [Google Scholar] [CrossRef] [PubMed]
- UNI EN 12341:2023; Aria Ambiente—Metodo Gravimetrico di Riferimento per la Determinazione della Concentrazione in Massa di Particolato Sospeso PM10 o PM2.5. UNI: Milano, Italy, 2023.
- ISO 5167-1:2022; Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full—Part 1: General Principles and Requirements. ISO: Geneva, Switzerland, 2022.
- Traversi, D.; Festa, E.; Pignata, C.; Gilli, G. Aero-dispersed mutagenicity attributed to particulate and semi volatile phase in an urban environment. Chemosphere 2015, 124, 163–169. [Google Scholar] [CrossRef]
- Hénaff, E.; Najjar, D.; Perez, M.; Flores, R.; Woebken, C.; Mason, C.E.; Slavin, K. Holobiont Urbanism: Sampling urban beehives reveals cities’ metagenomes. Environ. Microbiome 2023, 18, 23. [Google Scholar] [CrossRef]
- Lawana, V.; Korrapati, M.C.; Mehendale, H.C. Cycloheximide. Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1103–1105. [Google Scholar]
- Georghiou, P.E.; Blagden, P.A.; Winsor, L.; Williams, D.T. Spontaneous revertants in modified S. typhimurium mutagenicity tests employing elevated numbers of the tester strain. Mutat. Res. Lett. 1989, 225, 33–39. [Google Scholar] [CrossRef]
- Lu, F.; Ruan, S.; Li, Y.; Wang, Y.; Xie, P.; Zhao, X.; Chao, J.; Ma, H. Assessment of DNA mutagenicity induced by He–Ne laser using Salmonella typhimurium strains. Appl. Microbiol. Biotechnol. 2023, 107, 4311–4321. [Google Scholar] [CrossRef]
- Bünger, J.; Müller, M.M.; Krahl, J.; Baum, K.; Weigel, A.; Hallier, E.; Schulz, T.G. Mutagenicity of diesel exhaust particles from two fossil and two plant oil fuels. Mutagenesis 2000, 15, 391–397. [Google Scholar] [CrossRef] [PubMed]
- De Brito, K.C.T.; De Lemos, C.T.; Rocha, J.A.V.; Mielli, A.C.; Matzenbacher, C.; Vargas, V.M.F. Comparative genotoxicity of airborne particulate matter (PM2.5) using Salmonella, plants and mammalian cells. Ecotoxicol. Environ. Saf. 2013, 94, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Kauffmann, K.; Gremm, L.; Brendt, J.; Schiwy, A.; Bluhm, K.; Hollert, H.; Büchs, J. Alternative type of Ames test allows for dynamic mutagenicity detection by online monitoring of respiration activity. Sci. Total Environ. 2020, 726, 137862. [Google Scholar] [CrossRef] [PubMed]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [CrossRef]
- Van Kampen, V.; Hoffmeyer, F.; Deckert, A.; Kendzia, B.; Casjens, S.; Neumann, H.D.; Buxtrup, M.; Willer, E.; Felten, C.; Schöneich, R.; et al. Effects of bioaerosol exposure on respiratory health in compost workers: A 13-year follow-up study. Occup. Environ. Med. 2016, 73, 829–837. [Google Scholar] [CrossRef]
- Wéry, N. Bioaerosols from composting facilities—A review. Front. Cell. Infect. Microbiol. 2014, 4, 42. [Google Scholar] [CrossRef]
Direct Test | Traditional Test | |
---|---|---|
Sampling days | October 6, 12, 20; November 24; December 1, 7, 15; January 11, 12, 18, 19, 25 | |
Sampling place | Turin, Lingotto environmental monitoring station | |
Sampling equipment | DUO SAS Super 360 sampler (Avantor International) | Airflow PM10 instrument (Analitica Strumenti S.p.A.) |
Sampling type | Direct air impact on plates low flow (180 L/min) | PM10 selection on glass fiber filters, high flow (1.27 m3/min) |
Plate preparation | Before the air sampling on RodacTM Contact Plates, VWR, USA (∅ 55 mm) | After the air sampling, microbiological plate (∅ 100 mm) |
Antimicrobials included in the medium | Ampicillin 2.5 mg/L and Cycloheximide 0.2 g/L | |
Duration of each sampling | ≈2 h in total, from 1 to 3 min for each plate according to the set sampling volume, middle of the day (generally 12:00–15:00) | 24 h |
Salmonella introduction on plates | Just before (≈1 h) the air sampling, 3-fold Salmonella cells included | After the organic extraction of the PM10 filters, simultaneously with the inclusion of the organic extract on the plates, a one-fold number of Salmonella cells included |
Salmonella exposition to the sample | Air pollution as it is | PM10 organic extract |
Incubation time and temperature | 48 h, temperature 42 °C | |
Result expression | Salmonella UFC/plate, then expressed as median and standard deviation and referred to the cubic meter |
Salmonella Strain | Method | Min | Max | Mean | Std. dev. |
---|---|---|---|---|---|
TA98 | Direct | 1 | 22.3 | 8.8 | 8.7 |
Classic | 0.8 | 20 | 9.2 | 8.1 | |
TA100 | Direct | 0.5 | 48.8 | 14.2 | 19.7 |
Classic | 0.8 | 6.5 | 2.7 | 2.4 | |
YG1024 | Direct | 0.8 | 8.2 | 3.7 | 3.3 |
Classic | 1 | 20 | 9.2 | 8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caredda, C.; Franchitti, E.; Gilli, G.; Pignata, C.; Traversi, D. Direct Impact of the Air on Mutant Cells for Mutagenicity Assessments in Urban Environments. Microorganisms 2024, 12, 3. https://doi.org/10.3390/microorganisms12010003
Caredda C, Franchitti E, Gilli G, Pignata C, Traversi D. Direct Impact of the Air on Mutant Cells for Mutagenicity Assessments in Urban Environments. Microorganisms. 2024; 12(1):3. https://doi.org/10.3390/microorganisms12010003
Chicago/Turabian StyleCaredda, Chiara, Elena Franchitti, Giorgio Gilli, Cristina Pignata, and Deborah Traversi. 2024. "Direct Impact of the Air on Mutant Cells for Mutagenicity Assessments in Urban Environments" Microorganisms 12, no. 1: 3. https://doi.org/10.3390/microorganisms12010003
APA StyleCaredda, C., Franchitti, E., Gilli, G., Pignata, C., & Traversi, D. (2024). Direct Impact of the Air on Mutant Cells for Mutagenicity Assessments in Urban Environments. Microorganisms, 12(1), 3. https://doi.org/10.3390/microorganisms12010003